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Cancer treatments such as chemotherapies may change or accelerate aging trajectories in
cancer patients. Emerging evidence has shown that “omics” data can be used to study
molecular changes of the aging process. Here, we integrated the drug-induced and normal
aging transcriptomic data to computationally characterize the potential cancer drug-
induced aging process in patients. Our analyses demonstrated that the aging-
associated gene expression in the GTEx dataset can recapitulate the well-established
aging hallmarks. We next characterized the drug-induced transcriptomic changes of 28
FDA approved cancer drugs in brain, kidney, muscle, and adipose tissues. Further drug-
aging interaction analysis identified 34 potential drug regulated aging events. Those events
include aging accelerating effects of vandetanib (Caprelsa®) and dasatinib (Sprycel®) in
brain and muscle, respectively. Our result also demonstrated aging protective effect of
vorinostat (Zolinza®), everolimus (Afinitor®), and bosutinib (Bosulif®) in brain.
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1 INTRODUCTION

Cancer survival has been significantly improved because of better screen/diagnosis strategies and
more effective treatments. The number of cancer survivors is projected to increase to 22.2 million by
2030 in the United States. However, the cancer survivors are at increased risk for accelerated aging
and related health conditions (Guida et al., 2019). The normal aging process is described as a gradual
accumulation of molecular and cellular damage, which eventually leads to systematic dysregulation.
Cancer treatments such as chemotherapies can also cause genotoxic and cytotoxic damage to normal
tissues in the cancer patients. This may change or accelerate the aging process in multiple organs of
patients in long term. Emerging clinical studies have shown that cancer treatments can lead to a
broad spectrum of aging-related health conditions at a younger age for the cancer survivor (Guida
et al., 2021).

Clinical follow-up studies indicate that cancer treatment contributes to the early onset of aging-
related symptoms in the young cancer survivors, such as frailty, incident comorbidities, functional
loss, and cognitive decline (Guida et al., 2019; Guida et al., 2021). Furthermore, observational studies
have shown that survivors of adult-onset cancers have a higher burden of mobility limitations
(Keating et al., 2005), comorbid conditions (Alfano et al., 2017), pain (Alfano et al., 2017), and a
greater risk of functional and cognitive impairments compared with healthy, age-matched controls
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(Hewitt et al., 2003). These preclinical and clinical findings
suggest that cancer treatments may lead to a change or
acceleration of the aging trajectory. Several cancer drugs have
been shown to cause cell damage through mechanisms similar to
those mediating the aging process (Guida et al., 2019). However,
for most of the FDA approved cancer drugs, the molecular and
cellular changes underlying the interaction of cancer treatment
and altered aging trajectory are unknown. This limitation has
constrained the efforts to identify, predict, and mitigate the aging-
related consequences for cancer survivors (Guida et al., 2021).

Emerging evidence has shown that transcriptome and other
types of “omics” data can be used to study molecular changes
and trajectory of the aging process (Edwards et al., 2007; Peters
et al., 2015). For example, by studying the epigenome and
transcriptome landscapes of mice in different age groups,
Benayoun and collogues have revealed widespread induction
of inflammatory responses during the aging process
(Benayoun et al., 2019). Omics data analyses have shown
that under-expression of mitochondrial gene in tissues from
aged donors (Yang et al., 2016). Study in transcriptomes across
multiple species with varied lifespans demonstrated feasibility
of using gene expression analysis to characterize the molecular
signatures of longevity (Ma et al., 2018). DNA-methylation
aging markers have been identified using the epigenetic profile
as a “clock” of aging (Horvath and Raj, 2018). Despite recent
development in transcriptomic and epigenetic research in the
normal aging process, limited work has been done to
characterize the cancer drug-induced aging process in
cancer survivors.

This gap of knowledge is in part because of the paucity of
samples and data that can be obtained after cancer treatment.
The LINCS L1000 (L1000) transcriptome database is a
comprehensive gene expression knowledgebase of pre- and
post-treatment cell lines (Subramanian et al., 2017). This
collection of post-treated expression profiles is an important
resource for finding the connections between drugs,
therapeutic effects, and disease states. In addition to the
L1000 data, the availability of the multiple normal tissue
transcriptomic data from the Genotype-Tissue Expression
(GTEx) database (Consortium et al., 2017) allows us to
robustly characterize an aging-associated signature in each
tissue. In this regard, we hypothesize that we can integrate the
L1000 and GTEx databases to investigate the scope and
molecular changes of cancer drug-induced aging processes
by comparing the transcriptional profiles of normal aging
tissues and post-treatment normal cell lines. To test this
hypothesis, we have developed a computational framework
to identify aging-associated signatures from GTEx, the drug-
induced expression signatures from L1000 database, and
further compared these two signatures to study the drug-
aging interaction and underlying molecular changes during
this process. Among the significant drug-aging interactions

are aging-accelerating effect of vandetanib in brain and
dasatinib in muscle. Meanwhile, the protective effect of
vorinostat and bosutinib on brain aging, and everolimus’
different roles in muscle and brain aging processes are
characterized. Our integrative study successfully
characterized the drug-aging interaction maps of 28 FDA
approved cancer drugs in four normal tissues.

2 MATERIALS AND METHODS

2.1 Expression Data
To date, the L1000 database (Subramanian et al., 2017) has
included more than 1.3 million post-treated expression
profiles from both normal and cancer cell lines. The
majority of these gene expression profiles comprise
transcriptional responses of human cancer cells to chemical
and genetic perturbations. Phase II L1000 data of the best
inferred gene space were obtained from https://lincsproject.
org/LINCS/.

The Genotype-Tissue Expression (GTEx) database
(Consortium et al., 2017) contains gene expression profiles
from multiple tissue sites across nearly 1,000 individuals.
Version 8 (V8) data for 46 tissue types with at least 84
samples for following analysis were downloaded from GTEx
Portal (https://www.gtexportal.org/).

2.2 Statistical Analysis
Spearman correlation coefficient (Schober et al., 2018)
between each gene’s expression and the age of the
corresponding donors in each tissue type were calculated.
The p-value <0.05 was used to select significant
correlations. Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005) were performed on the genes
ranked based on their correlation with donor ages. Gene
Ontology (Ashburner et al., 2000; Wu et al., 2020), KEGG
(Kanehisa and Goto, 2000), and curated gene sets from the
Molecular Signatures Database (MSigDB) (Liberzon et al.,
2015) were used to identify the pathways that enriched with
aging/treatment-associated genes. All the computational and
statistical analyses were performed using R (version 3.6.2) and
Python (version 3.8.0).

2.3 Identification of Aging-Associated and
Drug-Induced Signatures
In the GTEx dataset, Spearman correlation analysis was
performed to identify the gene expression that was
significantly correlated with the ages of the donors in
different tissue types respectively. In each tissue, genes with
p-values <0.05 and Spearman correlation coefficient rho> 0.2/
< −0.2 were selected as aging-associated signature genes. In
some tissue types, we found very few aging-associated genes
using the above criterion which might be caused by the small
sample size. Then we chose 500 genes with top positive
correlation and 500 genes with top negative correlation with
donor ages as the signature genes for the following study. The

1https://hpo.jax.org/app/browse/term/HP:0000735
2https://www.cancer.gov/
3https://www.cancer.gov/about-cancer/understanding/statistics
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signature r contains signature genes with positive correlation
assigned with “+1,” signature genes with negative correlation
assigned with “−1,” and the rest assigned with “0”.

In the L1000 dataset, drug-induced signatures were built on
genes that significantly changed after treatment using
experiments with high reproducibility among replicates. For
the transcriptomes treated with the same drug, genes that have
significant changes with z score >1 or < −1 in 20% or more
experiments were selected as signature genes similar to
previously described in (Stathias et al., 2018). After drug
treatment in the normal cells, each drug-induced signature
z includes significantly upregulated genes assigned with “+1,”
significantly downregulated genes assigned with “−1,” and the
rest of the genes marked as “0”.

2.4 Integrating the Drug-Induced Signatures
andAging-Associated Signatures to Identify
Cancer Drug-Aging Interactions
9,792 overlapped genes between the LINCS L1000 database and
GTEx data were used to investigate the interaction between
drug-induced signatures and aging-associated signatures as
shown in Figure 1. The specificity (S) score and concordance
ratio (CR) similar to (Stathias et al., 2018) were used to

quantify the signature interaction and evaluate the drug-
induced aging effects. The specificity score was calculated as
the percentage of shared genes between the drug-induced
signature in a specific cell line and the aging-associated
signature in a matched tissue type comparing to the total
number of genes in the aging-associated signature in the
matched tissue type (Eq. 1). The range of the specificity
score is between 0 and 1. Higher specificity score indicates
higher overlap between two signatures.

Specificity � ∑9792
i�1 [ai · bi]
∑9792

i�1 [ai]
with ai � { 1, if ri ≠ 0

0, if ri � 0
and

bi � { 1, if zi ≠ 0
0, if zi � 0

(1)

The concordance ratio was defined as the ratio of the
number of shared genes in both signatures that are
upregulated/downregulated after drug treatment and
positively/negatively correlated with increased donor ages
versus the number of shared genes in both signatures that
are upregulated/downregulated after drug treatment but
negatively/positively correlated with increased donor ages
(Eq. 2).

FIGURE 1 | The computational framework to characterize the cancer drug-aging interaction. (A) Identification of aging-associated expression signatures in
different tissue types in GTEx database. (B) Identification of drug-induced expression signatures in different normal cells from LINCS L1000 database. (C) Interaction of
drug-induced signature and aging-associated signature characterized by specificity, adjusted concordance ratio and enriched functional pathways.
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Concordance ratio � ∑9792
i�1 [ai]

∑9792
i�1 [bi]

with ai

� { 1, if zi · ri > 0
0, if zi · ri < 0

and bi

� { 1, if zi · ri < 0
0, if zi · ri > 0

(2)

where z and r are the vectors of drug-induced signature and
aging-associated signature respectively. An adjusted concordance
ratio is further obtained by adding a pseudocount of 1 to both of
numerator and denominator of the original ratio, which can be
used to characterize the cases with denominator at zero when
calculating the concordance ratio. For example, when no
overlapped genes or no genes with opposite alteration
direction were found between aging-associated signature and
drug-induced signature, adjusted concordance ratio will
provide a proper calculation. Moreover, a permutation test will
be performed for each adjusted concordance ratio to show its
significance. In each permutation, an adjusted concordance ratio
will be calculated for the randomly selected aging-associated
signature and drug-induced signature keeping the number of
positive and negative genes remains the same with the original
signatures. This process will be repeated for 10,000 permutations
and a normal distribution is approximated for permutated
adjusted concordance ratios, which will be used to calculate
the p-value for the observed adjusted concordance ratio. A
significant adjusted concordance ratio <1 suggests a potential
protective effect from aging, and a significant concordance ratio
>1 indicates more likely the drug can accelerate aging-related
process in this specific tissue. Further enrichment analysis was
performed on genes that were shared between aging-associated
signature and drug-induced signature, using pathway

annotations from Gene Ontology (GO) (Gene Ontology, 2004)
by Enrichr (Chen et al., 2013) with Fisher’s exact test.

3 RESULTS

3.1 Aging-Associated Gene Expression in
the GTEx can Recapitulate the
Well-Established Aging Hallmarks
The GTEx database contains gene expression profiles from multiple
tissue sites across nearly 1,000 individuals aged from 20 to 71. We
first sought to determine if gene expression data can be used to
characterize the molecular changes during the normal aging
trajectory. For each of 46 tissue types that has at least 84 samples
in the GTEx database (V8), we performed GSEA analyses on the
genes ranked based on their expression correlation with donor ages.
This analysis revealed that the aging-associated transcriptomic
changes are highly consistent with established aging hallmarks
(Lopez-Otin et al., 2013). As shown in Figure 2, significant
positive correlations were observed between the increased donor
ages and increased gene expression in cell senescence
(REPLICATIVE SENESCENCE, FDR <0.1 in 6 out of 46 tissue
types) and inflammation (POSITIVE CHEMOTAXIS, FDR <0.1 in
14 out of 46 tissue types). In addition to the activated cellular process,
the decline of some molecular and cellular functions is also
prominent as donor age increases. For example, the increased
donor ages are highly correlated with decreased gene expressions
in telomere function (TELOMERASE RNA LOCALIZATION, FDR
<0.1 in 18 out of 46 tissue types), mitochondrial function
(MITOCHONDRIAL GENE EXPRESSION, FDR <0.1 in 27 out
of 46 tissue types), and genome integrity (NUCLEAR
CHROMOSOME SEGREGATION, FDR <0.1 in 12 out of 46

FIGURE 2 | Aging-associated gene expression in the GTEx can recapitulate the well-established aging hallmarks. The Normalized Enrichment Score (NES) and
False Discovery Rate (FDR) of GSEA analysis are shown for gene sets grouped by different aging hallmarks in each tissue type.
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tissue types) (Figure 2). These results suggest the aging process in
multiple tissue types can be characterized by the gene expression
profiles.

In the amygdala and hippocampus regions of the brain, the
aging-associated genes are highly overlapped with characteristics

associated with neurodegeneration phenotypes such as “IMPAIRED
SOCIAL INTERACTIONS” (Figure 3A). Specifically, PTEN
induced kinase 1 (PINK1) is one of the core genes that are
significantly decreased in aged donors in the IMPAIRED
SOCIAL INTERACTIONS function (Figure 3B). Previous studies

FIGURE 3 | The aging-associated genes in normal brain and muscle tissues are highly overlapped with brain and muscle aging phenotypes. (A) GSEA analysis of
aging-associated genes using gene sets derived from the Human Phenotype Ontology. (B) Decreased gene expression in normal brain and muscle tissues of aged
donors.
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have shown that PINK1 plays a vital role in mitochondrial
maintenance (Wilhelmus et al., 2011), and PINK1 dysregulations
may contribute to neurodegeneration and aging (Kitagishi et al.,
2017), which is consistent with our results here. Dysfunction of
PINK1 related pathway has been reported in patients with
Parkinson’s and Alzheimer’s diseases (Ye et al., 2015; Martin-
Maestro et al., 2016), which makes it a candidate therapeutic
target for those diseases (Du et al., 2017).

Meanwhile, neurodegeneration associated function
“CEREBRAL WHITE MATTER ATROPHY” (Patel and
Barkovich, 2002; Poretti and Boltshauser, 2015) demonstrated
enrichment with genes that significantly decreased in aged
donors’ cerebellum and cerebellar hemisphere of brain (FDR
<0.05, Figure 3A). Among 29 core genes in this functional
module, Hydroxysteroid 17-Beta Dehydrogenase 4 (HSD17B4)
showed significantly low expression as the donor’s age increases
(Spearman p < 10−4, Figure 3B). HSD17B4 has been reported to
play an important role in the catalyzing β oxidation of very long
chain fatty acids (VLCFA) (Violante et al., 2019), and mutations
in this gene can cause progressive cerebral atrophy in clinical
cases (Amor et al., 2016; Landau et al., 2020).

In the muscle skeleton samples, the significantly downregulated
genes in aged donors were enriched in functions of “AXIAL
MUSCLE WEAKNESS” and “DISTAL LOWER LIMB MUSCLE
WEAKNESS” (FDR <0.15, Figure 3A). For example, striated
preferentially expressed gene (SPEG) and Filamin C (FLNC),
involved in the two pathways respectively, showed significantly
decreased expression in muscle samples of aged donors
(Spearman p < 10−7 and p < 10−6, Figure 3B). Consistent with
our results, SPEG deficiency in skeletal muscle was found to cause
defective calcium handling and excitation-contraction coupling,
further lead to congenital myopathies (Huntoon et al., 2018).
Meanwhile, previously research revealed a clinical case with
FLNC mutations experienced weakness in the lower limbs and
proximal muscles (Chen et al., 2019). Moreover, previous study
has shown that genetic variants in FLNC is one of the prevalent
causes of myopathies and cardiomyopathies (Verdonschot et al.,
2020). Our results suggest muscle weakness, the main phenotype of
aging process in skeletal muscle, can be characterized by the
transcriptome profiles from donors of different ages.

3.2 Cancer Drug Induced Transcriptomic
Changes Are Highly Resembled to Normal
Aging Processes in Multiple Tissue Types
In addition to the molecular and cellular processes, we also
investigated if aging-associated genes in multiple tissue types
can enrich previously identified cancer drug-induced pathways.
The GSEA analysis revealed that cisplatin induced genes are
highly enriched in the overexpressed genes in 27 out of 46 tissue
types of the aged donors, including multiple regions of brain,
adipose, muscle and kidney (FDR <0.1, Figure 4A). For example,
genes with positive expression correlation with increased donor
ages in the brain cortex region are highly overlapped with the core
genes that are induced after cisplatin treatment in cancer cells
(KERLEY RESPONSE TO CISPLATIN UP (Kerley-Hamilton
et al., 2005), FDR <0.1, Figure 4B). In particular, cyclin

dependent kinase inhibitor 1A (CDKN1A) is one of shared
genes exhibited significant over-expression as the donor’s age
increase in kidney and brain cortex region (Figure 4C). This
observation is consistent with previous report of CDKN1A’s
important role in the kidney injury (Zaidan et al., 2020), brain
aging (Belsky et al., 2015) and cisplatin cell killing effect (Zamagni
et al., 2020). Clinically, it has been shown that cisplatin treatment
can lead to kidney injury (Ozkok and Edelstein, 2014) and
cognitive impairment (John et al., 2017) in cancer patients.

In addition to cisplatin, we have also found the association
between irradiation therapy and aging in 19 out of 46 sample types
(GHANDHI BYSTANDER IRRADIATION UP and WARTERS
IR RESPONSE 5GY, FDR <0.1, Figure 4A) (Kim et al., 2014).
These observations suggested the impact of cisplatin and radiation
treatments on aging process in multiple normal tissues.

3.3 Drug-Induced Transcriptomic
Alterations Recapitulate the Mechanism of
Action of the Treatment in L1000 Data
According to the record of National Cancer Institute, there are 28
FDA approved cancer drugs having enough treatment data points
(e.g., dosage and duration) in at least one of four normal/
immortalized cell lines in the L1000 data (Figure 5A). Those
four cell lines are originated from brain (neural progenitor cells
[NPC]), kidney (SV40 + TERT immortalized kidney cell line
[HA1E]), muscle (skeletal muscle cells [SKL]), and adipose tissue
(adipose tissue-derived mesenchymal stem cells [ASC]).

We first sought to determine if drug-induced transcriptomic
alterations can recapitulate the cancer drugs’ known effect on
tissue. In this regard, we performed GSEA analyses on drug-
induced transcriptomic data of the 28 FDA approved drugs
(Liberzon et al., 2015). These analyses revealed that the drug-
induced transcriptomic alterations are consistent with the known
effect in 22 out 28 FDA drugs (Supplementary Table S1). For
example, steroid biosynthesis pathway (METABOLISM OF
STEROIDS) was enriched with upregulated genes after treated
with selective estrogen receptor modulators (SERMs) such as
tamoxifen and raloxifene in HA1E cells (FDR< 0.0001, Figures
5B,C). SERMs are a group of non-steroidal drugs with the ability to
bind to estrogen receptors and can upregulate steroid metabolism-
related genes by interacting with sterol regulatory element-binding
protein (SREBP-2) (Fernández-Suárez et al., 2021). Moreover,
important enzymes involved in the “METABOLISM OF
STEROIDS” pathway such as farnesyl diphosphate synthetase
(FDPS), 7-dehydrocholesterol reductase (DHCR7), methylsterol
monooxygenase1 (MSMO1) were upregulated by tamoxifen
treatment in a dose-dependent manner (Figure 5F).

For chemotherapy drugs such as mitoxantrone and
doxorubicin, cell cycle related pathway “CELL CYCLE
CHECKPOINTS” was significantly downregulated after these
two treatments (FDR<0.0001, Figures 5D,E). Mitoxantrone
are known to work against cancer by killing fast-growing cells.
Consistent with its mechanism of, cell cycle regulatory genes such
as neuroepithelial cell transforming 1 (NET1), TGFB induced
factor homeobox 1 (TGIF1), and checkpoint kinase 2 (CHEK2)
were downregulated by mitoxantrone treatment in a dose-
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dependent manner (Figure 5G). These results suggested the
drug-induced transcriptomic alterations and functions are
consistent with the mechanisms of action for the treatment.

3.4 Interaction Between Cancer
Drug-Induced Signatures and
Aging-Associated Signatures in Multiple
Normal Tissue Types
To determine the drug-aging interaction, we first identified aging-
associated signatures in each tissue type in the GTEx dataset and
drug-induced signatures in each normal cell line in the L1000
dataset as described in the Section 2. In GTEx database, there are
17 tissue types/regions with sufficient samples (ranging from 85
to 803) that match the 4 normal cell lines tissue origins in the
L1000 data (Supplementary Figure S1A). The distribution of the
correlation between gene expression and the donor’s age was
demonstrated in each tissue type (Figure 6A). Then the number
of selected genes varies at different rho thresholds
(Supplementary Figure S1B). A reasonable number of genes
were selected at rho>0.2 in the aging-associated signatures in
different tissues. Interestingly, the total number of signature genes
and the percentage of positively/negatively correlated genes are

different in each tissue type (Supplementary Figure S1C). For
example, a large proportion of signature genes are downregulated
in some of the brain tissues of the aged donors while more genes
are upregulated in adipose and muscle tissues of the aged donors.
This difference might be affected by different sample sizes, but
also indicate tissue-specificity of aging-associated signature.
Meanwhile, we have observed that the different number of
genes whose expression are altered by different drugs, which
may be caused by the distinct mechanism of actions (MOA) of the
drugs (Supplementary Table S3). Chemotherapy drugs such as
doxorubicin and mitoxantrone tend to induce an extensive
transcriptomic change in the cell, while targeted therapy drugs
may induce less changes in the gene expression.

For each drug-induced signature and aging-associated
signature, we calculated a specificity (S) score and an adjusted
concordance ratio (CR) to quantify the signature interaction and
evaluate the drug-induced aging effects (Figure 1 and see details
in Section 2). The drug-aging interaction with a higher specificity
score indicates that a drug-induced signature has more
overlapped genes with an aging-associated signatures in
matched tissue type. On the other hand, the significant
adjusted concordance ratio indicates the drug’s accelerating
(i.e., CR > 1) or protective (i.e., CR < 1) effect on the aging
trajectory of corresponding tissue.

FIGURE 4 | Aging-associated genes are enriched with cancer drugs induced gene sets in multiple tissue types. (A) NES and FDR of GSEA analysis of treatment-
induced gene sets in each tissue type. (B) Cisplatin induced gene set enriched with genes highly expressed in kidney and brain cortex samples of aged donors. (C)
CDKN1A expression in kidney and brain cortex tissues of different donor age groups.
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There are 326 pairs of drug-induced signature and aging-
induced signature with matched cell tissue origins between GTEx
and L1000 datasets. 34% of the drug-aging interactions have a
specificity score larger than 0.45 (Figure 6B). For example,
chemotherapy drug mitoxantrone and doxorubicin showed
high aging specificity scores at 0.749 and 0.756 in kidney.
Meanwhile, 36% of the drug-aging interactions have a
significant adjusted concordance ratio with p < 0.01, including
highly significant concordance ratios between vandetanib and
aging of multiple brain regions (Figure 6B).

Using a threshold of specificity>0.45, CR < 0.9 or >1.1 and
concordance p < 0.01, we characterized 34 potential drug-
regulated aging events in 15 tissue types/regions (Figure 6C;
Supplementary Table S2). Among them, ten drugs were
predicted to have 22 events of aging-accelerating effects in 14
tissue types/regions. In particular, doxorubicin was predicted to

have aging-accelerating effect in kidney aging with specificity at
0.756 and significantly high adjusted concordance ratio at 1.4
(p < 10−4), which is consistent with doxorubicin’s established
side effect in kidney damage and aging (Su et al., 2015; Yemm
et al., 2018). In addition to the aging accelerating effect, our
analyses also identified five drugs showing 12 aging protective
events in 9 tissue types/regions.

3.4.1 Drug-Aging Interaction Analysis Revealed That
Vandetanib (Caprelsa

®
) Treatment May Accelerate

Brain Aging
Vandetanib (Caprelsa®) is a tyrosine-kinase inhibitor (TKI) of
vascular endothelial growth factor receptor (VEGFR), epidermal
growth factor receptor (EGFR), and RET tyrosine kinase
(LoRusso and Eder, 2008). It has been approved by FDA to
treat medullary thyroid cancer. In our study, vandetanib

FIGURE 5 | Drug-induced transcriptomic alterations recapitulate the mechanism of action of the treatment in L1000 data. (A) The number of expression profiles of
normal cells treated by the 28 FDA approved in L1000 data. (NC: Not included, SERM: Selective Estrogen Receptor Modulator). (B–E) GSEA analysis of Reactome
database gene signatures. (F)Genes in “metabolism of steroids” showed increased expression in HA1E cells after tamoxifen treatment at different dosages. (G)Genes in
“cell cycle checkpoints” showed decreased expression in HA1E cells after mitoxantrone treatment at different dosages. Data are presented as means ± SE.
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FIGURE 6 | The landscape of drug-aging interaction of 28 FDA approved drugs in brain, kidney, adipose, and muscle. (A) The distribution of the correlation
between gene expression and the donor’s age in GTEx data. (B) The specificity (x-axis) and log-transformed p-values of the adjusted concordance ratio (y-axis) for the
326 interactions between drug-induced signatures and aging-associated signatures in multiple normal tissue types. A positive y-value represents CR > 1 and indicates
aging-accelerating effect. A negative y-value represents CR < 1 and indicates aging-protective effect. Blue/Red dots are significant interactions with S > 0.45, CR <
0.9/CR > 1.1 and p < 0.01. (C) Network of 34 significant drug-aging interactions. Blue and red edges indicate protective and accelerating effects respectively. (D–G)
Pathways enriched with overlapped genes between aging-associated signature and drug-induced signature. A positive/negative Enrichr odds ratio (red/blue bar)
represents enrichment with up/downregulated genes.
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treatment in NPC cells induced gene expression changes
demonstrating specificity scores higher than 0.45 and
significantly high adjusted concordance ratios with aging-
associated signatures in multiple brain regions including
amygdala, anterior cingulate cortex, cerebellar hemisphere,
cerebellum, cortex, frontal cortex, hypothalamus, nucleus
accumbens, and substantia nigra (CR > 1.49, p < 0.01,
Figure 6C; Supplementary Table S2). Pathways such as
“Mitotic cell cycle phase transition” (Enrichr p-value <0.05),
“Negative regulation of cellular senescence” (Enrichr p-value
<0.05) and “Regulation of cellular amide metabolic process”
(Enrichr p-value <0.001) were significantly enriched with the
genes that are downregulated in both vandetanib-treated NPC
cells and aged substantia nigra tissues (Figure 6D). As a drug that
can penetrate the blood-brain barrier (Subbiah et al., 2015),
vandetanib treatment may cause dysregulation of cell
senescence, mitotic cell cycle, amide metabolism in brain
tissue and accelerate aging process of brain. Consistent with
our discovery, a recent study has demonstrated that
vandetanib exert a deleterious effect on the dopaminergic
system in a Parkinson’s disease model (Requejo et al., 2018).

3.4.2 Drug-Aging Interaction Analysis Revealed That
Dasatinib (Sprycel®) Treatment May Accelerate
Muscle Aging
Our analysis has identified another tyrosine-kinase inhibitor,
dasatinib, tend to trigger aging process in muscle tissue.
Dasatinib (Sprycel®) was approved to treat Philadelphia
chromosome-positive (Ph+) chronic myeloid leukemia and
acute lymphoblastic leukemia for both children and adult
patients (Keam, 2008). The dasatinib-induced signature in SKL
cells has a high specificity score (S = 0.596) and significantly high
adjusted concordance ratio (CR = 2.21, p < 10−4) with aging-
associated signature in muscle tissues. Moreover, the overlapped
genes between two signatures were significantly enriched in the
interferon gamma mediated signaling pathway (Enrichr p <
0.001) and alpha/beta T cell activation (Enrichr p < 0.05).
These results suggest dasatinib may trigger inflammatory
response which is observed over-expressed in muscle tissue of
aged donors (Figure 6E). Indeed, Naif I AlJohani and co-authors
(AlJohani et al., 2015) reported a case of inflammatory myopathy
in a patient with chronic myeloid leukemia after treated with
dasatinib. There was also a clinical study demonstrating that
chronic myeloid leukemia patients on TKI therapy showed
significantly more muscle fatigue than control groups (Janssen
et al., 2019).

3.4.3 Drug-Aging Interaction Analysis Revealed That
Vorinostat (Zolinza®) and Bosutinib (Bosulif®)
Treatment May Exert Protective Effect of Brain Aging
The histone deacetylase (HDAC) inhibitor, vorinostat
(Zolinza®), was identified to provide protective effect of brain
aging. Vorinostat is a FDA approved drug for cutaneous T cell
lymphoma treatment (Iwamoto et al., 2013). Vorinostat-induced
signature in NPC cells had overall high specificity scores, but
significantly low adjusted concordance ratios with aging-
associated signatures in multiple brain tissues (hippocampus: S

= 0.629, CR = 0.744, p < 10−5; anterior cingulate cortex: S = 0.639,
CR = 0.768, p < 10−5; amygdala: S = 0.654, CR = 0.83, p < 10−9).
Overlapped genes between aging-associated signature and
vorinostat-induced signature were significantly enriched in
mitochondrial metabolism pathways such as aerobic
respiration (Enrichr p < 0.05) (Figure 6F). Our results suggest
that vorinostat treatment may reverse mitochondrial dysfunction
in brain tissue, which is among the main factors involved in
neurodegeneration. Interestingly, in vitro study by Surabhi
Shukla et al. (2016) showed that vorinostat can independently
induce neuritogenesis, and vorinostat treatment can confer
memory reinstatement in several cognitive decline mouse
models (Kilgore et al., 2010; Benito et al., 2015). Moreover, a
phase I clinical trial (NCT03056495) is underway to evaluate the
neuroprotective effect of vorinostat in patients with mild
Alzheimer disease (VostatAD01, 2017), which supports our
discovery of the interactions between vorinostat and brain aging.

Another drug showed protective effect of brain aging is
bosutinib (Bosulif®). It is a second generation tyrosine-kinase
inhibitor for Bcr-Abl and Src family kinases, which is used for the
treatment of chronic myeloid leukemia (Isfort and
Brümmendorf, 2018). Bosutinib-induced signature in NPC
cells had an overall high specificity, but significantly low
concordance ratio with aging-associated signatures in multiple
brain regions (hippocampus: S = 0.607, CR = 0.647, p < 10−3;
cortex: S = 0.583, CR = 0.589, p < 10−7; substantia nigra: S = 0.579,
CR = 0.632, p < 10−2). Bosutinib’s predicted aging protective
effect of brain is supported by previous and ongoing studies. In
preclinical studies, bosutinib was reported to facilitate the
clearance of α-synuclein in Parkinson’s disease (Hebron et al.,
2014). Bosutinib treatment also enhanced the clearance of
neurotoxic proteins α-amyloid and tau, leading to cognitive
improvement in Alzheimer’s disease mouse models (Lonskaya
et al., 2013a; Lonskaya et al., 2013b; Hebron et al., 2018). In 2016,
a phase I clinical trial (NCT02921477) began to evaluate
bosutinib’s effect on patients with mild cognitive impairment
and the results support an overall positive outcome after 1 year
treatment of bosutinib (National Library of Medicine, 2016;
Mahdavi et al., 2021). In 2019, a phase II trial (NCT03888222)
was started to test bosutinib as a possible treatment in dementia
with Lewy bodies (National Library of Medicine, 2019).

3.4.4 Drug-Aging Interaction Analysis Revealed That
Everolimus (Afinitor®) Treatment Demonstrated Aging
Protective Effect in Brain but Aging Accelerating Effect
in Muscle
The mTOR inhibitor everolimus (Afinitor®) was used to treat
multiple cancers (Motzer et al., 2010; Baselga et al., 2011; Yao
et al., 2011) and to suppress immunity to prevent rejection in
patients having organ transplantation (Tedesco-Silva et al.,
2022). Our interaction results showed different effects of the
same drug on aging of brain and muscle tissues. Everolimus-
induced signature in SKL cells showed aging-accelerating
effect in muscle tissue (S = 0.610, CR = 2.765, p < 10−8).
The overlapped positive genes between the two signatures were
enriched in functions “DNA damage response by p53,”
“interferon-gamma mediated signaling pathway” and
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“positive regulation of chemotaxis” (Enrich p < 0.05,
Figure 6G). Consistent with our prediction, previous
studies reported that muscle wasting can be induced by
everolimus treatment in cancer patients (Albiges et al.,
2011; Gyawali et al., 2016). Interestingly, the interaction
between everolimus-induced signature and aging-associated
signature in brain hippocampus demonstrated aging-
protective effect (S = 0.650, CR = 0.424, p < 10−5). In vivo
studies from multiple research groups showed that infusion of
everolimus restored cognitive function in Alzheimer’s disease
models (Fanoudi et al., 2018; Cassano et al., 2019). As a cancer
drug that is able to penetrate the blood-brain barrier (Subbiah
et al., 2015), everolimus’s potential mechanism in cognitive
protection is the protection of intact blood-brain barrier and
limited entry of proinflammatory and neurotoxic factors into
the brain tissue (Van Skike et al., 2018; Van Skike and Galvan,
2018).

4 DISCUSSION

Although laboratory and clinical evidence has shown that
several cancer drugs can change the cancer patient aging
trajectory, for most of the FDA approved cancer drugs,
whether and how they influence the aging process of cancer
patient is unknown. More importantly, the molecular and
cellular changes underlying the interaction of cancer
treatment and altered aging trajectory remain elusive. In
this study, we have developed a computational framework
to integrate the drug post-treatment transcriptomic data and
human tissue transcriptomics data to investigate the drug-
induced aging processes in multiple human organs. This
strategy allows us to first identify aging-associated
signatures in normal aging tissues. We then link the drug
treatment effect with aging by comparing the aging-associated
signatures to the drug-induced expression signatures using
specificity scores and adjusted concordance ratios. By applying
this computational framework to L1000 and GTEx databases,
we have successfully identified experimentally validated drug-
induced effects on aging such as aging-accelerating effects of
vandetanib and dasatinib on brain and muscle, respectively.
Our result also identified aging-protective effect of vorinostat,
everolimus, and bosutinib on brain. With the availability of
new data from L1000, GTEx and other databases, our
computational strategies can be extended to future analysis
of more drugs and tissues.

Our study is an important complement to the clinical and
preclinical study. The results from our study can serve as an initial
screen of cancer treatments that are likely to induce aging-related
consequences in patients. This will provide potential candidate
drugs for long term clinical and preclinical study. Moreover, our
study can also identify drugs that provide protective effects to
tissue aging, which could be considered as candidate drugs that
could treat drug-induced side effect of aging or co-treatments to
prevent possible aging process. In the future, we will be interested
to further utilize this framework to characterize the drugs’
synergistic effect on aging for combination therapy.

Another advantage of our study is that our analysis can help
characterize the underlying molecular changes during the drug-aging
interaction. For example, Requejo and collogues have used rat model
to demonstrate that vandetanib treatment significantly increased
behavioral impairment in 6-hydroxydopamine induced preclinical
model of Parkinson’s Disease (Requejo et al., 2018). They also
observed morphological changes in brain after vandetanib
treatment including the decrease of TH-immunopositive striatal
volume and the decreased axodendritic network in the substantia
nigra. However, the mechanism of how this tyrosine kinase inhibitor
influences the dopaminergic system is unknown. In this study, our
analyses not only recapitulate the deleterious effect of vandetanib on
Parkinson’s Disease, but also reveal that vandetanib treatment causes
dysregulation of cell senescence, mitotic cell cycle, amide metabolism
in NPC cells. These cellular processes were significantly
downregulated in aged substantia nigra human tissues. These
observations, combined with the published preclinical animal
model result, suggest that vandetanib-mediated cell senescence
and metabolism disruption in substantia nigra region may be the
mechanism of vandetanib’s deleterious effect on Parkinson’s Disease.
By providing the underlying molecular and cellular changes of the
drug-induced aging process, our study can support future
mechanistic studies and the development of therapeutic strategies
to mitigate the drug-induced aging process.

Our study has limitations. One limitation of our study is that it
is hard to evaluate the dosage effect of each cancer drug on the
aging process in patients. Our drug-induced expression signatures
are learned from in vitro cell line assays of the L1000 database. The
dosages used to treat the normal cell lines in our analysis not
necessarily represent the drug concentration in the patient’s
normal tissues (e.g., brain) during cancer treatment. In the
future study, we will consider the pharmacokinetics and drug
tissue distribution (e.g., blood-brain barrier) data to adjust for
the practical drug concentration that a cancer patient’s uptake in
different tissues. Another limitation of our study is that we
established the aging signature in different tissues assuming the
tissues are from “healthy” people undergoing natural aging process.
However, in reality, aging patients usually have comorbidities such
as diabetes or dementia whichmay influence drugs’ effect on aging.
In the future study, we will construct aging signatures with different
disease conditions if we can obtain the comorbidities information
from the patients. We will build a multivariable regression model
that includes the comorbidities as confounding factors to learn the
interaction among drugs, aging, and comorbidities.
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