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Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but
our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed
a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that
NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared
to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic
transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular
functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and
metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics
of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms
underlying nicotine addiction.

1. Introduction

Cigarette smoking is the most common form of tobacco
use and is one of the main preventable causes of premature
death and disability worldwide [1, 2]. Although there are
some effective control policies and interventions on tobacco
abuse, the negative impact of tobacco dependence on society
is still staggering. The World Health Organization estimates
that there are currently about 1.3 billion smokers world-
wide, resulting in approximately 5 million annual tobacco
attributable deaths [3, 4]. If the current trend continues, by
2020, smoking will become the largest single health problem
worldwide, causing 10 million deaths annually, mostly in
low- and middle-income countries [5]. Despite these grim
statistics, cigarette smoking continues to impose substantial
health andfinancial costs on society. According to theCenters
for Disease Control and Prevention (CDC), in USA alone,
the economic burden caused by smoking to society, including
both the direct health care expenditures and the loss of
productivity, can be as high as $193 billion a year [6]. In china,
the prevalence of smoking remains high with 350 million
smokers, and it is estimated that, by 2025, the annual number

of deaths attributed to tobacco use will increase from 1.2
million to 2 million [7]. Although many cigarette smokers
report a desire to quit smoking [8], few are successful [9, 10].
Thus, developing effective therapeutic approaches that can
help smokers achieve and sustain abstinence from smoking,
as well as methods that can prevent people from starting
smoking, remains a huge challenge in public health.

Nicotine, as the primary psychoactive component of
tobacco smoke, produces diverse neurophysiological, moti-
vational, and behavioural effects through interactions with
nicotinic acetylcholine receptors (nAChRs) in the central
nervous system (CNS). Twins, family and adoption studies
have suggested that nicotine addiction is closely related to
genetic and environmental factors, and genetic factors play an
important role in the risk to the development of addiction [11,
12]. Numerous studies aiming to identify the genetic variants
or candidate genes have found a large number of promising
genes and chromosomal regions involved in the etiology of
nicotine addiction [13]. In addition, various pathways and
neurotransmitter systems have been found to be related to the
psychoactive and addictive properties of nicotine, such as the
mesocorticolimbic dopamine system [14–16], the serotonin
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system, the glutamate system, and the GABA system [17–19].
Further, emerging evidence suggests that nicotine can also
regulate the expression of genes/proteins involved in various
functions such as ERK1/2, CREB, and c-FOS [20–22], as well
as the expression state of multiple biochemical pathways,
for example, mitogen-activated protein kinase (MAPK),
phosphatidylinositol phosphatase signaling, growth factor
signaling, and ubiquitin-proteasome pathways [23–25].

During the past decade, the application of high-through-
put technologies to nicotine addiction study has greatly
enhanced our ability to identify the nicotine addiction-
relatedmolecular factors [26–28]. In spite of these progresses,
our understanding of the molecular mechanism underlying
nicotine addiction is still incomplete. Under such situa-
tion, how to integrate the available knowledge and data
in heterogeneous datasets to obtain the relevant biological
information has become an important task. Among the
available approaches to explore the molecular mechanisms
underlying various complex diseases, investigating the inter-
actions between proteins encoded by the candidate genes
in the human protein-protein interaction (PPI) network has
been emerging as a powerful way [29–31]. Furthermore,
genes/proteins with similar functions usually interact with
each other more closely than those functionally unrelated
genes [32], and cluster analysis on the molecular candidates
within a PPI network can provide an intuitive view to
understand its major biological functions. Taking together,
a comprehensive analysis of the candidate genes within a
systematic frameworkmay be a powerful approach to analyze
the molecular mechanisms underlying complex diseases like
nicotine addiction.

In this study, the global network topological properties
of nicotine addiction-related genes (NAGenes) were explored
in the context of human PPI network and were compared
with other gene sets. Then, cluster analysis was utilized
to detect the major functional modules related to nicotine
addiction in the PPI network. Additionally, the significantly
enriched functional clusters were identified for theNAGenes.
This study provides useful insights for understanding the
molecular mechanisms of nicotine addiction at the systems
biological level.

2. Materials and Methods

2.1. Data Sources. Multiple gene sets related to nicotine
abuse have been reported [27, 33, 34]. In an earlier study,
we obtained 220 NAGenes prioritized via a multisource-
based gene approach [35], which represented a relatively
comprehensive gene set for nicotine addiction. Briefly, genes
identified to be related to nicotine addiction or involved in
the physiological response to nicotine exposure or smok-
ing behaviors were collected by integrating four categories
of evidence, that is, association studies, linkage analysis,
gene expression analysis, and literature search of single
gene/protein-based studies. A category-specific score was
assigned to each gene and a combined scorewas computed for
all the collected genes based on an optimized weight matrix.
Then, the genes were ranked according to the combined
scores with a larger score value indicating a potentially higher

correlation between the gene and nicotine addiction. Based
on the distribution of the combined score of all the genes
collected, 220 genes on the top of the list were selected as the
prioritized NAGenes.

For the purpose of comparison, we collected two other
gene sets, that is, an alcohol addiction-related gene set (alco-
hol genes) and a cancer-related gene set (cancer genes).
Alcohol addiction can evoke the dysfunction of neuronal
system and has been suggested to share some biological
mechanisms with nicotine addiction. In this study, we
selected the gene set with 316 alcohol genes collected by Li
et al. [33]. Cancer has been well studied and is expected to
have substantially different pathological characteristics from
nicotine addiction. We downloaded the cancer genes (522
genes) from the Cancer Gene Census database (http://can-
cer.sanger.ac.uk/cancergenome/projects/cosmic/).

To investigate the network topological characteristics of
a gene set, we first need to construct a relatively compre-
hensive and reliable PPI network. Here, we downloaded
the human PPI data from the Protein Interaction Network
Analysis (PINA) platform (May 21, 2014) [36], which col-
lected and annotated data from six major protein interaction
databases, that is, IntAct, BioGRID, MINT, DIP, HPRD, and
MIPS/MPact. Also, we downloaded several related annota-
tion files from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/) (May
24, 2014), including the Entrez gene information database of
human (Homo sapiens.gene info.gz), the data set specifying
relationship between pairs of NCBI and UniProtKB protein
accessions (gene refseq uniprotkb collab.dz), and file con-
taining mappings of Entrez Gene records to Entrez RefSeq
Nucleotide sequence records (gene2refseq.gz). For the pro-
teins included in the human PPI database, only those that
could be mapped to NCBI Entrez Gene were included in
our subsequent analysis. After excluding the redundant and
self-interacting pairs, we constructed a human PPI network
containing 15,093 nodes and 161,419 edges.

2.2. Global Network Topological Properties. In network anal-
ysis, different metrics can be used to describe the network
characteristics. We applied four measures to assess the net-
work topological characteristic of NAGenes, that is, degree
and degree distribution, clustering coefficient, closeness, and
eccentricity. For a network, degree of a node (gene/protein
in our case) is the number of direct connections that it has
to other nodes in the network, and highly linked nodes are
usually thought to make important contribution to the global
structure or the behavior organization of a biological network
[37, 38]. Degree distribution is the probability distribution of
the degrees of all nodes over the whole network. Clustering
coefficient quantifies the probability that two nodes linking
to the same node connect with each other and describes the
overall organization of the relationships within a network
[39, 40].The closeness of a node is the reciprocal of its average
distance to each node in the network, while the eccentricity
of a node is the distance to its farthest reachable node [41].

2.3. Cluster Analysis within the Global Network. To intuitively
observe the biological functions involved in the large nicotine
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addiction-related network, we applied the Molecular Com-
plex Detection (MCODE) (Version 1.4) (http://baderlab.org/
Software/MCODE) implemented in Cytoscape platform
(http://www.cytoscape.net/) to identify the molecule mod-
ules or clusters. MCODE is a local clustering algorithm that
can effectively detect densely connected regions of a molecu-
lar interaction network. In our analysis, the global network
that we constructed was uploaded into the Cytoscape [42]
and then MCODE was run to detect gene clusters in the
network using the haircut option which identified nodes
having limited connectivity at the cluster periphery. For the
other parameters, the default settings were adopted.

2.4. Functional Annotation Cluster. To assess the candidate
genes in the context of function similarity, we performed
enrichment analysis on their Gene Ontology (GO) anno-
tations using the Database for Annotation and Integrated
Discovery (DAVID) (Version 6.7) [43]. The genes with their
gene ID or GenBank Accession Numbers were submitted to
DAVID under the functional annotation option specifying
Homo sapiens as the species. In the DAVID functional
annotation clustering, the significantly overrepresented GO
terms, that is, biological process (BP), molecular function
(MF), and cellular component (CC), were retrieved by using
the options GOTERM BP ALL, GOTERM MF ALL and
GOTERM CC ALL.Thedefault parameters and correspond-
ing false discovery rate (FDR) by the Benjamini and Hoch-
berg approach [44] were used to determine the enrichment
score.

3. Results and Discussions

3.1. Global Network Topological Properties of NAGenes. PPI
network analysis provides an effective approach to investigate
the biological themes related to a list of genes at the molec-
ular level. In particular, the topological properties of nodes
(genes) and edges (connections between genes) can help
to understand the underlying biological themes associated
with the network [45]. To depict the network topological
properties of NAGenes, we first constructed a human PPI
network by integrating information frommultiple databases,
to which NAGenes were then mapped. Subsequently, the
characteristics of the NAGenes in the network were assessed
by four network topological measurements, that is, degree,
clustering coefficient, closeness, and eccentricity. As a com-
parison, we also calculated the topological measures of the
networks corresponding to alcohol genes and cancer genes.

Of the 220 NAGenes, 208 could be mapped onto the
human PPI network and the average degree of these genes
was 39.1, which measured the average number of direct
connections between each member of NAGenes and other
genes included in the PPI network, while, for the alcohol
genes, 304 of the 316 genes could be mapped onto the human
PPI network, with an average degree of 52.9 and for the cancer
genes, 488 of the 519 genes could be mapped onto the human
PPI network, with an average degree of 59.8. In order to have a
more intuitive understanding of the degree characteristics, we
plotted the degree distributions of the three gene sets (Figure
1). As shown, for all the three gene sets, the degrees scattered

in a rather large range from 1 tomore than 500. But the degree
distributions were right-skewed, that is, the majority of the
genes had only a few connections with other genes and a
small number of genes had a large number of connections.
Compared with the NAGenes, the average degree of the
alcohol genes appeared to be closer to the cancer genes,
but statistical test indicated that significant difference existed
between the degrees of all the three gene sets (alcohol genes
versus cancer genes, 𝑃 = 1.93 × 10−7; alcohol genes versus
NAGenes, 𝑃 = 0.0031, Wilcoxon rank sum test). The degree
distribution of NAGenes was also significantly different from
that of both alcohol genes and cancer genes (NAGenes versus
alcohol genes, 𝑃 = 0.0031; NAGenes versus cancer genes,
𝑃 = 1.93 × 10

−13, Wilcoxon rank sum test). But compared
with the cancer genes, the NAGenes and the alcohol genes
tended to have lower or moderate connections, for example,
67% and 54% of the NAGenes, and the alcohol genes fell
in the degree interval of 1–20, respectively, while only 37%
of the cancer genes were included in this range (Figure 2).
A close check of the degree of NAGenes showed that genes
withmore specific functions, such as those related to synaptic
transmission (e.g., neuronal acetylcholine receptor subunit
alpha-1 [CHRNA1], CHRNA2, CHRNB1, and CHRNB2),
drug metabolism (e.g., N-acetyltransferase 2 [NAT2], tryp-
tophan hydroxylase 2 [TPH2], and cytochrome P450 2A6
[CYP2A6]), and transport (e.g., solute carrier family 9 mem-
ber 9 [SLC9A9], solute carrier organic anion transporter
family member 3A1 [SLCO3A1], and solute carrier family 1
member 2 [SLC1A2]), tended to have smaller degrees, while
the genes expressed in a large range of cell types/tissues or
involved in broad physiological processes were more likely
to larger degrees, for example, nuclear receptor subfamily
3 group C member 1 (NR3C1), beta-2 adrenergic receptor
(ADRB2), estrogen receptor alpha (ESR1), and tumor protein
p53 (TP53).Thus, although all themembers of NAGenesmay
be nicotine addiction-related, those with smaller degrees are
more likely to be involved in biological processes or neuronal
activities invoked by nicotine.

Clustering coefficient measures the interconnectivity of
neighboring genes in a network. Generally, a gene with
larger clustering coefficient has a higher density of network
connection. The average clustering coefficients of NAGenes,
alcohol genes, and cancer genes were 0.02, 0.03, and 0.06,
respectively. To better describe the characteristics of the
clustering coefficient, we summarized them using histogram
with an interval of 0.1 (Figure 3(a)). Among the three gene
sets, the proportion of genes with clustering coefficient of 0
wasmuch higher forNAGenes (67.8%) than the alcohol genes
(44.1%) and cancer genes (16.0%). Within the intervals 0-0.1,
the proportion of NAGenes included was 96.2%, which is
higher than the other two gene sets (alcohol: 95.7%; cancer:
81.6%). Interestingly, when the clustering coefficient was
greater than 0.4, the proportion of NAGenes was 0. Thus,
NAGenes were likely to be less connected with each other
than the alcohol genes or the cancer genes. In addition, we
also analyzed the distribution of closeness and eccentricity
of the NAGenes in the human PPI network. Usually, a
gene with higher closeness is more likely to be a central
gene in the network, and a gene with larger eccentricity
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Figure 1: Degree distribution and the average degree of NAGenes,
alcohol genes, and cancer genes. 𝑦-axis represents the proportion of
proteins having a specific degree. Vertical line represents the average
value of the degrees. Black line denotes NAGenes, gray line denotes
alcohol genes, and dotted line denotes cancer genes.
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Figure 2: Degree distribution of NAGenes, alcohol genes, and
cancer genes. 𝑦-axis represents the proportion of proteins having a
specific degree.

is closer to the fringe of the network [46, 47]. Figure 3(b)
showed thatNAGenes had a smaller closeness comparedwith
the alcohol genes or the cancer genes, but the eccentricity
distribution ofNAGenes showed an opposite trend, following
a more right-skewed distribution (Figure 3(c)). These results
revealed that the NAGenes may be less central in the PPI
network compared with the other two gene sets.

3.2. Cluster Analysis within the Global Network of NAGenes.
Besides characterizing the interaction networks with respect
to their topological features, the biological network can also
be clustered or partitioned into modules, which provides an
insight into the overall organization of the relationshipwithin
the PPI network [32]. Clustering algorithms have previously
been shown to be useful in predicting the molecular modules
that participate in similar biological process.

By using the clustering algorithm to the network associ-
ated with nicotine addiction, we identified 6 clusters includ-
ing 81 nodes (genes in our case) and 126 edges. Out of
these nodes, 30 (37.04%) were included in the 208 genes
mapping into the human PPI network. These clusters were
ranked according to their density and the number of proteins
(genes) included (Table 1 and Figure 4). As shown, the clus-
ters were involved in multiple biological functional cate-
gories. For example, themajority of the genes in cluster I were
associated with apoptotic and macromolecular metabolic
process. Three genes associated with nicotine addiction,
estrogen receptor 1 (ESR1), arrestin beta 1 (ARRB1), and
ARRB2, were located close to the center of this cluster (Figure
4). ESR1, as the specific nuclear receptor of sex hormones,
widely distributes in the dopaminergic midbrain neurons
and is able to modulate the neurotransmitter systems of the
brain reward circuitry [48]. Moreover, ESR1 also plays an
important role in apoptotic process. ARRB1 and ARRB2 are
ubiquitous scaffolding proteins. They can regulate multiple
intracellular signaling proteins involved in cell proliferation
and differentiation and have important roles in mitogenic
and antiapoptotic function of nicotine [49, 50]. The overall
functional theme of Clusters II, III, and VI was synaptic
transmission. Dopamine receptor D2 (DRD2) and DRD4 are
both dopamine receptors that are critical for the reinforcing
effects or rewarding behaviors of nicotine [51, 52]. GABA
B receptor 1 (GABBR1) and GABBR2, the two receptors of
themajor inhibitory neurotransmitter GABA, play important
roles in the development of nicotine addiction [53].

Each cluster also contained genes not included in
NAGenes (Figure 4). A close inspection showed that some
of these additional genes were potentially related to nicotine
addiction. For example, N-ethylmaleimide-sensitive factor
(NSF) [54], ubiquitin b (UBB) [55], small ubiquitin-related
modifier 2 (SUMO2) [55], cyclin-dependent kinase 5 (CDK5)
[56], and phospholipase C gamma 1 (PLCG1) [57] have been
reported to be associatedwith nicotine addiction or regulated
by nicotine exposure. Thus, further exploration on the genes
included in these clusters may help us to identify more
nicotine addiction-related candidate genes.

3.3. Functional Annotation Analysis. To obtain a more sys-
tematic view of the biological function of the genes involved
in nicotine addiction, we performed functional enrichment
analysis on NAGenes. In earlier study, a preliminary func-
tional annotation analysis showed that genes related to
biological processes like neurodevelopment and signal trans-
duction were overrepresented in NAGenes [35]. Here, we
provided a more comprehensive exploration on the function
features of these genes. For the 220 genes, 73 annotation
clusters were identified in the candidate genes (enrichment
score > 1.3). Of these annotation clusters, eight clusters with
enrichment scores higher than 10 were displayed with the
representativeGO terms (Figure 5 andTable S1). Fromawide
view of the annotation clusters, functional annotations asso-
ciated with neurodevelopment and neurotransmitters were
significantly overrepresented in the NAGenes. In the top two
annotation clusters (Clusters 1 and 2), eight terms, including
transmission of nerve impulse (FDR = 1.85 × 10−28), synaptic
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Figure 3: Topologicalmeasures distribution ofNAGenes, alcohol genes, and cancer genes.𝑦-axis represents the proportion of proteins having
a specific measurement. (a) Clustering coefficient. (b) Closeness. (c) Eccentricity.

transmission (FDR = 3.32 × 10−28), system process (FDR =
3.84 × 10−19), and neurological system process (FDR = 2.76 ×
10−18), were directly related to neurodevelopment, consistent
with the previous reports that there is a relationship between
the pathology of nicotine addiction and the development of
neuron system. Moreover, the majority of terms in Cluster
3 were associated with neurotransmitter receptor or channel
activity, for example, extracellular ligand-gated ion channel
activity (FDR = 2.28 × 10−19), neurotransmitter receptor
activity (FDR = 5.80 × 10−18), and acetylcholine receptor
activity (FDR = 6.06 × 10−18) (Table S1). These results
indicated the importance of neurotransmitters and related
molecules in the development of nicotine addiction. Impor-
tantly, we found that calcium ion transport (FDR = 0.02)
was also overrepresented in the candidate genes, consistent

with the reports that the ligand-gated cation channels play
an important role in regulating various neuronal activities
by mediating intracellular Ca2+ concentration, including
neurotransmitter release [58, 59]. In Cluster 7, the overall
functional themewas various neurotransmitter or substances
metabolic process, such as dopaminemetabolic process (FDR
= 1.76 × 10−12), catecholamine metabolic process (FDR =
6.58 × 10−11), diol metabolic process (FDR = 6.58 × 10−11),
and cellular amino acid derivative metabolic process (FDR =
5.21 × 10−6). These metabolic processes had important roles
not only in the development of nicotine addiction, but also
in the harm to human health. In addition, Cluster 8 was
concentrated on learning or memory, which reflected a kind
of pathological forms of nicotine addiction. In summary,
the molecular mechanisms underlying nicotine addiction are
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Figure 4: Gene clusters identified by MCODE. NAGenes are shown as triangular nodes and non-NAGenes are ellipse nodes. The functional
descriptors of each cluster are based on Gene Ontology term.

Table 1: Gene clusters identified in the nicotine addiction-related network.

Cluster Cluster function Scorea Nodes Edges Gene symbol

I Apoptotic/macromolecular
metabolic process 4.08 25 49

ARRB2, ARRB1, CUL4A, HDAC1, RPS3, ERCC6, GNAS,
UBE3A, NBN, CHEK2, BRCA1, ESR1, ARR3, AR, HDAC2,
NEDD4, UBB, MSH6, NR3C1, UBC, PDE4D, SUMO1,
HIF1A, TUBB2A, ITCH

II Synaptic transmission/intracellular and
second messenger signaling cascade 2.67 13 16 KCNJ9, DRD2, ADRB2, DRD4, NOS3, MAP1A, GCDH,

TTN, HTR2A, PSEN1, ACTN1, KCNJ3, GNA11
III Behavioral response to nicotine 3.00 3 3 UBQLN1, CHRNB4, CHRNA3

IV Response to abiotic stimulus/cellular
metabolic process 3.05 22 32

BRCA2, GAPDH, H2AFX, SPTAN1, PRMT1, PRKG1,
MGMT, NCL, HECW2, USP11, ATR, LMNA, GRIN2A,
CDK5, TP53, GRIN2B, KPNB1, XRCC6, MRE11A,
TCEAL1, PLCG1, PDCD5

V Cellular response to DNA damage
stimulus/DNA metabolic process 3.29 15 23 RPA2, RPA3, CCNH, HSPA4, ERCC3, XRCC1, RPA1,

GTF2H1, MLH1, PCNA, MYC, XPC, ATM, CDK2, SUMO2
VI Synaptic transmission/cell-cell signaling 3.00 3 3 NSF, GABBR1, GABBR2
aScore is defined as the product of the cluster density and the number of vertices (proteins) in the cluster (DC × |𝑉|).
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extremely complex in that they involve many genes and bio-
logical functions. Through its direct or indirect interactions
with these genes, nicotine can regulate various physiological
processes, such as learning and memory, synaptic function,
response to stress, and addiction [60–63]. Our results also
demonstrated that functional annotation cluster analysis
can provide useful insights for intuitive understanding of
addiction mechanisms. Furthermore, as neurodevelopment
system and neuronal signaling cascades in the brain play
important roles in the pathology of nicotine addiction, the
genes and pathways related to these biological processes
should be the major targets in nicotine addiction study.

4. Conclusions

To achieve better understanding of the molecular mecha-
nisms underlying nicotine addiction, it is necessary to adopt
a system biology frame to analyze the candidate genes related
to nicotine addiction. In this study, we explored the global
network topological characteristics of nicotine addiction.The
results revealed that the topological features of NAGenes
were significantly different from alcohol genes and cancer
genes. Specifically, NAGenes tended to have amoremoderate
degree and weaker clustering coefficient and they were
likely to be in the network margin. Further, integrating the
information from the functional modules identified in the
global network and annotation cluster analysis, we found that
nicotine addictionwas involved inmany biological functions,
such as neurodevelopment, neurotransmitters activity, and
various metabolic processes. Our preliminary results present
a wealth of potential functional information underlying the
mechanism of nicotine addiction and they are valuable for
further investigation.
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