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Objective: The aim of this study was to explore the occurrence and molecular

characterization of extended-spectrum β-lactamases (ESBL), plasmid-mediated AmpC

β-lactamase (pAmpC) and carbapenemases among ESBL-producing multidrug resistant

(MDR) Escherichia coli from dogs and cats in the United States.

Methods: Of 2443 E.coli isolated from dogs and cats collected between August 2009

and January 2013, 68 isolates were confirmed as ESBL-producing MDR ones. PCR and

sequencing were performed to identify β-lactamases and plasmid-mediated quinolone

resistance (PMQR) genes, and shed light on the virulence gene profiles, phylogenetic

groups and ST types.

Results: Phylogenic group D and B2 accounted for 69.1% of the isolates. 50

(73.5%) isolates carried CTX-M ESBL gene, and the most predominant specific CTX-M

subtype identified was blaCTX−M−15 (n = 33), followed by blaCTX−M−1 (n = 32),

blaCTX−M−123 (n= 27), blaCTX−M−9 (n= 19) and blaCTX−M−14 (n= 19), and blaCTX−M−123

was firstly reported in E. coli isolates in the United States alone or in association.

Other β-lactamase genes blaTEM, blaSHV, blaOXA−48, and blaCMY−2 were detected

in 41.2, 29.4, 19.1, and 17.6% of 68 ESBL-producing MDR isolates, respectively.

The blaTEM and blaSHV genes were classfied as ESBLs with the exception of the

blaTEM−1 gene. Additionally, 42.6% (29/68) of isolates co-expressed blaCTX−M−15 and

PMQR gene aac(6′)-Ib-c. The overall occurrence of virulence genes ranged from

11.8 (ireA) to 88.2% (malX ), and most of virulence genes were less frequent among

CTX-M-producing isolates than non-CTX-M isolates with the exception of malX and

iutA. The 68 isolates analyzed were assigned to 31 STs with six being novel. Three

pandemic clonal lineages ST131 (n = 10), ST648 (n = 9), and ST405 (n = 9)

accounted for more than 41% of the investigated isolates, and ST648 and ST405 of

phylogenetic D were firstly reported in E. coli from dogs and cats in the United States.
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Conclusion: blaCTX−M−123 of ESBLs and carbapenemase blaOXA−48 were firstly

reported in ESBL-producing MDR E.coli from dogs and cats in the United States, and

ST131, ST648, and ST405 were the predominant clonal groups.

Keywords: Escherichia coli, ESBL, OXA-48 carbapenemase, multidrug resistance, companion animals

INTRODUCTION

Extraintestinal pathogenic strains of Escherichia coli (ExPEC)
are the most important dogs and cats bacterial pathogens
associated with extraintestinal infections (Beutin, 1999).
However, extended-spectrum β-lactamase (ESBL)-producing
ExPEC are isolated worldwide with increasing frequency
from human and animal clinical isolates (Pitout, 2012).
The occurrence of β-lactamases, including ESBLs, plasmid-
mediated AmpC β-lactamases (pAmpC) and carbapenemases
among E. coli pose serious challenges to the use of penicillins,
extended-spectrum cephalosporins (3rd and 4th generation
cephalosporins), monobactams, and carbapenems (Karisik
et al., 2008; Geser et al., 2012). Furthermore, ESBL-producing
isolates are often cross-resistant to fluoroquinolones and other
antimicrobial agents, thus expressed multidrug resistance
(MDR). This combination of properties can significantly
affect the course and outcomes of infections. β-lactamase
genes commonly located on mobile genetic elements, such
as plasmids, transposons, or integrons, and the resistance
plasmids can easily be transferred between bacterial isolates
by conjugation mechanism. Accordingly, transmission of β-
lactamase genes between companion animals and owner has
become a subject of active discussion as companion animals
could be potential sources of ESBL-producing E. coli isolates
causing community-acquired infections (Schmiedel et al., 2014).

Although the ESBLs, pAmpCs and carbapenemases in E.
coli isolates from humans and animals have been characterized
in various studies around the world, knowledge about the β-
lactamases and population structure in MDR E. coli isolates from
companion animals in the United States is limited. Prior to the
current study only two studies have described the occurrence and
the diversity of ESBLs in E. coli from dogs and cats in the United
States (O’Keefe et al., 2010; Shaheen et al., 2011), and the isolates
were collected from September 2004 to December 2007, and
May 2008 to May 2009, respectively. However, the β-lactamases,
particularly CTX-M-type ESBLs, are characterized by ongoing
and complex evolution. Currently, greater than 150 variants have
been identified, and several chimeras, e.g., blaCTX−M−64 and

blaCTX−M−123 have been reported since 2009 (He et al., 2013).
Moreover, several novel β-lactamases, e.g., blaKPC, blaNDM−1,
and blaOXA−48 are emerging worldwide in E. coli isolated from
humans or animals.

The aim of the present study was to (i) investigate the
occurrence and molecular characterization of ESBL-producing
MDR E. coli recovered from clinical cases of infection in dogs
and cats in the United States, over a period of time ranging from
August 2009 to January 2013, and (ii) characterize the association
between β-lactamases, phylogenetic groups, virulence genes and
the ST types.

MATERIALS AND METHODS

Bacterial Isolates
Between August 2009 and January 2013, a total of 2443
E. coli isolates from urine, wound, ear, genital tract, anal
sac, nasal structure, and soft tissue samples of dogs and cats
with presumed naturally-occurring infection in six geographical
regions of the United States: West (California), South (North
Carolina), Central (Missouri), Midwest (Ohio and Illinois), and
Southeast (Alabama), Northeast (Massachusetts) were received
from a nationally recognized veterinary diagnostic laboratory.
Isolates were reconfirmed to be E. coli upon receipt by the
Clinical Pharmacology Laboratory (CPL) at Auburn University
based on reculture overnight on CHROMagar Orientation (BD
Diagnostics, Franklin Lakes, NJ) at 37◦C, and then the isolates
were harvested and stored in tryptic soy broth containing 30%
glycerol at−80◦C until studied.

Susceptibility Testing and Initial ESBL
Identification
Antimicrobial susceptibility testing was performed for all 2443
isolates using 96 well custom microdilution susceptibility plates
according to the manufacturer’s protocol (Trek Diagnostic
Systems, Inc., Cleveland, OH). Susceptibility testing was
performed using 16 antimicrobials representing six antimicrobial
classes and classified into 12 antimicrobial categories:
penicillins: ampicillin; penicillins + β-lactam inhibitor:
amoxicillin-clavulanic acid; anti-pseudomonal + β-lactam
inhibitor: ticarcillin-clavulanic acid; non-extended spectrum
cephalosporins (1st generation cephalosporins): cephalothin;
extended-spectrum cephalosporins (3rd and 4th generation
cephalosporins): cefotaxime, ceftazidime, and cefpodoxime;
cephamycins: cefoxitin; carbapenems: meropenem; tetracyclines:

doxycycline; phenicols: chloramphenicol; fluoroquinolones:
enrofloxacin and ciprofloxacin; aminoglycosides: gentamicin
and amikacin; and folate pathway inhibitor: sulfamethoxazole-
trimethoprim (Magiorakos et al., 2012; Thungrat et al., 2015).
All MIC determinations were performed in triplicates and E. coli
ATCC 25922 was used for quality control. The results were
interpreted according to the guidelines of Clinical Laboratories
Standards Institute (CLSI; CLSI, 2013). The MICs were recorded
using the Sensititre Vizion system (Trek Diagnostic Systems),
and each isolate was categorized in terms of its resistant
phenotype as to: susceptible (S), non-multidrug resistance (DR)
or MDR. DR was defined as resistance to 1 or 2 antimicrobial
classes, and MDR was defined as resistance to three or more
antimicrobial classes.

Additionally, all the 2443 E. coli isolates were screened for
ESBL production using microdilution-based Sensititre (TREK
diagnostic systems, Cleveland, Ohio) with ESBL Confirmatory
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MIC plates (ESB1F) as described previouly (Aly et al., 2012).
Finally, the ESBL-producing isolates expressed MDR phenotype
were used in the current study.

Phylogenetic Grouping and Virulence
Genotyping
The distribution of phylogenetic groups amongest the ESBL-
producing MDR isolates was determined by the new quadruplex
PCR as recently described by Clermont et al. (Clermont et al.,
2013). Genomic DNA were extracted from bacterial preparations
using the PreMan R© Ultra Preparation Reagent according to the
manufacturer’s protocol. The presence of 17 virulence genes
[fimH, sfa/focDE, afa/draBC, papA, papC, papG alleles (I, II, III),
hlyA, cnf1, kpsM II, fyuA, iutA, ireA, iroN, traT, and malX]
known for their association with pathogenicity ExPEC isolates
was ascertained in each isolate by use of established PCR assay
as reported previously (Johnson and Stell, 2000; Liu et al., 2015).

Identification of β-Lactamase Genes and
Other Resistance Genes
The occurrence of β-lactamase genes blaCTX−Ms, blaTEM, blaSHV,
blaCMY−2, blaKPC, blaNDM−1, and blaOXA−48 were identified
by PCR and subsequent sequencing using specific primers and
conditions previously described (Yan et al., 2004; Poirel et al.,
2011; Shaheen et al., 2011). Furthermore, the identification of
plasmid-mediated quinolone resistance (PMQR) genes [qnrA,
qnrB, qnrC, qnrD, qnrS, aac(6′)-Ib-cr and qepA] was carried out
as described previously (Liu et al., 2012).

Transfer of Resistance Genes by
Conjugation
We tested whether the ESBL-producing E. coli isolates harboring
blaCTX−Ms, blaTEM, blaSHV, or blaOXA−48 enzymes were
transferable. Conjugation was performed by broth mating at
37◦C on 10 ESBL-producing MDR isolates using plasmid-free
sodium azide resistant E. coli J53 (J53 AZr) as recipient as
described previously (Shaheen et al., 2011). Transconjugants
were selected on tryptic soy agar plates supplemented with
sodium azide (150 µg/ml) and cefotaxime (2 µg/ml).
Antimicrobial susceptibility, confirmatory tests for ESBL
production, and PCR detection of ESBL genes were performed
on all transconjugants as described to confirm transfer of ESBL
genes.

Multilocus Sequence Typing (MLST)
MLST was performed using seven conserved housekeeping genes
of E. coli (adk, fumC, gyrB, icd, mdh, purA, and recA). A detailed
scheme of the MLST procedure, including the primers, PCR
conditions, allelic type and sequence type assignment methods,
is available at MLST databases at the at the Warwick University
website (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).

Statistical Analysis
Significance was determined by Pearson’s Chi-squared test with
Yates continuity correction using “R” software (version 3.0.1),
and the level of significance was set at P < 0.05.

RESULTS

Antimicrobial Susceptibility
Among the 2443 investigated E. coli isolates, 92 isolates (3.8%)
were ESBL producers, including 68 (73.9%) MDR isolates, 20
(21.5%) DR isolates, and 4 (4.4%) S isolates. Among the 68 ESBL-
producing MDR isolates (including 52 dog and 16 cat isolates),
97.1% (66/68) isolates were resistance to cephalothin, followed
by cefotaxime (94.1%), ampicillin (92.6%), cefpodoxime (91.2%),
amoxicillin-clavulanic acid (86.8%), ticarcillin-clavulanic
acid (85.3%), ceftazidime (69.1%), cefoxitin (44.1%), and
meropenem (17.6%). Moreover, some of the investigated ESBL-
producing MDR isolates were also resistant to non-β-lactam
agents, including ciprofloxacin (91.2%), doxycycline (88.2%),
enrofloxacin (82.4%), sulfamethoxazole-trimethoprim (50%),
chloramphenicol (44.1%), gentamicin (39.7 %), and amikacin
(30.9%).

Phylogenetic Groups and the Virulence
Genes Distribution
Phylogenetic analysis showed that the predominant phylogenetic
groups were D (35.3%) and B2 (33.8%), followed by C (11.8%),
A (10.3%), B1 (5.9%), E (1.5%), and F (1.5%). Fourteen of
seventeen investigated virulence genes were detected, with the
overall occurrence ranging from 11.8% (ireA) to 88.2% (malX)
with the exception of papG I and papG II, which were not
detected in any isolate. The isolates of phylogenic group B2
harbored more virulence genes (mean 7.3), and followed by
group B1 (mean 5.8), group D (mean 5.6), group A (mean
4.7), and group C (mean 3.8). Furthermore, CTX-M-producing
isolates possessed more virulence genes (mean 8.4) than did non-
CTX-M isolates (mean 4.0; P < 0.0001). Several virulence genes,
including sfa/focDE, afa/draBC, papA, papC, papG III, hlyA, cnf1,
and iroN, were significantly more common or even exclusively
present in non-CTX-M-producing isolates, whereas traT was
significantly more common in CTX-M-producing isolates than
in non-CTX-M isolates (72 vs. 22.2%, P = 0.0008). Additionally,
the occurrence of virulence genes among ESBL-producing MDR
E. coliwas significantly lower than among non-ESBL isolates with
the exception ofmalX (P < 0.01; Table 1).

Distribution of β-Lactamases and PMQR
Genes
The distribution of β-lactamase and PMQR genes among the 68
ESBL-positive MDR E. coli isolates was shown in Table 2. The
results showed that blaTEM, blaSHV, blaCTX−M, blaCMY−2, and
blaOXA−48 were detected in 28 (41.2%), 20 (29.4%), 50 (73.5%),
12 (17.6%), and 13 (19.1%) isolates, respectively. 94.1% (64/68)
of the isolates harbored two or more β-lactamase genes, and
one isolate from dog with severe urinary tract infection co-
harbored eight tested genes [blaTEM−5, blaSHV−12, blaCMY−2,
blaCTX−M−15, blaCTX−M−1, blaCTX−M−14, blaCTX−M−123,and
aac(6′)-Ib-cr; Table 2]. For the blaCTX−M positive isolates, CTX-
M enzymes were clustered in CTX-M-1 (n = 35), CTX-M-9
(n = 22), and hybrid β-lactamases (n = 27) clusters. CTX-
M-1 and CTX-M-9 double-positive group accounted for 10.3%
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of isolates, and three isolates co-harbored CTX-M-1, CTX-M-
9 as well as hybrid β-lactamase. blaCTX−M−15 (n = 33) was
the predominant genotype in blaCTX−M positive isolates, and
followed by blaCTX−M−1 (n = 32), blaCTX−M−123 (n = 27),
blaCTX−M−9 (n = 19), and blaCTX−M−14 (n = 19). Sequencing
of blaTEM gene revealed 24 blaTEM−1, three blaTEM−5, and
one blaTEM−30, whereas sequencing of blaSHV gene revealed
17 blaSHV−12 and two blaSHV−3. All blaTEM and blaSHV genes
were classfied as ESBLs with the exception of the blaTEM−1

gene based on the sequencing. Moreover, 48.5% (33/68) of
investigated isolates harbored aac(6′)-Ib-cr, while none of the
isolates carried qnr and qepA genes. The vast majority of
aac(6′)-Ib-cr-producing isolates were positive for blaCTX−M−15,
blaCTX−M−1, and blaCTX−M−123, but negative for CTX-M 9
group enzymes despite blaCTX−M−14 and aac(6′)-Ib-cr coexisted
in three isolates.

Conjugation Experiments
We tested whether blaCTX−M genes or other β-lactamase genes in
10 selected isolates were transferable by conjugation experiments,
and seven out of the 10 ESBL-producing isolates successfully
transferred the β-lactamase genes to the recipient E. coli. PCR
analysis showed the presence of respective blaCTX−M genes
and other β-lactamase genes, including two blaOXA−48-carrying
plasmids from all the transconjugants (Table 3). Meanwhile,
PMQR gene aac-(6’)-Ib-cr was co-transferred with β-lactamase
genes. Generally, all donors and their transconjugants were
resistant to amoxicillin-clavulanic acid, ampicillin, cefotaxime,
cefoxitin, cefpodoxime, cephalothin, and ticarcillin-clavulanic
acid, and all transconjugants exhibited an increase of at least
eight-fold inMICs compared to the recipient, E. coli J53 AZr. The
ciprofloxacin MICs for four transconjugants harboring aac-(6′)-
Ib-cr ranged from 0.06 to 0.125 mg/L, representing an increase
of two-fold to four-fold compared with the recipient (Table 3).
Additionally, the transconjugants remained susceptible to
meropenem, ciprofloxacin, gentamicin, chloramphenicol, and
doxycycline, whereas one transconjugant harboring blaOXA−48

was resistant to sulfamethoxazole-trimethoprim and reduced the
susceptibility to meropenem.

MLST
The MLST investigation revealed that the 68 isolates were
assigned to 31 STs, including six new STs (Table 2). Twelve
STs were represented by more than two isolates, and other 19
STs contained a single isolate each. ST131 (n = 10), ST648
(n = 9), and ST405 (n = 9) accounted for more than 41%
(28/68) of investigated isolates and 54% (27/50) of CTX-M-
producing isolates, respectively. 74.2% (23/31) of STs, especially
ST131, ST648, and ST405 were positively associated with CTX-
M-producing isolates, while other STs, including ST10, ST5232,
ST1722, ST2175, ST1800, ST73, ST372, and ST127 seem to
have no relationship with CTX-Ms. Vast majority of ST131
and ST648 isolates were positively associated with blaCTX−M−15

and/or blaCTX−M−1 as well as blaCTX−M−123, whereas 77.8%
of ST405 isolates were negatively associated with blaCTX−M−1,
blaCTX−M−15, and blaCTX−M−123 genes. Moreover, 55.6% of
ST648 isolates were positively associated with blaOXA−48, and 12
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pAmpC genes blaCMY−2 were distributed in nine STs. Notably,
all ST131, ST405, and ST648 isolates expressed resistance to
ciprofloxacin and 3rd generation cephalosporins, whereas all
ST131 isolates remained susceptible to cefoxitin. A strong
correlation was revealed between the virulence gene profiles and
STs, and the same STs showed the similar virulence gene profiles.
Among the three most common STs, ST405 isolates harbored
more virulence genes (mean 4.6), followed by ST131 (mean
4.4), and virulence genes were less abundant in ST648 isolates
(mean 3.4). Almost all of the ST131 and ST405 isolates were
positive for afa/draBC, traT, andmalX genes, ST648 isolates were
significantly associated with fimH, malX and traT, but negative
for afa/draBC.

DISCUSSION

ESBLs, pAmpC and carbapenemases are mostly responsible for
the emerging resistance to the β-lactam antibiotics, especially
the 3rd generation cephalosporins and carbapenems in E. coli
(Pitout, 2012). In the present study, we conducted a molecular
detection and characterization of the β-lactamase genes in ESBL-
producing MDR E. coli isolates from dogs and cats in the
United States over a period of time ranging from August 2009
to January 2013, and also revealed the association between the
phylogenetic groups, virulence gene profiles, genetic backbones
and β-lactamase types.

The prevalence of 3.8% ESBL-producing E. coli found in
this study is similar to that recorded in a recent study (3%;
Shaheen et al., 2011) but higher than the first survey (1%;
O’Keefe et al., 2010) among E. coli from dogs and cats in the
United States. Surprisingly, 73.9% (68/92) of the ESBL-producing
E. coli exhibited MDR phenotype, and 75% of MDR isolates
were resistant to more than 10 antimicrobial agents tested.
Phylogenetic groups D and B2 were the main phylogenetic
groups in this study, and it was similar to the phylogenetic
subtype distribution of the ESBL-producing isolates from human
patients (Hu et al., 2013), which further demonstrated that
isolates in phylogenetic groups D and B2 were associated
with extraintestinal infections. Among the 68 ESBL-producing
MDR isolates, blaCTX−M was prominent and detected in 73.5%
(50/68) of isolates, whereas two previous similar surveys carried
out in different states in the United States showed that the
corresponding prevalence of blaCTX−M were 16.7% and 89.7%,
respectively (O’Keefe et al., 2010; Shaheen et al., 2011). It is
indicated that the geographical regions, time, resistant phenotype
and the history of antimicrobial treatment of the animals can
affect the prevalence of blaCTX−M gene. The high prevalence
of blaCTX−M strongly suggests a significant role for E. coli
isolates from companion animals as ESBL gene reservoirs, which
poses an additional risk to humans. Therefore, monitoring
of the spread of blaCTX−M genes in E. coli isolates in dogs
and cats is urgently needed. Althouth blaCTX−M−15 was still
the most frequently encountered gene, the specific genotype
of blaCTX−M is undergoing changes, which was supported by
available evidence from the occurrence of CTX-M-9 group as
well as the occurrence of a novel hybrid β-lactamase gene

blaCTX−M−123. blaCTX−M−123 was firstly discovered in E. coli
from pig feces in China in 2013 (He et al., 2013), and afterward
in human specimen (Hu et al., 2013). It is interesting to note
that blaCTX−M−15 is also the most widely distributed ESBL
gene among human-associated Enterobacteriaceae (Cantón and
Coque, 2006). These finding revealed the possibility of cross-
transmission between animals and humans. Moreover, several
isolates appear only with blaTEM−1, blaCMY−2, or blaOXA−48,
suggesting that these isolates perhaps carry other ESBL genes,
which will require further studies.

blaCMY−2 was the most prevalent pAmpC, and it not
only confer resistance to a wide range of extended-spectrum
cephalosporins but also are not affected by β-lactamase
inhibitors. blaCMY−2 was dected in 17.6% of the isolates in
our study, and it was significantly lower than the occurance of
blaCMY−2 (89%) in E. coli from companion animals in a previous
study in the United States (Shaheen et al., 2011). We supposed
that the occurance of blaCMY−2 might be underestimated since
only the ESBL-producing MDR isolates were characterized in
this study. Meanwhile, our results showed that majority (58.3%)
of CMY-2-producing isolates belonged to phylogenetic group
D, consistent with a previous study in E. coli from human
in Australia (Sidjabat et al., 2014). This similar distribution
of phylogenetic group further certified that blaCMY−2 can
also be transferred between different bacterial species and
between animals and humans (Li et al., 2007; Shaheen et al.,
2011). blaOXA−48 was initially reported in Klebsiella pneumoniae
isolates in Turkey in 2001(Poirel et al., 2004) and afterward
in other Mediterranean countries (Spain, France, Italy, Egypt,
and Lebanon Turkey) (Girlich et al., 2014). In 2013, it was
firstly discovered in E. coli from dogs in Germany (Stolle
et al., 2013). blaOXA−48 can hydrolyze carbapenems and β-
lactamase inhibitors but has no activity toward broad-spectrum
cephalosporins (Mathers et al., 2013). Our data showed that
about 19% of the isolates carried the blaOXA−48, and they were
mostly associated with meropenem resistance, sequence types
ST648, ST405, and ST131 as well as different combinations of
β-lactamase genes. To our knowledge, blaOXA−48 was firstly
reported in the United States in 2012 (Poirel et al., 2012), and
the present study is the first report of blaOXA−48 in E. coli
from dogs and cats in the United States. Moreover, blaOXA−48

can transfer with other β-lactamases and aac(6′)-Ib-cr. This
finding also revealed possibility of the transfer between humans
and companion animals appears highly probable through
multiple potential pathways although blaOXA−48 is still sporadic
occurrence in animals.

aac(6′)-Ib-cr was the exclusive PMQR gene in this study, and
CTX-M-producing isolates (particularly blaCTX−M−15 positive
isolates) showed significantly higher occurrence of aac(6′)-Ib-
cr compared to non-CTX-M or non-ESBL isolates (62 vs. 11.1
vs. 10%, P < 0.001). The frequent combination of blaCTX−M−15

and aac(6′)-Ib-cr in this study further supported the previous
studies that coproduction of β-lactamases and PMQR genes
could conduce to the dissemination of MDR isolates, and also
reflect the fact that genes encoding resistance to β-lactams
and quinolones are located on the same plasmid. Although it
was not the primary focus of this study, our results coincided
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with a previous study (Qin et al., 2013) that ESBL-producing
isolates presented a lower occurrence of studied virulence
genes compared with non-ESBL isolates (the data from another
study in our laboratory) with the exception of malX gene,
and CTX-M-producing E. coli harbored fewer virulence genes
than non-CTX-M isolates (P<0.0001). A possible reason why
individual virulence gene increased among ESBL-producing
is that might be a fitness trade-off for the ESBL to survive
antibiotics exposure (Qin et al., 2013) and the difference source
of E. coli. The exact explanation needs additional study in the
future.

A previous review suggested that attention should be paid to
the rising of E. coli ST131, ST648, ST405, and ST38 isolates as they
can play an important role in the worldwide distribution of CTX-
M-producing E. coli (Pitout, 2012). It was further confirmed
by our results since ST131, ST648, and ST405 accounted for
54% of the CTX-M-producing MDR isolates. ST131 was the
predominant clone in this study, and all ST131 isolates remained
susceptible to cefoxitin, which has been recently suggested as an
alternative carbapenems for the treatment of infections by ESBL-
producing E. coli (Guet-Revillet et al., 2014). It is noteworthy that
nine ST648 isolates were strongly associated with blaCTX−M−15

(88.9%, 8/9), blaOXA−48 (55.6%, 5/9), and severe clinical signs.
The zoonotic potential of ST648 ESBL-producing isolates has
been indicated in the isolates from humans, domestic and wild
animals in previous studies (Nicolas-Chanoine et al., 2008;
Cortes et al., 2010), and two recent studies in Europe further
suggested that ST648 clone may represent a novel genotype
that combines MDR phenotype, extraintestinal virulence and
zoonotic potential in companion animals (Huber et al., 2013;
Ewers et al., 2014). Furthermore, ST131, ST648, and ST405
isolates have the similar β-lactamase gene combinations and
resistance profiles, respectively. While it is alarming that other
STs have various β-lactamase gene combinations, especially one
ST38 isolate, which was associated with the highest frequency
of β-lactamases and aac(6′)-Ib-cr, high level cephalosporins
resistance (MICs ≥ 32 µg/ml), lowest frequency of virulence
genes and severe clinical signs. Nevertheless, constant attention
and further investigations for ST648 and ST38 isolates in
companion animals are necessary as they are now rapidly and
globally disseminated as well as the companion animals are more
andmore considered an important source of human infections as
the physical closeness.

CONCLUSION

CTX-M-producing E. coli tend to have less virulent properties
compared with the non-CTX-M isolates. CTX-Ms represented
by blaCTX−M−1, blaCTX−M−15, and blaCTX−M−123 have spread
rapidly. The occurrence of blaCTX−M−123 of ESBLs and
blaOXA−48 carbapenemase were particularly striking, being
reported here for the first time in E. coli from dogs
and cats in the United States. ST131, ST648, and ST405
were the predominant clonal groups among the ESBL-
producing E. coli, and all ST131 isolates remained susceptible
to the cefoxitin. This information will be useful for assessing
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the epidemiological risk factors and appropriate use of
antimicrobials for ESBL-producing E. coli infections of dogs
and cats.
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