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Abstract: The Negative Bias Temperature Instability (NBTI) effect of partially depleted silicon-on-
insulator (PDSOI) PMOSFET based on 130 nm is investigated. First, the effect of NBTI on the
IV characteristics and parameter degradation of T-Gate PDSOI PMOSFET was investigated by
accelerated stress tests. The results show that NBTI leads to a threshold voltage negative shift,
saturate drain current reduction and transconductance degradation of the PMOSFET. Next, the
relationship between the threshold voltage shift and stress time, gate bias and temperature, and the
channel length is investigated, and the NBTI lifetime prediction model is established. The results
show that the NBTI lifetime of a 130 nm T-Gate PDSOI PMOSFET is approximately 18.7 years under
the stress of VG = −1.2 V and T = 125 ◦C. Finally, the effect of the floating-body effect on NBTI
of PDSOI PMOSFET is investigated. It is found that the NBTI degradation of T-Gate SOI devices
is greater than that of the floating-body SOI devices, which indicates that the floating-body effect
suppresses the NBTI degradation of SOI devices.

Keywords: negative bias temperature instability; partially depleted silicon-on-insulator; threshold
voltage shift; NBTI lifetime; floating-body

1. Introduction

With the shrinking size of the integrated circuit and the thinning gate oxide thickness
of MOSFETs, negative bias temperature instability (NBTI) has become a major reliability
issue in modern CMOS technology [1]. It mainly describes the performance degradation of
the PMOSFET when operating at negative gate bias and high temperature, which is mainly
manifested as the threshold voltage shift, transconductance drop, and saturate current
decrease of the PMOSFET due to the interface trap at Si/SiO2 and the trap charge generated
in the gate oxide [2]. Researchers have proposed many models to interpret the degradation
mechanism of NBTI, among which the reaction-diffusion (R-D) model has been widely
applied [3]. The R-D model assumes that when a bias is applied to the gate, a reaction
related to the electric field will occur at the Si/SiO2 interface, and the passivated Si-H
bonds will be broken, resulting in interface traps, as shown in Figure 1. Meanwhile, the
high temperature will weaken the existing Si-H bonds, so it will also aggravate NBTI [4].
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Figure 1. Schematic illustration of the R-D model to interpret interface trap generation. 
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Figure 1. Schematic illustration of the R-D model to interpret interface trap generation.
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Recently, silicon-on-insulator (SOI) technology has been widely used because of its
main advantages, including latch-up immunity and high speed [5]. Whereas the NBTI effect
has a more severe impact on the reliability of SOI devices, and it is found that the NBTI
degradation of SOI devices is greater than that of CMOS devices [6]. Compared with CMOS
devices, SOI devices will produce a self-heating effect under the action of NBTI stress due
to the existence of buried oxide, resulting in the increase of device channel temperature.
According to the degradation mechanism of the NBTI effect, higher temperature will
make the NBTI degradation of PMOSFET more serious. Moreover, it is found that most
of the current research on NBTI lifetime prediction is based on CMOS devices [7], while
the research on the NBTI lifetime of SOI devices is very lacking, and most of them only
involve the NBTI failure mechanism and electrical performance degradation, and there is
no complete NBTI lifetime prediction model [8–10]. Therefore, the basic research on NBTI
and the establishment of the NBTI lifetime model in this paper are of great significance.

In addition, the research object of this paper is mainly partially depleted (PD) SOI
devices. Due to their own structural characteristics, PDSOI devices have the floating-body
effect, which will have a negative impact on the device characteristics [11]. The floating-
body effect can be suppressed by building body contact, which mainly includes T-Gate and
H-Gate. In order to further study the NBTI of SOI devices, the influence of the floating-body
effect on NBTI is studied in this paper.

In this paper, the transfer characteristics and sensitive parameters degradation due
to NBTI of a 130 nm PDSOI technology are investigated. The stress time, electric field,
temperature, and channel length dependence of NBTI characterized by parameter shifts
of PMOSFET are studied, and the transistor lifetime is evaluated. The following section
will elaborate on the devices used and experimental details. The next section discusses the
experimental results obtained by the NBTI experiments, estimates the lifetime of NBTI, and
investigates the effect of floating body on NBTI.

2. Materials and Methods

All devices used in the experiments were fabricated based on the 130 nm PDSOI
process. The top Si film thickness is 100 nm, and the buried oxide thickness is 145 nm. The
Core and I/O devices are selected as samples in our experiments, and both devices are
described in Table 1. As shown in Figure 2, a T-Gate is used for body contact to suppress
the floating-body effect.

Table 1. The two kinds of devices in the 130 nm PDSOI technology.

Device Body Contact Operating
Voltage

Gate Oxide
Thickness

Width-Length-
Ratios (W/L)

0.5 µm/0.13 µm
0.5 µm/0.18 µmCore T-Gate 1.2 V 2 nm
0.5 µm/0.5 µm

I/O
T-Gate 3.3 V 7 nm 0.5 µm/1.2 µm

Floating Body 3.3 V 7 nm 0.5 µm/1.2 µm
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Figure 2. Layout of PMOS transistor used in our study. 
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The NBTI stress experiments were conducted by an Agilent B1500 semiconductor
parameter analyzer [12] using the quasi-DC Stress-Measure-Stress (SMS) technique [7].
NBTI measurement includes applying voltage stress higher than the operating voltage to
the gate at a high temperature to accelerate degradation. The source, drain, and substrate
contacts were grounded in this experiment [13]. The wafers were subjected to different
stress temperatures of 100, 125, and 150 ◦C, and the applied stress biases at the gate were
−1.8, −2.0, and −2.2 V [14]. The total stress time was 3000 s, with periodic interruptions.
The following device parameters were measured to monitor device degradation under
stress: Vth, Ids, and gmmax. A complete Id~Vg curve was measured before and after the
stress with Vd = −0.1 V, and Vth is the threshold voltage extracted through the maximum
transconductance method. Ids was extracted from the Id~Vg curve, and its value is equal
to the corresponding Id value when Vg = −1.2 V in the Id~Vg curve. gm was obtained by
differentiating the Id~Vg curve, and gmmax is the maximum value in gm.

In addition, the Sentaurus TCAD simulation tool was used to analyze the internal
mechanism of the degradation of electrical characteristics of PDSOI PMOS devices before
and after NBT stress [15]. The models used in the simulation process mainly include the trap
degradation model, the mobility degradation model, and the recombination model [16].

3. Results and Discussion
3.1. NBTI Degradation of I–V Characteristic

Figure 3 shows the transfer characteristics of a Core PMOS with W/L = 0.5 µm/0.13 µm
before and after stress. T = 125 ◦C and VG = −2.0 V were selected as the main stress
conditions to prevent the SOI device’s failure due to excessive temperature or excessive
gate voltage during the test. It can be observed that the negative shift of threshold voltage
after NBT stress. The threshold voltage is changed from −0.32166V to −0.33182 V, and the
shift is about 10.16 mV. It is caused by the interface trap at Si/SiO2 and the trap charge
generated in the gate oxide [2]. This paper verifies this phenomenon through TCAD
simulation; the simulation results are shown in Figure 4. It can be observed from the
figure that the concentration of the interface trap at Si/SiO2 after NBT stress is significantly
increased, and the increase in trap charge will cause a negative shift in the threshold voltage.
In order to evaluate the reliability of MOSFET, the threshold voltage shift (∆Vth) is often
used as the evaluation standard. ∆Vth can be expressed as follows:

∆Vth =
−q(∆Not + ∆Nit)

Cox
=
−q(∆Not + ∆Nit)tox

εox
(1)

where q is the electron charge, Cox is the gate oxide capacitance, tox is the gate oxide
thickness, εox is the permittivity of the oxide, and ∆Not and ∆Nit are the density of stress-
induced oxide trapped charge and interface trap at Si/SiO2, respectively.

Figure 4 shows the interface trap concentration at Si/SiO2 of the SOI PMOS device
before and after stress. It can be observed from the figure that the concentration of interface
traps at Si/SiO2 increases significantly after NBT stress, which is because under the action
of NBT stress, the Si-H bond is broken, and, finally, the electrically active interface traps are
formed, resulting in the trap concentration at the interface increasing.

In addition, the reduction of the drain current at Vg = −1.2 V after NBT stress can
be observed in Figure 3, and the drain current varies from 16.3 µA to 15.8 µA, the shift is
about 0.5 µA. The drain current reduction is caused by the threshold voltage and mobility.
The interface trap concentration at Si/SiO2 increased significantly after the stress, causing a
chance of scattering of the device [17], and the internal carrier mobility decreased, resulting
in the reduction of the drain current. This paper verifies this phenomenon through TCAD
simulation; the results are shown in Figure 5. It is observed that the device channel carrier
mobility declines after NBT stress. This is because under the conditions of high temperature
and negative gate voltage, the internal lattice collision of the device is intensified, and the
scattering probability increases, which leads to the deterioration of the carrier mobility.



Micromachines 2022, 13, 808 4 of 10Micromachines 2022, 13, x FOR PEER REVIEW 4 of 11 
 

 

0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2

0.0

-3.0

-6.0

-9.0

-12.0

-15.0

-18.0

Id
(m

A
)

Vg(V)

 0 s

 1 s

 10 s

 30 s

 100 s

 300 s

 1000 s

 3000 s

(a)

T-Gate SOI PMOS

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 

-0.65 -0.70

-6.0

-6.5

-7.0

T-Gate SOI PMOS

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

Id
(m

A
)

Vg(V)

 0 s

 1 s

 10 s

 30 s

 100 s

 300 s

 1000 s

 3000 s

(b)

 

Figure 3. Transfer characteristics of PMOS before and after NBT stress. (a) Complete, (b) Enlarged. 

Figure 4 shows the interface trap concentration at Si/SiO2 of the SOI PMOS device 

before and after stress. It can be observed from the figure that the concentration of inter-

face traps at Si/SiO2 increases significantly after NBT stress, which is because under the 

action of NBT stress, the Si-H bond is broken, and, finally, the electrically active interface 

traps are formed, resulting in the trap concentration at the interface increasing. 

-0.06 -0.03 0.00 0.03 0.06

0.0

2.0x1011

4.0x1011

6.0x1011

8.0x1011

T
o

ta
lI

n
te

rf
a

ce
T

ra
p

C
o

n
ce

n
tr

a
ti

o
n

(c
m

-2
)

Position(mm)

 before stress

 after stress
NBT stress:

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 

Figure 4. Distribution of interface trap concentration in PMOSFET. 

In addition, the reduction of the drain current at Vg = −1.2 V after NBT stress can be 

observed in Figure 3, and the drain current varies from 16.3 μA to 15.8 μA, the shift is 

about 0.5 μA. The drain current reduction is caused by the threshold voltage and mobility. 

The interface trap concentration at Si/SiO2 increased significantly after the stress, causing 

a chance of scattering of the device [17], and the internal carrier mobility decreased, re-

sulting in the reduction of the drain current. This paper verifies this phenomenon through 

TCAD simulation; the results are shown in Figure 5. It is observed that the device channel 

carrier mobility declines after NBT stress. This is because under the conditions of high 

temperature and negative gate voltage, the internal lattice collision of the device is inten-

sified, and the scattering probability increases, which leads to the deterioration of the car-

rier mobility. 

Figure 3. Transfer characteristics of PMOS before and after NBT stress. (a) Complete, (b) Enlarged.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 11 
 

 

0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2

0.0

-3.0

-6.0

-9.0

-12.0

-15.0

-18.0

Id
(m

A
)

Vg(V)

 0 s

 1 s

 10 s

 30 s

 100 s

 300 s

 1000 s

 3000 s

(a)

T-Gate SOI PMOS

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 

-0.65 -0.70

-6.0

-6.5

-7.0

T-Gate SOI PMOS

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

Id
(m

A
)

Vg(V)

 0 s

 1 s

 10 s

 30 s

 100 s

 300 s

 1000 s

 3000 s

(b)

 

Figure 3. Transfer characteristics of PMOS before and after NBT stress. (a) Complete, (b) Enlarged. 

Figure 4 shows the interface trap concentration at Si/SiO2 of the SOI PMOS device 

before and after stress. It can be observed from the figure that the concentration of inter-

face traps at Si/SiO2 increases significantly after NBT stress, which is because under the 

action of NBT stress, the Si-H bond is broken, and, finally, the electrically active interface 

traps are formed, resulting in the trap concentration at the interface increasing. 

-0.06 -0.03 0.00 0.03 0.06

0.0

2.0x1011

4.0x1011

6.0x1011

8.0x1011

T
o

ta
lI

n
te

rf
a

ce
T

ra
p

C
o

n
ce

n
tr

a
ti

o
n

(c
m

-2
)

Position(mm)

 before stress

 after stress
NBT stress:

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 

Figure 4. Distribution of interface trap concentration in PMOSFET. 

In addition, the reduction of the drain current at Vg = −1.2 V after NBT stress can be 

observed in Figure 3, and the drain current varies from 16.3 μA to 15.8 μA, the shift is 

about 0.5 μA. The drain current reduction is caused by the threshold voltage and mobility. 

The interface trap concentration at Si/SiO2 increased significantly after the stress, causing 

a chance of scattering of the device [17], and the internal carrier mobility decreased, re-

sulting in the reduction of the drain current. This paper verifies this phenomenon through 

TCAD simulation; the results are shown in Figure 5. It is observed that the device channel 

carrier mobility declines after NBT stress. This is because under the conditions of high 

temperature and negative gate voltage, the internal lattice collision of the device is inten-

sified, and the scattering probability increases, which leads to the deterioration of the car-

rier mobility. 

Figure 4. Distribution of interface trap concentration in PMOSFET.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 11 
 

 

(a) (b)

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

40

60

80

100

120

140

NBT stress:

VG = − 2.0 V

T = 125 ℃

time = 3000s

M
o

b
il

it
y

(c
m

2
 ´

 V
-1

 ´
 s

-1
)

Position(mm)

 before stress

 after stress

(c)

 

Figure 5. Distribution of carrier mobility in PMOSFET. (a) Before stress, (b) After stress, (c) Com-

pared. 

Transconductance is the embodiment of the control ability of gate voltage to drain 

current. The higher the transconductance, the better the high-frequency response charac-

teristics of the device. Figure 6 shows the transconductance characteristics of PMOSFET 

before and after stress. It can be observed that the transconductance decreases, and the 

maximum transconductance is a more negative gate voltage shift after NBT stress. As 

shown in Figure 6, the maximum transconductance shifts from 22.6 μS corresponding to 

Vg = −0.571 V to 22.1 μS corresponding to Vg = −0.662 V. Since the transconductance is 

proportional to the mobility in the linear region, and NBT stress leads to the decrease of 

carrier mobility, the device transconductance decreases after NBT stress. 

0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2

0.0

5.0

10.0

15.0

20.0

T-Gate SOI

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 before stress

 after stress

g
m

(m
S

)

Vg(V)  

Figure 6. Transconductance characteristics of Core PMOS before and after NBTI stress. 

It can be seen from the above analysis that the NBTI effect mainly leads to the degra-

dation of electrically sensitive parameters, such as threshold voltage, saturated drain cur-

rent, and maximum transconductance, of PMOS devices. Figure 7 shows the relationship 

between the shift of the sensitive parameter and the stress time. It can be observed from 

Figure 5. Distribution of carrier mobility in PMOSFET. (a) Before stress, (b) After stress, (c) Compared.



Micromachines 2022, 13, 808 5 of 10

Transconductance is the embodiment of the control ability of gate voltage to drain
current. The higher the transconductance, the better the high-frequency response charac-
teristics of the device. Figure 6 shows the transconductance characteristics of PMOSFET
before and after stress. It can be observed that the transconductance decreases, and the
maximum transconductance is a more negative gate voltage shift after NBT stress. As
shown in Figure 6, the maximum transconductance shifts from 22.6 µS corresponding to
Vg = −0.571 V to 22.1 µS corresponding to Vg = −0.662 V. Since the transconductance is
proportional to the mobility in the linear region, and NBT stress leads to the decrease of
carrier mobility, the device transconductance decreases after NBT stress.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 11 
 

 

(a) (b)

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

40

60

80

100

120

140

NBT stress:

VG = − 2.0 V

T = 125 ℃

time = 3000s

M
o

b
il

it
y

(c
m

2
 ´

 V
-1

 ´
 s

-1
)

Position(mm)

 before stress

 after stress

(c)

 

Figure 5. Distribution of carrier mobility in PMOSFET. (a) Before stress, (b) After stress, (c) Com-

pared. 

Transconductance is the embodiment of the control ability of gate voltage to drain 

current. The higher the transconductance, the better the high-frequency response charac-

teristics of the device. Figure 6 shows the transconductance characteristics of PMOSFET 

before and after stress. It can be observed that the transconductance decreases, and the 

maximum transconductance is a more negative gate voltage shift after NBT stress. As 

shown in Figure 6, the maximum transconductance shifts from 22.6 μS corresponding to 

Vg = −0.571 V to 22.1 μS corresponding to Vg = −0.662 V. Since the transconductance is 

proportional to the mobility in the linear region, and NBT stress leads to the decrease of 

carrier mobility, the device transconductance decreases after NBT stress. 

0.6 0.3 0.0 -0.3 -0.6 -0.9 -1.2

0.0

5.0

10.0

15.0

20.0

T-Gate SOI

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

time = 3000 s

 before stress

 after stress

g
m

(m
S

)

Vg(V)  

Figure 6. Transconductance characteristics of Core PMOS before and after NBTI stress. 

It can be seen from the above analysis that the NBTI effect mainly leads to the degra-

dation of electrically sensitive parameters, such as threshold voltage, saturated drain cur-

rent, and maximum transconductance, of PMOS devices. Figure 7 shows the relationship 

between the shift of the sensitive parameter and the stress time. It can be observed from 
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It can be seen from the above analysis that the NBTI effect mainly leads to the degrada-
tion of electrically sensitive parameters, such as threshold voltage, saturated drain current,
and maximum transconductance, of PMOS devices. Figure 7 shows the relationship be-
tween the shift of the sensitive parameter and the stress time. It can be observed from the
figure that under the same stress condition, the degradation trend of threshold voltage,
drain current, and transconductance is the same, which is shown as follows: with the in-
crease of stress time, the degradation of sensitive parameters increases gradually. However,
their degradation amounts are different, with the threshold voltage degradation being the
largest. Therefore, the degradation of the threshold voltage is the main in the later research
process; that is, the NBTI lifetime prediction model of SOI PMOS devices is established
based on the threshold voltage shift.

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 11 
 

 

the figure that under the same stress condition, the degradation trend of threshold volt-

age, drain current, and transconductance is the same, which is shown as follows: with the 

increase of stress time, the degradation of sensitive parameters increases gradually. How-

ever, their degradation amounts are different, with the threshold voltage degradation be-

ing the largest. Therefore, the degradation of the threshold voltage is the main in the later 

research process; that is, the NBTI lifetime prediction model of SOI PMOS devices is es-

tablished based on the threshold voltage shift. 

0 500 1000 1500 2000 2500 3000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T-Gate SOI PMOS

0.5 mm / 0.13 mm

VG = − 2.0 V

T = 125 ℃

D
eg

ra
d

a
ti

o
n

 r
a
ti

o
(%

)

time(s)

 Vth/Vth

 Ids/Ids

 gmmax/gmmax

 

Figure 7. Degradation comparison of sensitive parameters after NBT stress. 

3.2. Construction of NBTI Lifetime Prediction Model 

The study found that the NBTI degeneration of the device can be represented by the 

following empirical models [18], 

1
( ) exp( ) exp( )p na

th

E C
V t

L KT VG
  ´ − ´ − ´  (2) 

where n is the time exponent factor, p is the channel length influence factor, Ea is the acti-

vation energy, and C is the electric field acceleration factor. These parameters can be ex-

tracted from the experimental results. 

3.2.1. Stress Time Dependence of NBTI Degradation 

Figure 8 presents ΔVth degradation dependence on the stress time. It can be observed 

that the threshold voltage shift increases with the increase of NBT stress time and is ap-

proximate to a straight line in double logarithmic coordinates. That is, the relationship 

between the threshold voltage and stress time conforms to the power exponent and the 

time exponent factor n = 0.28 [19]. 

Figure 7. Degradation comparison of sensitive parameters after NBT stress.



Micromachines 2022, 13, 808 6 of 10

3.2. Construction of NBTI Lifetime Prediction Model

The study found that the NBTI degeneration of the device can be represented by the
following empirical models [18],

∆Vth ∝ (
1
L
)

p
× exp(− Ea

KT
)× exp(− C

|VG| )× tn (2)

where n is the time exponent factor, p is the channel length influence factor, Ea is the
activation energy, and C is the electric field acceleration factor. These parameters can be
extracted from the experimental results.

3.2.1. Stress Time Dependence of NBTI Degradation

Figure 8 presents ∆Vth degradation dependence on the stress time. It can be observed
that the threshold voltage shift increases with the increase of NBT stress time and is
approximate to a straight line in double logarithmic coordinates. That is, the relationship
between the threshold voltage and stress time conforms to the power exponent and the
time exponent factor n = 0.28 [19].
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Figure 8. ∆Vth degradation dependence on the stress time.

3.2.2. Gate Bias Dependence of NBTI Degradation

Figure 9a presents the time evolution of ∆Vth degradation under different gate biases.
It can be observed from the figure that under different gate bias stress, the threshold voltage
shift of SOI PMOS device will increase with the increase of stress time after NBT stress, and
the greater the gate bias stress, the more serious the damage degree of the device, which
indicates that increasing the gate bias stress can accelerate the NBTI degradation of the
PMOS device. The reason for this phenomenon is that when the thickness of the gate oxide
of the SOI PMOS device remains unchanged, the increase of the stress gate voltage will
lead to an increase in the longitudinal electric field intensity of the device. According to
the degradation mechanism of the NBTI effect, the increase of gate electric field intensity
will make the process of hole injection into the gate dielectric layer of PMOS devices easier,
which will lead to more holes in the gate oxide. Holes can accelerate the reaction-diffusion
process inside PMOS devices, which is reflected in the greatly increased fracture probability
of the Si-H bond at the Si/SiO2 interface. This phenomenon leads to the greatly increased
number of H material diffused into the gate oxide, which makes the NBTI degradation of
PMOS devices worse.
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Figure 9. (a)Time evolution of ∆Vth degradation under different gate biases. (b) ∆Vth degradation
dependence on the stress bias.

Figure 9b presents ∆Vth degradation dependence on the stress gate bias. It can be
observed that there is a linear relationship between the threshold voltage degradation and
the reciprocal of the gate bias in semi-logarithmic coordinates, which meets the empirical
model-exp model. The electric field acceleration factor can be extracted from Figure 9b;
that is, C = 3.42.

3.2.3. Temperature Dependence of NBTI Degradation

Figure 10a presents the time evolution of ∆Vth degradation under different temper-
atures. It can be observed from the figure that under different stress temperatures, the
threshold voltage shift of the device under test after NBT stress increases with the increase of
stress time, and the NBTI degradation of the device becomes more severe with the increase
of temperature; that is, an increase in temperature will accelerate the NBTI degradation of
SOI PMOS devices. The reason for this phenomenon is that high temperatures accelerate
the fracture of Si-H bonds at the Si/SiO2 interface of PMOSFET, and high temperatures can
accelerate the diffusion of by-product H produced in the R-D process into the gate oxide.
These two factors lead to the intensification of NBTI degradation of PMOSFET [20].
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dependence on the stress temperature.

Figure 10b presents the ∆Vth degradation dependence on the stress temperature. It
can be observed that there is a linear relationship between the threshold voltage shift and
the reciprocal of the product of temperature and Boltzmann constant in semi-logarithmic
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coordinates; that is, the relationship between the threshold voltage shift and stress tempera-
ture conforms to the empirical model Arrhenius equation. From Figure 10b, the activation
energy, Ea is extracted to be 0.24 eV [21].

3.2.4. Channel Length Dependence of NBTI Degradation

Figure 11a presents the time evolution of ∆Vth degradation under different channel
lengths. It can be observed from the figure that the threshold voltage degradation trend
of PMOSFET under different channel lengths is similar, and with the decrease of channel
length, the threshold voltage shift increases; that is, the degradation of NBTI becomes
worse [22].
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Figure 11b presents ∆Vth degradation dependence on the channel length. It can be
observed that there is a linear relationship between the threshold voltage shift and the
reciprocal of the channel length in the double logarithmic coordinate; that is, there is
a power–law relationship between the threshold voltage shift and the reciprocal of the
channel length. From Figure 11b, the channel length exponent factor, p is extracted to be
0.24.

It can be seen from the above discussion that the time exponent factor is n = 0.28, the
activation energy is Ea = 0.24, the electric field acceleration factor is C = 3.42, and the channel
length exponent factor is p = 0.24. Therefore, the empirical model can be transformed into:

∆Vth = A× (
1
L
)

0.24
× exp(−0.24

KT
)× exp(− 3.42

|VG| )× t0.28 (3)

where the proportional constant A is related to the specific process. The lifetime of PMOS-
FET can be measured under constant high temperatures and gate voltage stress, and then
the value of A can be determined.

The NBTI lifetime of PMOSFET can be defined as the time when the threshold voltage
shifts by 100 mV when the temperature is 125 ◦C and the gate is at normal working voltage.
It is deduced that the NBTI lifetime of 130 nm TB PDSOI PMOS device is about 18.7 years.

3.3. Influence of Floating Body on NBTI of SOI Devices

Figure 12 shows the time dependence of the threshold voltage shift of the floating-
body and the T-Gate SOI PMOSFET after NBT stress, from which it can be seen that the
NBTI degradation trend of the floating-body SOI device is similar to that of the T-Gate
SOI device, which shows that the threshold voltage degradation increases with the stress
time and is linearly related to the stress time in double logarithmic coordinates. The time
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acceleration factor is about 0.25, and this phenomenon indicates that the presence of the
floating body does not change the NBTI degradation mechanism of the PDSOI PMOSFET.
It can also be observed that the degradation of the T-Gate SOI device is greater than that
of floating-body SOI devices in a short stress time because, in floating-body SOI devices,
tunneling electrons accumulate in the substrate, resulting in a lower potential in the body
region, which further reduces the longitudinal gate oxide electric field. This results in a
reduction in the number of holes in the channel inversion layer that form the interfacial
state and oxide trap charges [23], leading to less NBTI degradation in floating-body SOI
devices than in T-Gate SOI devices in a short stress time [24].
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4. Conclusions

In this paper, the NBTI effect of PMOSFET from 130 nm PDSOI technology were
investigated. First of all, the IV characteristics of 130 nm PDSOI PMOSFET under NBT stress
and the degradation law of electrical parameters are analyzed through experimental tests.
The test results show that NBTI leads to a negative shift of the PMOSFET threshold voltage,
reduction of drain current in the linear region, and reduction of maximum transconductance.
Then, the effects of temperature, gate bias, and channel length on the NBTI effect of SOI
devices were investigated. It was found that the threshold voltage degradation is greater
at high temperature, large gate bias, and small channel length. In addition, based on the
experimental results, the activation energy, electric field acceleration factor, and time and
channel length-related parameter factors were extracted to establish the NBTI lifetime
prediction model for 130 nm PDSOI PMOSFETs. The NBTI lifetime of the device was
inferred to be about 18.7 years under the stress of VG = −1.2 V and T = 125◦C. Finally,
the effect of the floating body on the NBTI of the PDSOI PMOSFET was investigated by
comparing the NBTI degradation of the floating-body and T-Gate SOI devices. The results
show that the NBTI degradation law of floating-body SOI devices is similar to that of
T-Gate SOI devices, but the NBTI degradation of floating-body SOI devices is less than that
of T-Gate SOI devices in a short stress time.
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