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Genotype by environment interaction in behavioral traits may be assessed by estimating the proportion
of variance that is explained by genetic and environmental influences conditional on a measured moder-
ating variable, such as a known environmental exposure. Behavioral traits of interest are often measured
by questionnaires and analyzed as sum scores on the items. However, statistical results on genotype by
environment interaction based on sum scores can be biased due to the properties of a scale. This article
presents a method that makes it possible to analyze the actually observed (phenotypic) item data rather
than a sum score by simultaneously estimating the genetic model and an item response theory (IRT) model.
In the proposed model, the estimation of genotype by environment interaction is based on an alternative
parametrization that is uniquely identified and therefore to be preferred over standard parametrizations.
A simulation study shows good performance of our method compared to analyzing sum scores in terms of
bias. Next, we analyzed data of 2,110 12-year-old Dutch twin pairs on mathematical ability. Genetic models
were evaluated and genetic and environmental variance components estimated as a function of a family’s
socio-economic status (SES). Results suggested that common environmental influences are less important in
creating individual differences in mathematical ability in families with a high SES than in creating individual
differences in mathematical ability in twin pairs with a low or average SES.

� Keywords: mathematical ability, SES, IRT, genotype by environment interaction

In the classical twin study, often phenotypic variance in
a trait, σ2

P, is decomposed into variance due to additive
genetic (A) influences (σ2

A), common-environmental (C)
influences (σ2

C), and unique-environmental (E) influences
(σ2

E). This approach does not take into account the pos-
sible existence of genotype — environment interaction:
Different genotypes might respond differently to the same
environment, or conversely, some genotypes may be more
sensitive to changes in the environment than others. Geno-
type by environment interaction can be assessed in the
case that the common and unique environment feature are
latent (i.e., unmeasured) variables (i.e., Heath et al., 1989;
Heath et al., 1998). This provides a powerful omnibus test
to assess whether there is any statistically significant inter-
action. However, no conclusions can be drawn regarding
specific environmental influences. Alternatively, genotype
by environment interaction can be detected using one or
more measured moderator variable(s), which can make
results very informative. For example, the results of one

of the first studies that applied this approach suggests that
additive genetic influences on depression interact with
marital status in women, where genetic influences are more
important for unmarried women (Heath et al., 1998).

Having collected one ormoremoderator variable(s), one
can test not only for interaction effects with additive ge-
netic influences (A × M), but also with common environ-
mental influences (C × M) or unique environmental influ-
ences (E × M) — that is, moderation of variance compo-
nents (henceforth referred to as ACE × M). This approach
was applied by, among others, Heath et al. (1989), analyzing
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genetic and environmental variance components on drink-
ing habits as a function of marital status, and Boomsma
et al. (1999), analyzing disinhibition as a function of re-
ligious upbringing. In the domain of mathematical abil-
ity, Tucker-Drob and Harden (2012) tested in a sample of
6,540 4-year-old twin pairs whether the relation between
genetic influences in learning motivation and mathemati-
cal ability is positivelymoderated by family socio-economic
status (SES), hypothesizing that importance of genetic dif-
ferences in learningmotivation is strengthened among chil-
dren raised in high SES families but suppressed among chil-
dren raised in lower SES families: Children with a genetic
predisposition to be motivated to learn mathematics, they
predicted, may only act upon this predisposition when ed-
ucational experiences (e.g., books at home) are available —
which is more likely to be the case in high SES families. Re-
sults suggested that indeed, genetic differences accounted
for only a small amount of variation in mathematics scores
at low levels of SES, whereas at very high levels of SES, ge-
netic influences accounted for a much larger part. Further-
more, both the main effect of genetic influences on mathe-
matical ability as well as the interaction effect of genetic dif-
ferences and SES on mathematical ability were completely
mediated through genetic factors that influence learning
motivation.

Purcell (2002) implemented a structural equation mod-
eling (SEM) parametrization to investigateACE×M. In the
univariate moderation model, interaction effects are mod-
eled directly on the path loadings of theACEmodel compo-
nents. That is, the variances of A, C, and E are fixed to unity,
but path coefficients are parametrized as (β0a + βaMij), (β0c
+ βcMij), and (β0e + βeMij) respectively, where Mij repre-
sents a moderator variable for individual j from twin family
i. β0a, β0c, and β0e, are intercepts estimating influences of all
components (A, C, and E) independent ofM and βa, βc, and
βe represent regression coefficients that express the respec-
tive interaction effects (A × M, C × M, and E × M).

The aim of the current article was to incorporate a mea-
surement model into the univariate analysis of ACE × M.
This is important since statistical findings regarding non-
linear effects such as ACE × M interaction effects are de-
pendent on the scale at which the analysis takes place —
a simple non-linear transformation can obscure or reveal
interaction effects (see e.g., Eaves et al., 1977; Molenaar &
Dolan, 2014; Schwabe & van den Berg, 2014; van der Sluis
et al., 2012). The incorporation of a measurement model
can overcome potential bias due to scale properties (ex-
plained in further detail below). For this extension, an al-
ternative ACE × M parametrization was used, which will
be introduced below.

Alternative ACE × M Parametrization
Purcell (2002) estimated ACE × M by moderating the re-
gression of the phenotype on the latent A, C, and E variables
such that regression paths have to be squared in order to

produce a variance expectation (e.g., σ2
A = (β0a + β1aMi j )2

for twin j from family i). It can, however, be shown that this
parametrization is ill determined in the sense that there is
no unique maximum likelihood (ML) solution for a given
data set. This means that the model is not identified, as it
can result in multiple parameter estimates with an equally
good fit (see the online supplementary material for a de-
tailed proof). This makes the interpretation of results non-
trivial: For instance, confidence intervals (CI) for the mod-
eration effects cannot be interpreted meaningfully nor the
sign of the sign of the β0a, β0c, β0e, and βa, βc, and βe,
parameters.

Alternatively, we can parametrize ACE × M by specify-
ing the moderator variable to modify the log-transformed
variances of A, C, and E (see also Tucker-Drob et al., 2009;
Turkheimer & Horn, 2013). In case of a moderator variable
that is the same for every twin within a family i (e.g., SES),
this makes variance components different for families with
a different value on the moderator variable. For example, to
model C × M, we have for every twin family i:

σ2
Ci = exp (β0c + β1cMi) (1)

where M denotes a vector consisting of the moderator
values for every twin family i of one moderator vari-
able. β0c represents the intercept (estimating common-
environmental variance when Mi = 0) and β1c represents
the C×M interaction effect. Note that in case of a bivariate
moderator variable (e.g., high SES= 1, low SES= 0), this re-
sults in twopossible values forσ2

Ci (i.e.,σ2
Ci = exp(β0c) when

Mi = 0 and σ2
Ci = exp(β0c + β1c), but depending on the dis-

tribution of the moderator variable, this can result in a dif-
ferent variance component for every family. The underlying
idea behind this parametrization is that a variance cannot
be negative. Contrary to Purcell’s (2002) parametrization,
this parametrization is uniquely identified in that there is
only onemaximum in the likelihood function. Here, we use
this alternative parametrization to integrate ameasurement
model into the modeling of ACE × M.

Integration of a Measurement Model
Tests or questionnaires that consist of multiple items may
not be equally reliable across the entire range of sum scores
— that is, measurement error can be heterogeneous across
the trait continuum. For example, cognitive ability tests
show little measurement error for average performing par-
ticipants, but can become less informative for highly able
participants as they usually contain only a few very difficult
items. Likewise, a depression scale that contains mostly ex-
treme itemsmay be highly informative for depressed partic-
ipants but less so in the assessment of healthy controls. It has
been shown that if phenotypes are heterogeneous across the
trait continuum, this can lead to spurious interaction effects
in GE interactionmodels when environmental variables are
unmeasured (see Molenaar & Dolan, 2014; Schwabe & van
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den Berg, 2014). The finding of spurious interaction effects
can also be expected in case of ACE × M (see e.g., Tucker-
Drob et al., 2009). This can be illustrated by the simple ex-
ample of genetic influences for IQ being more important
in families with a high SES, as described by for example
Turkheimer et al. (2003). Assuming that the true heritability
is constant across SES levels (i.e., β1a = 0) and that there is
a ceiling effect in the IQ data in the sense that there is more
measurement error at the right tail of IQ scores, then conse-
quently there is less information on high scoring twins and
these pairs will seemmore alike in a biometric analysis that
is not corrected for measurement error. If IQ levels increase
with SES, the correlation of the first and second twin of a
family will be lower at higher SES levels, leading to higher
estimates of genetic variance — and therefore to a positive
A × SES interaction effect. Note that this effect is spurious
in the sense that they are due to scale properties rather than
biological mechanisms.

Schwabe and van den Berg (2014; see also Molenaar &
Dolan, 2014) have shown that the incorporation of an item
response theory (IRT) measurement model into the bio-
metric analysis can overcome potential bias due to scale
properties— results regarding interaction effects are free of
artefacts due to heterogeneous measurement error across
the trait continuum. Further advantages of the IRT ap-
proach include the flexible handling of missing data and
the harmonization of traits measured on different measure-
ment scales (see, e.g., van den Berg et al., 2014). For ex-
ample, when different twin registers have used different IQ
tests not comparable in difficulty, IRT can be used to set the
items scores on the same scale. The IRT approach is briefly
introduced next.

Item Response Theory
In the IRT framework, a twin’s latent trait (e.g., mathemat-
ical ability) is estimated based on performance (e.g., on a
mathematics test) and on test item properties (e.g., the diffi-
culty of each test item). The simplest IRTmodel is the Rasch
model, also known as the one-parameter logistic model
(1PLM), where the probability of a correct answer to item
k (e.g., of a mathematics test) by twin j from family i, p(Yijk
= 1), is modeled as a logistic function of the difference be-
tween the twin’s latent traits score (e.g., mathematical abil-
ity) and the difficulty of the item:

p
(
Yi jk = 1

) = exp
(
θi j − bk

)
1 + exp

(
θi j − bk

) (2)

where θij refers to the latent trait score of individual twin
j from family i, bk denotes the difficulty of item k, which
represents the trait level associatedwith a 50% chance of en-
dorsing an item.This IRTmodel is suitable for dichotomous
items (e.g., 1 = scored as correct and 0 = incorrect), as is,
for example, collected from mathematical ability tests. An
underlying assumption of the Rasch model is that all items

discriminate equally well between varying abilities: How
rapidly the probabilities of a correct answer change with
trait level is the same for all items. An extension of the Rasch
model, the two-parameter logistic model (2PLM), also es-
timates discrimination parameters that differ across items.
The change in probabilities of a correct answer with trait
level can then be different (e.g., faster or slower) among the
different items (see e.g., Embretson & Reise, 2009). There
are also several IRTmodels for non-dichotomous data such
as ordered categories (e.g., Likert scale data). In this article,
the Rasch model was used, but extensions to the 2PLM or
ordinal IRT models are straightforward.

Earlier Research

Tucker-Drob et al. (2009) proposed, next to the biomet-
ric ACE × M model, to explicitly model the factor struc-
ture of the phenotype at the psychometric level and showed
that ignoring non-linearity in the factor structure can lead
to the finding of spurious interaction effects, highlighting
the need for new methods that integrate a measurement
model into the ACE × M biometric model. However, they
did not validate their approach using a simulation study, but
demonstrated it by reanalyzing ACE × M on IQ data pre-
viously analyzed by Turkheimer et al. (2003).

As sum score data were available for 12 separate cog-
nitive tests, they tested whether there was a single factor
common to all tests, usingMplus. Subsequently, the ACE×
M analysis and a non-linear factor structure were modeled
using the Markov chain Monte Carlo (MCMC) estimation
program WinBUGS (Lunn et al., 2000), where factor load-
ings were set to the values retained from the Mplus output.

Also focusing onACE×Min psychiatric genetics, Eaves
(2017) simulated additive and independent genetic and en-
vironmental risks for 10,000monozygotic (MZ) and 10,000
dizygotic (DZ) twin pairs and checklists of clinical symp-
toms and environmental factors typically found in empir-
ical data. Eaves (2017) showed then that although latent
risk scores were analyzed without any interaction effects,
sum scores suggested evidence for ACE × M and other
effects of modulation and that the integration of an IRT
measurement model prevented this bias. Different from the
approach we take, however, Eaves (2017) used the non-
identifiable solution introduced by Purcell (2002).

Although the simulation study performed by Eaves
(2017) captures the essence of the problem, the item-level
data were analyzed such that item difficulty parameters
were the same for every item. It remains to be established
how this solution performs in case of the alternative ACE×
Mparametrization as described above and in case of differ-
ent item difficulty parameters. It also remains unclear how
much psychometric information (i.e., how many items) is
needed to prevent the spurious finding of ACE × M.

Here, we introduce an MCMC method that fits the bio-
metric ACE×Mmodel and the IRTmodel simultaneously,
taking full advantage of the IRT approach. A simulation
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study was conducted to show that in case of heterogeneous
measurement error, the sum score based approach results
in the finding of spurious interaction effects while the ap-
proach introduced here is unbiased. In a second simulation
study, the impact of the psychometric information was in-
vestigated by varying the number of items (20, 100, and 250
items) while keeping the number of twin pairs constant.

Next, we applied the new methodology to the data of
Dutch twin pairs onmathematical ability and estimated ge-
netic and non-genetic variance components in 12-year-olds
for mathematical ability as a function of a family’s SES.

Biometric and Psychometric Model

The full model, consisting of a biometric and psychomet-
ric part, is presented in more detail for MZ and DZ twins
separately.

MZ Twins

For each twin pair i, the effect of common environmental
influences is perfectly correlated within the pair and nor-
mally distributed with an expected value consisting of the
phenotypic population mean, μ, and the main effect of the
moderator variable M. Familial influences F, consisting of
additive genetic influences (A) and common environment
(C), were assumed to be normally distributed for every
family i:

Ci ∼ (
μ + β1mMi, σ

2
Ci

)
(3)

Fi | Ci ∼ N
(
Ci, σ

2
Ai

)
(4)

Where μ represents the phenotypic population mean and
β1m represents a regression coefficient that expresses the es-
timated main effect of the moderator variable. In order to
model A×M and C×M, for every twin MZ family i, vari-
ance components were divided into an intercept (represent-
ing variance components whenMi = 0) and a linear inter-
action term (denoting A × M and C × M respectively):

σ2
Ai = exp (β0a + β1aMi) (5)

σ2
Ci = exp (β0c + β1cMi) (6)

Where β0c (β0a) represents common-environmental (addi-
tive genetic) variance whenMi = 0 and β1c band β1a repre-
sent A × M and C × M, respectively.

The expected value of the phenotypic trait, θij of individ-
ual twin j from family i then consisted of the familial effect:

θi j ∼ N
(
Fi, σ2

Ei
)

(7)

In order to model E × M, variance due to unique-
environmental influences, σ2

E , was different for every MZ
family iwith a different value on themoderator variable and
divided into an intercept (unique-environmental variance
whenMi = 0) and an interaction term:

σ2
Ei = exp (β0e + β1eMi) (8)

In the psychometric part of the model, the probabilities
for correct item response k of twin j from family i, Pijk, were
then modeled conditional on θij in the Rasch model:

ln
(
Pi jk/

(
1 − Pi jk

)) = θi j − bk (9)

Yi jk ∼ Bernoulli
(
Pi jk

)
(10)

where bk refers to the difficulty parameter of item k. In
the simulation studies, it was assumed that item parameters
were known.

DZ Twins

Similar toMZ twin pairs, a normal distribution was used to
model a common environmental effect for every DZ fam-
ily i that is perfectly correlated within a twin pair with an
expected value consisting of the phenotypic mean and the
main effect of the moderator variableM:

Ci ∼ N
(
μ + β1mMi, σ

2
Ci

)
. (11)

Similar to MZ twin pairs, variance due to common-
environmental influences was divided into an intercept and
a part that estimates C × M (σ2

Ci = exp(β0c + β1cMi), (see
Equation 6).

While the total genetic variance is assumed to be the
same for DZ and MZ twins, the genetic covariance in MZ
twins is twice as large as in DZ twins, as DZ twin pairs share
on average only 50% of their genomic sequence. Tomodel a
genetic correlation of 0.5 for DZ twins, first a standard nor-
mal distributed additive genetic value was assumed for each
DZ family i. Then, for each individual twin j from family i,
a normally distributed additive genetic value was assumed,
representing the Mendelian sampling term:

A1i ∼ N
(
0,

1
2

)
(12)

A2i j ∼ N
(
A1i,

1
2

)
(13)

The genetic value was scaled by multiplying it with
the standard deviation σAi, where σ2

Ai = exp(β0a + β1aMi).
This yielded a genetic effect A3ij that was unique for every
individual twin j from DZ family i:

A3i j = A2i j
√
exp (β0a + β1aMi) (14)

The expectation of the phenotypic variable, θij, then con-
sisted of the common environmental effect for every DZ
family i and the additive genetic effect for every individual
twin j:

θi j ∼ N
(
Ci + A3i j, σ2

Ei
)

(15)

where, as for MZ families, σ2
Ei was divided into an intercept

(representing unique environmental variance when Mi =
0) and an interaction term (σ2

Ei = exp(β0e + β1eMi; see also
Equation 8). In the psychometric part of themodel, a Rasch
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FIGURE 1
Distribution of the sum scores of the DZ twins as simulated in the simulation study.

model was applied (see Equations 9 and 10) of which the
item parameters were assumed to be known.

Estimation of the Model

Weused Bayesian statistical modeling to simultaneously es-
timate the psychometric and the biometric model. In the
Bayesian framework, statistical inference is based on the so-
called joint posterior density of all model parameters. The
posterior density is proportional to the product of the likeli-
hood function and a prior probability density for unknown
parameters (for an introduction to Bayesian statistics see,
e.g., Bolstad, 2007). For a detailed description of the estima-
tion procedure and the prior probability densities applied
here, the interested reader is referred to the online supple-
mentary material.

Simulation Study 1

The Raschmodel was used to simulate responses to 40 phe-
notypic dichotomous items where item difficulty param-
eters were assumed known. Two different scenarios were
simulated: To mimic a slight floor effect for the distribution
of sum scores, in the first scenario, item parameters were
simulated from a normal distribution with a mean of 1 and
a standard deviation of 1. In the second scenario, item pa-
rameters were simulated from a normal distribution with
a mean of −1 and a standard deviation of 1 to simulate a
slight ceiling effect. To give an idea of the severity of the
skewness, the distributions of the simulated sum scores of
all DZ twins are displayed in Figure 1 for both the floor
effect scenario (left) and the ceiling scenario (right). The
three different methods for estimating skewness proposed
by Joanes and Gill (1998) resulted in values in the range
0.7223977, 0.7231508 in the first scenario and −0.5260599,
−0.5266083 in the second scenario.

In each scenario, 250 datasets were simulated, each con-
sisting of 2,000 twin pairs where the percentage of MZ

twins was fixed to 28% of all pairs. The phenotypic pop-
ulation mean, μ, was fixed to 0. Using similar values as
Purcell (2002), exp(β0a) was set to 0.25, exp(β0c) was 0.25
and exp(β0e) was fixed to 0.5. All interaction effects (β1a,
β1c, and β1e) were set to zero. For every MZ and DZ fam-
ily, a dichotomous moderator value was simulated such
that the moderator explained approximately 11% of the to-
tal phenotypic variance (with β1m fixed to 0.7). The simu-
lated datasets were then analyzed using the above described
method and a sum score approach. In the sum score ap-
proach, all scores were divided by the standard deviation of
the sum score of those twins who scored 1 on the modera-
tor value in order to set both the IRT and sum score analysis
on the same scale andmake results comparable. To estimate
the power of bothmodels, the 95%highest posterior density
interval (HPD, see e.g., Box & Tiao, 1972) was determined
for each parameter and the percentage of simulated datasets
in which this interval did not contain zero was calculated.
Note that a power higher than 0.05 for one of the interac-
tion effects (e.g., β1a,β1c, andβ1e) suggests an increased (i.e.,
more than expected due to chance) false positive rate.

Simulation Study 2

In an additional simulation study that is described in the
online supplementary material, the impact of the psycho-
metric information (e.g., the influence of the number of
items on parameter estimates) was investigated by varying
the number of items (20, 100, and 250) while fixing the
number of twin pairs at 1,000. Details and results of this
simulation study can be seen in the online supplementary
material.

All simulationswere carried out using the software pack-
age R (R Development Core Team, 2008). As an interface
from R to JAGS, the R package rjags was used (Plummer,
2013). After an adaption phase of 5,000 iterations and a
burn-in phase of 50,000 iterations, the characterization of
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TABLE 1
Posterior Means (SD) Averaged Over 250 Replications

β1m exp(β0a) exp(β0c) exp(β0e) β1a β1c β1e

True value 0.70 0.25 0.25 0.50 0.00 0.00 0.00
Sum scores 0.60 (0.03) 0.17 (0.05) 0.17 (0.04) 0.50 (0.02) −0.33 (0.81) − 0.31 (0.56) −0.24 (0.10)

0.02 0.05 0.04 0.02 0.83 0.50 0.08
IRT 0.70 (0.03) 0.22 (0.07) 0.24 (0.05) 0.51 (0.03) -0.07 (0.80) 0.00 (0.57) 0.01 (0.11)

0.03 0.07 0.05 0.03 0.86 0.51 0.11

Note: Second line: Mean of posterior standard deviations.

TABLE 2
Power to Find Interaction Effects for Both Models, Defined as
the Number of Simulated Datasets in Which the 95% HPD
Interval Did Not Contain Zero

β1a β1c β1e

Sum scores 0.12 0.17 0.81
IRT 0.06 0.05 0.05

the posterior distribution for the model parameters was
based on an additional 25,000 iterations from 1 Markov
chain.

Results: Simulation Studies
The true parameter values, posterior means and the means
of posterior standard deviations, averaged over 250 repli-
cations, can be found in Table 1 for the first scenario from
simulation study 1. The estimated power for each parameter
under both models can be found in Table 2. All power esti-
mates for β1m, exp(β0a), exp(β0c), and exp(β0e) were equal
to 1 under both models and are therefore not tabulated
here.

In the first scenario, a negatively skewed sum score dis-
tributed was mimicked, resulting in a slight ceiling effect,
which resulted in biased parameter estimates: The main ef-
fect of the moderator variable, β1m as well as exp(β0a) and
exp(β0c) were underestimated. More importantly, the anal-
ysis resulted in relatively high interaction parameters (i.e.,
β1a, β1c and β1e). Table 2 shows that, in particular, spuri-
ous findings of E × M interactions can be expected when
the sum score approach is used. When the IRT approach
was used, parameter estimates were much closer to their
true values, with only a slight bias in exp(β0a) and exp(β1e).
Power estimates for the IRT model were either equal to or
only slightly above (0.06 for β1a) the 5% that can be ex-
pected when an interaction would be found simply due to
chance. In other words, the IRT approach did not result in
the finding of spurious interaction effects.

In the second scenario, a slight floor effect was mim-
icked, resulting in a positively skewed sum score distribu-
tion. Since the second scenario was the mirror image of
the first scenario, parameter estimates were very similar to
those found in the first scenario with spurious interaction
effects in the opposite direction (i.e., β1a = 0.36[0.85], β1c =

0.29[0.67], and β1e = 0.24[0.10]). To save space, the results
of the second scenario are not tabulated but can be obtained
from the first author.

The results of the additional simulation study (see the
online supplementary material for details) indicate that
there was only a small decrease in standard deviations and
standard errors with increasing number of items. Also, the
increase in precision with increasing sample size was small,
suggesting that as much as 20 items are sufficient to fit the
ACE × Mmodel.

Application to Mathematical Ability

The model described above was used to investigate ACE
× SES in mathematical ability of 2,110 12-year-old Dutch
twin pairs. Mathematical achievement was measured with
the Eindtoets Basisonderwijs, which is a Dutch national
achievement test that is administered in the last year of pri-
mary education. The Eindtoets Basisonderwijs test assesses
what a child has learned during primary education and con-
sists of 290 multiple choice items in four different subjects
(language, arithmetic/mathematics, study skills, and world
orientation [optional]). Here, we used the 60 dichotomous
item scores (0 = incorrect, 1 = correct) of the mathematics
subscale of this test.

Data

The data of 12-year-old twins from the Netherlands Twin
Register frombirth cohorts 1998–2000were used to link in-
dividual twins to their dichotomous item scores (coded as
0 = incorrect, 1 = correct) on the mathematics subscale of
the Eindtoets Basisonderwijs test. The linking procedure
and harmonization of different test versions is described in
detail in Schwabe et al. (2017). This led to a dataset for a
total of 4,220 twins, forming 2,110 twin pairs of which 581
were MZ and 1,529 DZ pairs. Of the MZ twin pairs, 299
were female and 282 pairs were male. The DZ pairs con-
sisted of 360 male, 309 female, and 860 opposite-sex pairs.
For 711 individual twins, item scores were unknown. The
reasons that the scores were missing were either that the
child had not reached final grade yet (n twins = 52), the
child was attending special education (n twins = 34), a dif-
ferent test was used at the school the twin was attending (n
twins = 13), the child (n twins = 2), or the whole school
(n twins = 1) did not attend the test, or the reason was un-
known (n twins = 609).
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TABLE 3
Total Number (Percentage) of Twin Pairs With High SES, Average
or Low SES, or Missing Data

Sample High SES Average or low SES Missing SES

MZ twin pairs 202 (35%) 282 (48%) 97 (17%)
DZ twin pairs 518 (34%) 706 (46%) 305 (20%)
All pairs (MZ + DZ) 720 (34%) 988 (47%) 402 (19%)

Family SES

TheNTRcollects longitudinal data fromall registered twins
by mailed surveys. Among other information, parents are
asked for the family SES measured as highest parental oc-
cupation at ages 3, 7, and 10 of their twins. Family SES was
scored in five different categories that approximately trans-
late to: (1) ‘Unskilled labor’, (2) ‘Job for which lower voca-
tional education is required’, (3) ‘Job at medium level’, (4)
‘Job at college level’, and (5) ‘Job at university level’. In order
to gain statistical power, the data of all ages were combined
into onemeasure,meaning that when the value wasmissing
at age 10, the missing value was substituted with the value
measured at age 7 or if this valuewasmissing, with the value
measured at age 3. The lowest correlation between multiple
SES scores was 0.72 between SES at age 3 and SES at age 10.
Family SES scores were available for a total of 1,708 fami-
lies (81%), with SES scores of 334 families (16%) measured
at age 10, scores of 831 (39%) families at age 7, and of 543
(26%) families at age 3.

Analysis

For an easier interpretation, SES categories were summa-
rized in one dichotomous dummy variable, coded as 0 (i.e.,
families with a score of or lower than 3 on family SES) and
1 (i.e., families with a score of or higher than 5 on parental
SES). We interpret these two categories as ‘families with av-
erage or low SES’ (coded as 0) and ‘families with high SES’
(coded as 1). Seven hundred and twenty (34%) families had
a high family SES and 988 (47%) an average or low SES (see
also Schwabe et al., 2017). Details on the distribution of the
SES moderator can be found in Table 3.

As a measurement model for the mathematics item
scores, the 1PLM (Verhelst et al., 1995) version of an IRT
model was used. In the OPLM, item difficulty parameters,
bk, are estimated and item discrimination parameters, ak
are imputed as known constants. Item parameters were es-
timated by the psychometric group at the testing company
Cito and imputed as known parameters in the analysis (for
more details, see Schwabe et al., 2017).

As there were twins with missing SES data, independent
Bernoulli distributed prior distributions were defined (SESi
∼ Bernoulli[π]). On the probability π (i.e., the probabil-
ity that the dichotomous SES moderator takes the value
1), a beta-distributed hyperprior was used, which was dif-
ferent for MZ and DZ twins (πmz ∼ Beta[1,1] and πdz ∼
Beta[1,1]). Note that by using prior distributions, all avail-

TABLE 4
Posterior Means (SD) of Parameters

Posterior point estimate (SD) 95% HPD

β1m 0.1078 (0.0126) [0.0833; 0.1329]
exp(β0a) 0.0511 (0.0048) [0.0410; 0.0598]
exp(β0c) 0.0051 (0.0029) [0.0008; 0.0107]
exp(β0e) 0.0159 (0.0023) [0.0117; 0.0204]
β1a 0.1,132 (0.1,263) [−0.1,364; 0.3,627]
β1c −3.0777 (1.9,280) [−7.3,886; −0.0300]
β1e −0.1,958 (0.2,426) [−0.6,769; 0.2,759]
h2 0.7,088 (0.0565) [0.5,800; 0.7,995]

Note: HPD = highest posterior density interval.

able data could be analyzed without missing SES values re-
sulting in a reduction of sample size.

After a burn-in phase of 50,000 iterations, the character-
ization of the posterior distribution for the model parame-
ters was based on a total of 175,000 iterations from five dif-
ferent Markov chains. The posterior means and standard
deviations were calculated for each parameter, as was the
95% HPD interval (see e.g., Box & Tiao, 1972). The HPD
can be interpreted as the Bayesian analogue of a CI. When
the HPD does not contain zero, the influence of a parame-
ter can be regarded as significant. This, however, does not
hold for the variance components of this particular appli-
cation, as these are bounded at zero, because the discrim-
ination parameters for the OPLM were quite high (in the
range of [1:9]), which resulted in a very low phenotypic
variance.

Results: Application
The posterior means for the intercepts, interaction effects
and estimated heritability, h2, can be found in Table 4. His-
tograms of the posterior distributions of all interaction ef-
fects can be seen in Figure 2.

Heritability was defined as exp(β0a )
σ2P

, where σ2
P =

exp(β0a) + exp(β0c) + exp(β0e). The results suggest that
the largest part of phenotypic variance could be explained
by genetic influences, a substantial part by unique environ-
mental influences and a negligibly small part by common
environmental influences. A significant and negative C ×
SES interaction effect was found, meaning that common
environmental influences are less important in creating
individual differences in mathematical ability in families
with a high SES than in creating individual differences in
mathematical ability in twin pairs with a low or average
SES.

Discussion
In this paper, the biometricmodeling ofmoderation of vari-
ance decomposition (i.e., ACE × M) was extended with an
IRTmodel at the phenotypic level, making it possible to an-
alyze item data rather than sum scores. We applied the ex-
tended model to data on mathematical ability.
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FIGURE 2
Application: Moderating effects of a family’s SES on individual differences in mathematical ability. Histograms of the posterior distribution
of β1a (A × SES, left), β1c (C × SES, middle), and β1e (E × SES).

We modeled ACE × M on the log-transformed vari-
ances, using a parametrization that is uniquely identified
and therefore to be preferred over the parametrization by
Purcell (2002). Note, however, that this parametrization is
also limited in the sense that, while the parametrization of
Purcell (2002) results in a parabolic form of interaction ef-
fects, the alternative parametrization is either monotically
increasing or decreasing with respect to the moderator. Al-
though this might lead to an easier (biological) interpreta-
tion (see alsoTurkheimer&Horn, 2013), it can also result in
bias when the true moderation pattern is parabolic: Imag-
ine, for example, that the importance of genetic influences
in explaining variation inmathematical ability ismoderated
by studymotivation in the sense that heritability is high only
in children with a really low or really high study motiva-
tion. In this hypothetical example, the log-transformation
parameterization would, depending on the distribution of
the empirical data, not detect any interaction effects and
therefore lead to wrong conclusions.

To show that in the case of heterogeneous measurement
error, the sum score approach results in spurious interac-
tion effects while the proposed method is unbiased, two
scenarios were simulated. While the first scenario resulted
in a situation often encountered in cognitive ability studies
with gifted children (i.e., a ceiling effect), the second sce-
nario is typical for psychopathology studies (i.e., a floor ef-
fect by havingmany extreme items that are not endorsed by
healthy controls). The results showed that spurious interac-
tion effects can be expected when the sum score approach
is used, in particular in the case of an E × M interaction.
On the other hand, the IRT approach was unbiased. A sec-
ond simulation study suggested that 20 items are sufficient
to use the IRT method.

The method was applied to investigate the moderating
influence of SES on variance components in mathematical
ability of 2,110 12-year-old Dutch twin pairs. The results

suggest that most of the phenotypic variance could be
explained by genetic influences, resulting in a relatively
high heritability of 71%. A substantial part of the variance
in mathematical ability could be explained by unique
environmental influences and a small part by common
environmental influences. Furthermore, a negative C ×
SES interaction effect was found, meaning that common
environmental influences were less important in creating
individual differences in mathematical ability in families
with a high SES than in creating individual differences in
mathematical ability in twin pairs with a low or average SES.
Children from low-SES families are generally disadvan-
taged. For example, they live in disadvantaged neighbor-
hoodswith poor facilities and inferior schools or have fewer
books at home (see, e.g., Evans, 2004). These disadvantages,
captured in the C component, seem to contribute to the ob-
served greater variation in mathematical ability of children
from low-SES families. An implication of this result might
be that family-based environmental interventions directed
at enhancing mathematical ability are more effective in
lower SES families (see also Hanscombe et al., 2012, for a
similar argument in the context of IQ). We have, however,
to be cautious in drawing conclusions: the methodology
introduced here is concerned with the moderation of vari-
ance components unique to the phenotypic variable. That
is, phenotypic scores are corrected for the influence of SES
and, consequently, any genetic or environmental effects that
operate through or are commonwith SES are partialled out.
This makes interpretation difficult, because SES has consis-
tently been associated with higher academic achievement
and cognitive performance throughout childhood and
adolescence (see, e.g., Sirin, 2005; White, 1982) suggesting
a (genetic) correlation between SES and mathematical
ability. This correlation might result in an underestimation
of the mathematical ability of twins from high SES families,
because their phenotypic latent scores are corrected for a
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measure that actually correlates with the trait of interest.
To gain more confidence in the presented results, in future
research, the analysis should be replicated by applying the
bivariate moderation model (see, e.g., Purcell, 2002) in
which interaction effects are considered not only on influ-
ences unique to the phenotype but also on influences that
are common to the phenotype and the moderator variable.

Our findings are contrary to earlier research conducted
by Tucker-Drob and Harden (2012), who found no mod-
erating effects of SES on common environmental variance,
but rather that SES influences the extent to which additive
genetic factors contribute to individual differences inmath-
ematical ability. This inconsistency in findingsmight be due
to age differences (i.e., a sample of 12-year-olds compared to
a sample of 4-year-olds), the different statistical assumption
that were made (i.e., here we analyzed moderation on la-
tent traits, whereas Tucker-Drob&Harden, 2012, used sum
scores) or the fact that the samples originated from differ-
ent countries (i.e., the Netherlands and the United States)
in which SES might be more or less a factor in children’s
mathematical ability.

In the method described, an IRT model was used to
model ACE × M at the latent phenotypic level such that
trait scores are corrected for measurement error. However,
measurement error might not only appear at the level of
the phenotype but also in the measurement of the modera-
tor variable. To gather information on the environment of a
family or an individual twin, often self-reports (e.g., ques-
tionnaires) are used. To correct for measurement error in
the moderator level, in future research, the method will be
extended to include an IRT model also at the level of the
moderator variable. In case of heterogeneous measurement
error in the moderator variable, it is to be expected that this
to be developed method performs better than the method
introduced here (e.g., using an IRT model only at the phe-
notypic level), but it is unclear how large the differences in
the two methods are and whether heterogeneous measure-
ment error in the moderator variables also results in the
spurious finding of interaction effects. Heterogeneousmea-
surement error in the moderator variable can, for exam-
ple, occur when the moderator resembles a psychological
trait. Assume, for example, that one is interested in the in-
fluences of study motivation on the importance of genetic,
common environmental, and unique environmental influ-
ences on individual differences in educational achievement:
A scale that measures study motivation might be very re-
liable for students with an average motivation, but it may
be very difficult to distinguish the motivated students from
the very motivated students (i.e., the measurement error is
higher at the upper tail of the distribution).

A drawback of the method is that it is computationally
intensive and, depending on the number of items and twin
pairs, can take several hours to complete. In future research,
more efficient sampling algorithmswill be applied to lighten
the computation burden. Themodel can furthermore be ex-

panded to include both linear and quadratic interactions
on the paths (such that the ACE variance estimates are
quadratic with respect to the moderator). Therefore, one
can test whether genetic variance can be modeled as an in-
verted U-shaped curve, with the highest genetic variance in
the ‘average’ environment. In this study, we considered only
linear interaction effects. It has been shown that the integra-
tion of a curvilinear interaction effects is problematic even
in the case that environmental measures are unmeasured
(Schwabe & van den Berg, 2014). Furthermore, the addi-
tional parameters are likely to require larger sample sizes
than the ones considered here.
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