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Background and Purpose: Mechanical thrombectomy greatly improves stroke

outcomes. Nonetheless, some patients fall short of full recovery despite good

reperfusion. The purpose of this study was to develop machine learning (ML) models

for the pre-interventional prediction of functional outcome at 3 months of thrombectomy

in acute ischemic stroke (AIS), using clinical and auto-extractable radiological information

consistently available upon first emergency evaluation.

Materials and Methods: A two-center retrospective cohort of 293 patients with

AIS who underwent thrombectomy was analyzed. ML models were developed to

predict dichotomized modified Rankin score at 90 days (mRS-90) using clinical and

imaging features, both separately and combined. Conventional and experimental

imaging biomarkers were quantified using automated image-processing software from

non-contract computed tomography (CT) and computed tomography angiography

(CTA). Shapley Additive Explanation (SHAP) was applied for model interpretability and

predictor importance analysis of the optimal model.

Results: Merging clinical and imaging features returned the best results for mRS-90

prediction. The best performing classifier was Extreme Gradient Boosting (XGB) with

an area under the receiver operating characteristic curve (AUC) = 84% using selected

features. The most important classifying features were age, baseline National Institutes

of Health Stroke Scale (NIHSS), occlusion side, degree of brain atrophy [primarily

represented by cortical cerebrospinal fluid (CSF) volume and lateral ventricle volume],

early ischemic core [primarily represented by e-Alberta Stroke Program Early CT Score

(ASPECTS)], and collateral circulation deficit volume on CTA.

Conclusion: Machine learning that is applied to quantifiable image features from CT and

CTA alongside basic clinical characteristics constitutes a promising automated method

in the pre-interventional prediction of stroke prognosis. Interpretable models allow for

exploring which initial features contribute the most to post-thrombectomy outcome

prediction overall and for each individual patient outcome.
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INTRODUCTION

Mechanical thrombectomy is currently the standard of care for
patients with disabling the stroke from large vessel occlusion.
Numerous trials have demonstrated its efficacy in improving
survival and functional outcome for these patients (1–3). In
addition, successful reperfusion does not translate into favorable
recovery for a substantial proportion of patients who are treated
with mechanical thrombectomy (4, 5). Thus, accurate and time-
efficient risk assessment remains crucial to optimize triaging
and outcomes of patients who may be candidates for stroke
reperfusion therapy (6).

Several prognostication scales have been proposed to predict
the functional outcome of patients with ischemic stroke (7–9).
However, these scores lack the ability to fully model the complex
and non-linear relationships between various prognostic factors
with functional outcomes and they depend mainly on categorical
rendering of clinical and few conventional imaging features.

Machine learning (ML) has emerged as a promising tool
for fitting and modeling complex and multidimensional data
patterns, leading to many potential applications in Medicine
(10). This is owing to its ability to incorporate a large number
of variables, extract nuanced information, and generalize the
acquired knowledge on new unseen cases in an efficient and
automatic manner, which could be particularly helpful in time-
critical situations, such as acute stroke. Artificial intelligence
(AI) algorithms could help to improve prediction methods by
providing immediate prognostic information. Few studies have
applied MLmodels on multimodal imaging features for modified
Rankin Score (mRS) prediction in ischemic stroke, however,
there still is ample room for refinement (11–13).

An important challenge for AI applications in healthcare is
to overcome the confidence barrier and ensure that physicians
trust the ensuing results. The black-box nature of ML algorithms
makes it difficult to interpret most complex models, significant
progress though has been made in the last few years in ML
interpretability. One particularly promising method is Shapley
Additive Explanations (SHAP), which to our knowledge has
not been previously explored in depth for ML prediction of
functional recovery after ischemic stroke.

The aim of this study was to develop an ML model and
assess its potential in pre-interventional prediction of functional
outcomes at 3 months of thrombectomy in acute ischemic stroke
(AIS) using clinical and auto-extractable radiological information
consistently available upon first evaluation in the emergency
department. In addition, to establish an automated end-to-end
system for streamlined patient triage and management decision
support in stroke.

Abbreviations: AIS, Acute Ischemic Stroke; ASPECTS, Alberta Stroke Program

Early CT Score; AUC, Area Under the Receiver Operating Characteristic Curve;

AI, Artificial Intelligence; CSF, Cerebrospinal Fluid; CT, Computed Tomography;

CTA, Computed Tomography Angiography; CTA-CS, CTA Collateral Score; XGB,

Extreme Gradient Boosting; GB, Gradient Boosting; IQR, Interquartile Range;

KNN, K Nearest Neighbor; ML, Machine Learning; mRS, modified Rankin Score;

mRS-90, modified Rankin Score At 90 Days; NIHSS, National Institutes of Health

Stroke Scale; RF, Random Forests; SHAP, Shapley Additive Explanations; TICI,

Treatment in cerebral infarction.

MATERIALS AND METHODS

Dataset
The study included 443 patients from two academic centers with
a confirmed diagnosis of AIS, due to large vessel occlusion in the
anterior circulation [internal carotid or middle cerebral artery
(MCA)] confirmed on computed tomography angiography
(CTA) who underwent mechanical thrombectomy between 2014
and 2020. All included patients underwent standardized acute
stroke imaging that includes non-contrast head CT and CTA of
the head and neck. Patients without CTA or with any missing
pertinent clinical or radiological data were excluded. The primary
clinical outcome of interest was the modified Rankin score at
90 days (mRS-90). The study protocol was approved by the
Institutional Review Board. The data that support the findings
of this study could be available from the corresponding author
upon reasonable request.

Feature Extraction
Collected clinical and demographic characteristics were age,
sex, baseline National Institutes of Health (NIH) Stroke
Scale (NIHSS), time from symptom onset to admission, and
comorbidities (diabetes, hypertension, hyperlipidemia, previous
stroke, and cardiovascular disease, such as myocardial infarction
and arrhythmia), in addition to blood glucose and blood
pressure levels. Interventional and post-interventional features,
such as modified treatment in cerebral infarction (mTICI) score
informing reperfusion status, were excluded from the models in
line with the main purpose of the study.

Quantitative imaging feature extraction was performed using
e-Stroke software (Brainomix, Oxford, UK) for automated
calculation of Alberta Stroke Program Early CT Score
(ASPECTS; e-ASPECTS) and estimated acute infarct volumes on
non-contrast CT (14–17). e-ASPECTS uses ML classification to
distinguish and segment regions that contain signs consistent
with the acute ischemic change in order to output both (total
and per ASPECTS region) and total e-ASPECTS volumes.
Additional novel features that were extracted using e-Stroke
software included non-acute infarct volume, total brain volume,
and atrophy, which were quantified using cerebrospinal fluid
(CSF) segmentation volumes in both the lateral ventricles and
the cortical sulci separately and expressed as percentages. e-CTA
(Brainomix, Oxford, UK) identifies large vessel occlusion site
and quantifies the volume of collateral circulation deficit both as
a percentage of the total volume and using the CTA collateral
score (CTA-CS) (18–20). Novel experimental outputs from
e-CTA included the absolute volume of the vessel density deficit
in MCA territory relative to the contralateral hemisphere.

Feature Pre-processing
Baseline features were categorized into clinical and imaging
feature groups. Standardization scaling of continuous and
ordinal feature values was applied to obtain a mean of zero
and a standard deviation (SD) of 1, in order to facilitate the
algorithm learning process and improve the prediction results.
Random splitting of the datasets into a training set and a
testing set was applied with a ratio of 75–25%, respectively. The
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mRS-90 was dichotomized with mRS 0–2 representing a good
functional outcome.

The features were divided into four subsets, which are as
follows: (1) clinical features, (2) imaging features, (3) combined
clinical and imaging features, and (4) selected features. A
model-based approach was applied using sequential backward
feature selection with a bagging classifier, where an algorithm
sequentially removes features from the full feature set until the
removal of further features decreases the classifier performance.

Statistical Analysis
Statistical assessment of each clinical and image-based feature
in relation to mRS-90 was assessed using the chi-square test for
the categorical variables, Wilcoxon Rank-Sum test, and t-test for
the ordinal and continuous variables depending on the normality
of their distributions. Statistical analysis was done using Python
(version 3.9) and the SciPy library. Values of p < 0.05 were
considered statistically significant.

ML Model Development and Testing
For the purpose of mRS-90 prediction, supervised ML
classification methods were deployed. The ML algorithms
used were as follows: k-nearest neighbors, random forests
(RF), gradient boosting (GB), and Extreme Gradient
Boosting (XGBoost). The models were constructed using
the Scikit-learn library.

As a first step, k-fold cross-validation of 10-folds was
performed during the training for each model, which divides the
training set into 10 subsets (9 for training and 1 for validation),
where the training and validation sets change and iterate over the
10-folds. The model hyperparameters were optimized by means
of a grid search approach, where for every model and for each
hyperparameter a set of possible values was manually defined
and evaluated exhaustively in every iteration to determine the
values corresponding to the model’s highest performance, with
an area under the receiver operating characteristic curve (AUC)
as scoring metric. The ML models were trained using each of
the 4 different feature categories. Subsequently, for every feature
group, we tested the models’ performance on the testing set
of patients.

From the output of the grid search, the best performing model
was chosen. Finally, automatic Bayesian hyperparameter tuning
with the Optuna framework was used on the best performing
model to boost its performance and achieve finer tuning. The
evaluation metrics used were accuracy, F1 score (for mRS-90≤ 2
and mRS-90 > 2 predictions), and AUC.

To enhance the model’s explainability and perform a feature
importance analysis, we used the method SHAP, which is based
on game theory and consists of computing Shapley values
reflecting the contribution of each feature in the predictions of
the model (21–23). The method allows for the identification of
features with the most influence on model output and measures
the impact if each variable was to be removed while taking into
account the interaction with other variables that provide insight
on the relative importance of the features used by the model for
its prediction decision process.

An illustrative summary of the methods is provided in
Figure 1.

RESULTS

Patient Population
Of 443 total patients (266 from the first center and 177 from
the second center), 293 patients met the study inclusion criteria.
The remainder of the patients were excluded for lacking relevant
variables mainly CTA images. In total, 101 patients had a
favorable functional outcome (mRS-90 ≤ 2), while 192 patients
had unfavorable functional outcomes (mRS-90> 2). The median
age of included patients was 71 years and 49% (n = 143) were
women (Table 1).

Univariate Statistical Analysis
Favorable clinical outcome was significantly associated with
younger age (p < 0.0001), female sex (p = 0.016), and lower
baseline NIHSS score (p < 0.0001). Patient comorbidities
were not significantly different between outcome groups
(Supplementary Table S1) and therefore were not included in
the development of ML models.

Non-contrast CT imaging features associated with favorable
outcomes included greater e-ASPECTS (p = 0.002), larger brain
volume (p = 0.043), smaller cortical CSF volume (p < 0.0001),
smaller lateral ventricle volume (p < 0.0001), smaller acute
ischemic volume (p = 0.047), and non-acute ischemic volume
(p = 0.040). Collateral circulation deficit volume on CTA was
significantly lower in the favorable outcome group (p = 0.001;
Table 1).

ML Model
Performance evaluation of each ML model following grid
search optimization is presented in Supplementary Table S2.
The selected features were as follows: baseline NIHSS, age,
occlusion side, local M5 infarct volume, local lentiform infarct
volume, brain volume, percentage of lateral ventricle volume,
collateral vessel deficit volume, and the time interval from
symptoms onset to admission.

We calculated accuracy and AUC for each of the feature
groups on the training data set. For clinical data, the model with
the highest AUC score was the XGBoost classifier (XGB) with
an AUC of 81%. For imaging features, the best model was XGB
at 79% AUC. For combined clinical and imaging features, the
best model was also XGB with an AUC of 80%. Selected features
yielded an AUC of 84% (Figures 2A–D).

The XGB model was selected for further optimization as it
consistently achieved a high performance in the four feature
groups and had the highest overall AUC scores. Using Bayesian
hyperparameter tuning with a stratified cross-validation of 10-
folds to refine the XGB model, the final performance metrics on
the testing set of patients were AUC= 84%, accuracy= 77%, F1-
score (mRS ≤ 2) = 67%, and F1-score (mRS > 2) = 82% for the
selected features. The final results are shown in Figures 2E,F.

Following prediction modeling of mRS-90, a feature
importance rank for the patient cohort was established by
calculating SHAP values for XGBoost which revealed that
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FIGURE 1 | Automated pipeline system for stroke functional outcome prediction at the emergency imaging providing artificial intelligence (AI) decision support for

mechanical thrombectomy.

the top indicators of clinical outcome prediction for the
model were by order of importance, i.e., age, baseline NIHSS,
occlusion side, cortical CSF volume percentage, lateral ventricle
volume percentage, e-ASPECTS, and circulation deficit volume
(Figure 3E). The overall impact of each feature is represented by
feature SHAP general values as shown in Figure 3F and model
predictions were able to be reviewed and assessed regarding
each predictor for each patient instance. The SHAP force plot
allows for an interactive visualization of all the study populations
clustered by their feature value similarity and ranging according
to their specific model output (Figures 3A,B). Individual
patient predictions can be extracted to visualize which features
played a role in their classification and what their feature
values were. Examples of predictions for a patient with poor
outcomes and a patient with favorable outcomes are shown in
Figures 3C,D, respectively.

DISCUSSION

In this study, we have developed and tested MLmodels to predict
the 3-month functional outcome of patients with AIS and large
vessel occlusion treated with mechanical thrombectomy using
only clinical and imaging features available in the emergency
department. Employing very simple baseline clinical information
and automatically extracting quantitative imaging features from

the baseline CT and CTA, our final model achieved very good
predictive accuracy. Some of the features incorporated into our
predictive model had not been previously examined, such as
radiological markers of brain atrophy (brain volume, cortical
CSF volume, and ventricular volume). In addition, we presented
the feasibility of building interpretable ML models for stroke
outcome prediction. The reporting of our prediction model
includes information on what features weighed more heavily on
the prediction that the algorithm utilized to construct the model.

The high evaluation metrics results in our study could be
attributed to the newly introduced quantifiable features from
automated image post-processing technology and the use of
Bayesian hyperparameter tuning. Although all the included
features contributed to the model performance, the most
important features for the final model outcome prediction
were as follows: age, baseline NIHSS, occlusion side, degree of
brain atrophy (primarily represented by cortical CSF volume
and lateral ventricle volume), early ischemic core (primarily
represented by e-ASPECTS), and circulation deficit volume on
CTA. This demonstrates the opportunity for multiple automatic
imaging biomarkers extractable from routinely acquired imaging
modalities (CT and CTA) to improve the precision of patient
profiling for AIS management.

The complexity of ML models leads to challenges in defining
the reasoning behind their predictions, thus potentially
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TABLE 1 | Statistical feature comparison between the two outcome groups.

Features mRS-90 ≤ 2 (n = 101) mRS-90 > 2(n = 192) P-value

Clinical features

Age, median (IQR) 63 (51–74) 75 (63–84) <0.0001

Sex 0.016

Female, n (%) 39 (39%) 104 (54.2%)

Male, n (%) 62 (61%) 88 (45.8%)

NIHSS score, median (IQR) 13 (7–18) 18 (13–22) <0.0001

Time to admission, median (IQR) 107 (68–186) 135 (68–302) 0.107

Imaging features

Occlusion side 0.017

Right, n (%) 57 (56%) 79 (41%)

Left, n (%) 44 (44%) 113 (59%)

Occlusion location 0.280

ICA Terminus, n (%) 25 (25%) 55 (29%)

M1, n (%) 50 (49%) 99 (51%)

M2, n (%) 25 (25%) 34 (18%)

M3, n (%) 1 (1%) 4 (2%)

e-ASPECTS, median (IQR) 9 (8–10) 9 (7–10) 0.002

Acute ischemic Volume (mL), median (IQR) 9.14 (5–20) 12.52 (5–28) 0.047

Non-acute ischemic volume (mL), median (IQR) 0.39 (0–0) 0.50 (0–1) 0.040

Local acute ischemic volume

M1 (mL), median (range) 0.0 (0.0–9.5) 0.0 (0.0–13.7) 0.006

M2 (mL), median (range) 0.3 (0.0–8.8) 0.8 (0.0–18.8) 0.005

M3 (mL), median (range) 0.0 (0.0–12.5) 0.4 (0.0–20.2) 0.002

M4 (mL), median (range) 0.0 (0.0–7.5) 0.0 (0.0–11.7) 0.004

M5 (mL), median (range) 0.8 (0.0–17.9) 1.3 (0.0–32.0) 0.034

M6 (mL), median (range) 0.1 (0.0–23.0) 0.8 (0.0–25.3) 0.012

Caudate (mL), median (range) 0.0 (0.0–2.6) 0.0 (0.0–2.6) 0.540

Insula (mL), median (range) 0.0 (0.0–8.0) 4.7 (0.0–8.0) 0.201

Internal capsule (mL), median (range) 0.0 (0.0–4.7) 0.0 (0.0–4.8) 0.744

Lentiform (mL), median (range) 2.3 (0.0–5.8) 2.6 (0.0–5.8) 0.679

Brain volume (L), mean (±SD) 1.30 (±0.16) 1.26 (±0.15) 0.043

Cortical CSF volume (%), median (IQR) 6.16 (4–9) 8.7 (6–10) <0.0001

Lateral ventricle volume (%), median (IQR) 2.4 (1–3) 3.4 (2–5) <0.0001

Circulation deficit volume, median (IQR) 15.8 (1–36) 30.42 (6–54) 0.001

CTA CS score, median (IQR) 3.0 (2–3) 2.0 (1–3) <0.001

hampering clinical adoption. In this study, the SHAP
methodology provided explicability to the ML model at the
cohort level and for each individual patient prediction with
user-friendly visualization tools for demonstration purposes.
These types of approaches have the potential for resolving
the “trust barrier” between clinicians and AI algorithms and
could help to increase clinical engagement with ML as future
practice tools.

Our work results are consistent with and validate findings
from previous studies, which have evaluated ML models for
outcome prediction after AIS. Jiang et al. illustrated that ML
applied to clinical and advanced imaging features had superior
performance in binary mRS-90 prediction when compared to
the Stroke Prognostication using Age and NIHSS (SPAN-100)

scale (12). They reported the best model AUC of 80% using the
6 best performing features that include CT perfusion features
(baseline NIHSS, age, glucose at admission, ischemic core volume
on CT perfusion, penumbra volume on CT perfusion, and
CTA-clot burden score) (12). Brugnara et al. reported a model
for predicting mRS-90 after endovascular treatment for AIS
that achieved an AUC of 74% using just baseline clinical and
radiological features (13). The incorporation of features from CT
perfusion did not improve the predictive performance of their
model, but the inclusion of angiographic and post-interventional
features significantly improved the predictive performance with
an AUC of 85%. The most important parameters for their mRS-
90 prediction were NIHSS after 24 h, pre-morbid mRS, and
volume of final infarction volume on post-interventional CT (13).
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FIGURE 2 | Receiver operating characteristic curves (ROCs) with areas under curves for modified Rankin score at 90 days (mRS-90) prediction after grid-search

optimization using baseline clinical features (A), imaging features (B), all features (C), and selected features (D), the orange-dashed line represents random guessing

with an area under the receiver operating characteristic curve (AUC) of 0.5. The AUC (E) and confusion matrix (F) of the best performing model following Bayesian

hyperparameter tuning using the selected features.

FIGURE 3 | Shapley Additive Explanation (SHAP) force plot of the testing set with the vertical axis representing model outcome and the horizontal axis representing

the testing population sample ordered by feature similarity (A) and by model output (B). Examples of the model output for an individual patient with the determining

feature values that influenced the classification decision from the poor outcome group (C) and the favorable outcome group (D). SHAP summary plot showing the

distribution of each patient feature and how it affects the model outcome through its SHAP value (E). Absolute mean SHAP values for the global effect of every feature

effect on the model output (F).
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During model development, we experimented with
incorporating features related to the endovascular intervention
and post-interventional clinical and radiological features, such
as TICI score, which as expected did increase the performance
of the predictive models. However, the goal of the study was not
just to merely develop a prognostic tool or achieve the highest
prediction metrics possible but also to explore how the potential
of ML models for decision supports in the setting of initial
screening at the emergency department prior to the intervention
and to identify the patients who would highly benefit if a
mechanical thrombectomy procedure was to be performed. For
that purpose, we intentionally chose to restrict the features to
only those readily available at first scan and evaluation upon
urgent patient arrival and excluded the post-interventional
features from our final analysis. This interpretable approach
could have promising applications and provide helpful service
for stratifying patients with large vessel occlusion stroke prior
to the endovascular procedure, leading to enhanced acute
management decision-making.

Limitations
Limitations to our study may relate to the population size,
which is although relatively large as a two-center study,
similar to most ML studies, it could benefit from a larger
cohort size for ML purposes. Datasets with diverse origins
and a higher number of participants are warranted to
further validate the robustness of the models for future
generalizability on independent cohorts. In addition, with the
absence of consistent information on pre-morbid functional
status, we have not included this variable. Future planned
steps exist for validating these tools prospectively and
on larger multi-center datasets for further optimization of
this approach.

CONCLUSION

Automated approaches could help to streamline and inform
the decision-making process prior to thrombectomy in AIS
at the emergency department. Our study highlights the value

and accuracy of ML approaches integrating basic clinical
information and automated imaging features in the pre-
interventional prediction of functional outcomes 3 months from
mechanical thrombectomy and the role of AI in both extracting
useful information from routine imaging and individualizing
prognostication and management decision-support systems in
AIS. Progress made in ML interpretability is paving the way for
more transparent modeling, which is becoming essential in the
medical realm and for identifying important new predictors of
stroke outcome.
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