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Abstract: We have previously reported in a feline model of acute peripheral vestibulopathy (APV)
that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression
of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei.
Pharmacological blockade of these ion channels by the selective antagonist apamin significantly
alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up
study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting
from the antagonization of SK channels was species-dependent or whether it could be reproduced in
a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on
the vestibular syndrome expression, and whether administration of SK agonist could also alter the
vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference
AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a
rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated
during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon
administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that
of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for
modulating the manifestation of the vertigo syndrome during APV.

Keywords: SK channels; apamin; vertigo; rat model; vestibular compensation; vestibular function
recovery; unilateral vestibular neurectomy

1. Introduction

Apamin is a globular peptide neurotoxin of 18 amino acids present in the apitoxin-bee
venom [1]. It is a polypeptide with the following amino acid sequence: H-Cys-Asn-Cys-
Lys-Ala-Pro-Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-Gln-Gln-His-NH2. The two disulfuric
bridges between Cys1-Cys11 and Cys3-Cys15 together with the seven hydrogen bonds
make apamin a highly stable molecule. Dry bee venom is composed of 2–3% apamin [2].
Apamin is one of the main peptide blockers of small conductance calcium-activated potas-
sium channels (SK channels) [3,4]. Electrophysiology experiments evaluating its ability
to block SK currents revealed a differential affinity of apamin for the three types of SK
channels: SK1 (also known as KCa2.1, encoded by the KCNN1 gene), which has the least
affinity (EC50 0.7–12 nM), SK2 (referred to as KCa2.2, encoded by the KCNN2 gene), which
has the highest affinity (EC50 27–140 pM), and SK3 (identified as KCa2.3, encoded by the
KCNN3 gene), which has intermediate affinity (EC50 0.6–4 nM) [5,6]. Interestingly, rat
SK1 channels are unresponsive to apamin, unlike those in humans [7]. Apamin readily
crosses the blood-brain barrier, and iodo-apamin studies reveal a map of binding sites
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similar to the distribution of SK2 and SK3 in rodent brain [8,9]. In the mammal vestibular
nuclei, a high density of the SK2 subunit was observed, followed by medium and low
distributions for the SK1 and SK3 subunits, respectively [9]. We also note an approximately
similar distribution pattern in structures connected to the vestibular nuclei (cerebellum
and prepositus hypoglossal nucleus) which also contribute to the stabilization of gaze
and posture.

SK channels are members of the voltage-insensitive calcium-activated potassium
channel family. Upon elevation of the cytosolic calcium concentration, the channels open,
allowing K+ ions to leave the cell as a function of the difference between the depolarized
cell and K+ equilibrium potentials. Consequently, their activation leads to the cell repolar-
ization (for a review, [10]). More specifically, SK channels are thought to regulate neuronal
excitability by contributing to the slow component of synaptic after hyperpolarization
(AHP) [11,12], thereby governing the firing frequency. Activation or upregulation of SK
channels is expected to reduce the firing frequency of repetitive action potentials. With
regard to these specific gating properties, we may speculate on the expected functional
consequences of the upregulation of SK channels in the vestibular nuclei (VN) depending
on the cell type (excitatory or inhibitory neurons) and the side considered (intact versus
deafferented) [13].

In a previous study, we demonstrated in a unilateral vestibular neurectomy (UVN) cat
model, that administration of apamin during the acute phase of the vestibular syndrome
significantly reduced both the posturo-locomotor and vestibulo-ocular deficits. This was
illustrated by the reduction of both the horizontal spontaneous nystagmus and the static
and dynamic balance unsteadiness [13].

To study more thoroughly the antivertigo effect of apamin, we investigated in this
follow-up study whether this effect could be reproduced in a rodent model of acute
peripheral vestibulopathy, by other SK channel antagonists, and whether SK channel
agonists may produce a comparable or opposite antivertigo effect. We also compared the
antivertigo effect of apamin relative to that of the standard antivertigo drug acetyl D-L
leucine (Tanganil®). With this aim, we performed UVN in adult rats following the same
surgical approach previously detailed [14], and used suitable behavioral testing to assess
the progression of the vestibular syndrome following the vestibular injury.

2. Results
2.1. Dose-Response Effect of Apamin

When administered at 0.3 mg/kg, the apamin group did not display statistically
significant differences vs. control group in most posturo-locomotor parameters considered,
except for the meander which corresponds to the locomotor pattern (Figure 1). When
administered at 0.6 mg/kg, apamin induced statistically significant benefit vs. control,
which varied according to the parameter considered. The subjective evaluation of the
vestibular syndrome severity over time revealed a significant reduction (F(6, 42) = 2.518;
p = 0.0147) at D7 after the vestibular lesion, while it did not significantly vary vs. control at
other time points (Figure 1A). The automated evaluation of posturo-locomotor parameters
revealed a significant increase in the displacement velocity at D7 (F(6, 42) = 4.011; p = 0.0024)
and D10 (F(6, 42) = 4.011; p = 0.0047; Figure 1B), and the total distance moved during the
tests at D7 (F(6, 42) = 5.135; p = 0.0025) and D10 (F(6, 42) = 5.135; p = 0.0032; Figure 2C) in
rats treated with apamin 0.6 mg/kg. Statistically, very significant reduction in immobility
time (F(6, 42) = 5.602; p = 0.0009; Figure 1D) was observed at D1. Conversely to other
posturo-locomotor testing, apamin administered at both 0.3 and 0.6 mg/kg displayed
very significant reduction of altered locomotor pattern (meander) at D1 (F(6, 42) = 4.254;
p = 0.0017 and p = 0.0085, respectively; Figure 1E). These observations indicated that
acute ip administration of apamin at 0.6 mg/kg over the first days after UVN in adult
rats induced a significant reduction in various behavioral biomarkers characteristic of
vestibular disorders in rodents.
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Figure 1. Effect of apamin treatment (0.3 and 0.6 mg/kg) on vestibular syndrome time course in UVN rats. (A), Subjective 
assessment of the vestibular syndrome severity over time (mean score established according to the rating scale detailed in 
Methods). (B), Measurement of the animal’s displacement speed (velocity, in cm/s) at the various time points considered. 
(C), Assessment of the total distance moved in the open field (in cm) during the recording session. (D), Immobility time 
(in s) of the animals during the videotracking recording phase. (E), Locomotor pattern of the animal (meander; °/cm). (F), 
Actimetry graphs emphasizing the difference in distance moved at D7 between control and apamin 0.6 mg/kg groups. 
Taken from C. (G), Movement tracing graphs emphasizing the difference in meander at D1 between control and apamin 
0.6 mg/kg groups. Taken from E. Statistically significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001) compared to the 
control group, two-way ANOVA. 

Figure 1. Effect of apamin treatment (0.3 and 0.6 mg/kg) on vestibular syndrome time course in UVN rats. (A), Subjective
assessment of the vestibular syndrome severity over time (mean score established according to the rating scale detailed in
Methods). (B), Measurement of the animal’s displacement speed (velocity, in cm/s) at the various time points considered.
(C), Assessment of the total distance moved in the open field (in cm) during the recording session. (D), Immobility time
(in s) of the animals during the videotracking recording phase. (E), Locomotor pattern of the animal (meander; ◦/cm). (F),
Actimetry graphs emphasizing the difference in distance moved at D7 between control and apamin 0.6 mg/kg groups.
Taken from C. (G), Movement tracing graphs emphasizing the difference in meander at D1 between control and apamin
0.6 mg/kg groups. Taken from E. Statistically significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001) compared to the
control group, two-way ANOVA.
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(D), Immobility time (in s) of the animals during the videotracking recording phase. (E), Locomotor pattern of the animal 
(meander; °/cm). No statistically significant difference was observed at any time between AG525E1 and control rats. 
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Figure 2. Effect of treatment with AG525E1 (10 mg/kg) on the severity of vestibular syndrome. (A), Subjective assessment
of the vestibular syndrome severity over time. (B), Measurement of the animal’s velocity (in cm/s) at the various time
points considered. (C), Assessment of the total distance traveled in the open field (in cm) during the recording session.
(D), Immobility time (in s) of the animals during the videotracking recording phase. (E), Locomotor pattern of the animal
(meander; ◦/cm). No statistically significant difference was observed at any time between AG525E1 and control rats.

2.2. Effect of Other SK Channel Modulators

Administration to UVN rats of the bis-tetrahydroisoquinoline derivative (AG525E1) at
10 mg/kg, another SK channel antagonist, induced a trend to reduce the different studied pa-
rameters of the vestibular syndrome over the first two days following the unilateral vestibular
lesion (Figure 2A–E), without reaching statistical difference versus control in our sample.

Administration to UVN rats of NS8593 at 30 mg/kg, a negative modulator of SK2
channels, produced a trend to reduce the intensity of the vestibular syndrome (Figure 3A),
immobility time (Figure 3D), and altered locomotion pattern (Figure 3E) over the first
two days following the unilateral vestibular lesion, however without reaching statistical
difference versus control in our sample. It evoked a similar tendency to reduce both the
velocity (Figure 3B) and distance moved (Figure 3C) over all time points considered.

Administration to UVN rats of cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-
pyrimidin-4-yl]-amine (CyPPA), an SK channel agonist (Figure 4), induced significant
(F(6, 42) = 2.518; p = 0.0055) increase in the severity of vestibular syndrome at D1 (Figure 4A)
and a tendency to reduce the animal’s displacement velocity between D1 and D3, with a
significant difference vs. control at D2 (F(6, 42) = 4.011; p = 0.049; Figure 4B). A significant
decrease in the distance moved at D2 (F(6, 42) = 5.135; p = 0.0435) and D3 (F(6, 42) = 5.135;
p = 0.0051) (Figure 4C), and a very significant increase in immobility time during the first
three days of vestibular syndrome (F(6, 42) = 5.602; p = 0.0001 at D1, p < 0.0001 at D2 and
p = 0.0002 at D3; Figure 4D) were observed in the CyPPA group. This group also exhibited
a significant increase in the locomotor pattern alteration at D3 (F(6, 42) = 4.254; p = 0.412;
Figure 4E). These observations indicate that administration of the SK channel agonist
CyPPA induces mirroring effects compared to those produced by the SK antagonists. These
effects result in an increased severity of vestibular syndrome.
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compared to the control group, two-way ANOVA. 
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Figure 3. Effect of treatment with NS8593 (30 mg/kg) on the severity of vestibular syndrome. (A), Subjective assessment of
the vestibular syndrome severity over time. (B), Measurement of the animal’s displacement speed (velocity; in cm/s) at the
various time points considered. (C), Assessment of the total distance traveled in the open field (in cm) during the recording
session. (D), Immobility time (in s) of the animals during the videotracking recording phase. (E), locomotor pattern of the
animal (meander; ◦/cm). No statistically significant difference was observed at any time between AG525E1 and control rats.

Figure 4. Effects of treatment with CyPPA (15 mg/kg) on the severity of vestibular syndrome. (A), Subjective assessment of
the vestibular syndrome severity over time. (B), Measurement of the animal’s displacement speed (velocity; in cm/s) at the
various time points considered. (C), Assessment of the total distance traveled in the open field (in cm) during the recording
session. (D), Immobility time (in s) of the animals during the videotracking recording phase. (E), locomotor pattern of the
animal (meander; ◦/cm). Statistically significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001) compared to
the control group, two-way ANOVA.

2.3. Comparative Study of the Effects of Apamin and Acetyl-DL-Leucine

Comparative study of the antivertigo effects produced by the ip administration of
apamin (0.6 mg/kg) or acetyl-DL-leucine (ADLL; 60 mg/kg) was performed. No statis-
tically significant reduction of the vestibular syndrome severity was evoked by ADLL
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compared to control or apamin. A significant reduction of the vestibular syndrome severity
was observed later at D7 (F(6, 42) = 2.518; p = 0.0147; Figure 5A) in the apamin group com-
pared to control or ADLL groups. ADLL administration displayed the opposite effect to
apamin from D7, on velocity (Figure 5B) and distance moved (Figure 5C), with significant
reduction of both parameters at D10 (F(6, 42) = 4.011; p = 0.265 for velocity; F(6, 42) = 5.135;
p = 0.0445 for distance moved) compared to control groups. ADLL administration also dis-
played the opposite effect compared to apamin on immobility time (Figure 5D) and altered
pattern of locomotion (Figure 5E), as demonstrated by the lack of significant reduction of
the immobility time at D1 and the increase of altered locomotion pattern at D1 observed
for ADLL. These observations indicated a superior effect of apamin on ADLL in reducing
the considered biomarkers of the vestibular syndrome.
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Figure 5. Comparative effects of apamin (0.6 mg/kg) and acetyl-D-L-leucine (60 mg/kg) treatments on vestibular syndrome
severity. (A), Subjective assessment of the vestibular syndrome severity over time. (B), Measurement of the animal’s
displacement speed (velocity; in cm/s) at the various time points considered. (C), Assessment of the total distance traveled
in the open field (in cm) during the recording session. (D), Immobility time (in s) of the animals during the videotracking
recording phase. (E), Locomotor pattern of the animal (meander; ◦/cm). Statistically significant differences (* p < 0.05;
** p < 0.01; *** p < 0.001) compared to the control group, two-way ANOVA.

3. Discussion
3.1. Vestibular Syndrome and Electrophysiological Asymmetry in the Vestibular Nuclei

Sudden, unilateral, and complete loss of peripheral vestibular sensory information in
humans and animals induces a characteristic vestibular syndrome composed of posturo-
locomotor, oculomotor, and vegetative symptoms [15,16]. These deficits are fully or par-
tially compensated over time through a process of neuroplasticity called ‘central vestibular
compensation’ [17]. This vestibular syndrome is the result of electrophysiological asym-
metry between homologous vestibular nuclei (VN): low spontaneous electrical activity
on the deafferented side and high on the intact side [18–20]. Data in the literature attest
that the reestablishment of the electrophysiological balance between opposing VNs is the
key and essential parameter of the post-lesional recovery of postural, locomotor, and gaze
stabilization functions [21]. The priority for the deafferented vestibular environment is
to restore a level of homeostatic excitability essential for functional restoration. For this
purpose, neuronal excitability modulators play a key role. We have recently demonstrated
that excitability markers of the deafferented vestibular environment (GABAa receptors
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and KCC2 cotransporters) reconfigure themselves so that GABA becomes depolarizing
and facilitates functional restoration [22]. We also demonstrated that a modification of the
post-lesional vestibular environment extends to other modulators of neuronal excitability
such as SK channels [13].

3.2. Presence of SK Channels in the Vestibular Nuclei and Upregulation of Their Expression
Following UVN

The presence of different subtypes of ionic channels sensitive to apamin in the mammal
VNs has been proposed on the basis of pharmacological tests [23–25]. Our team recently
confirmed this at cellular level, demonstrating the presence and distribution of small con-
ductance calcium-activated potassium channels SK1, SK2, and SK3 subunits in the VN
complex and associated structures, such as cerebellum and inferior olive, through an au-
toradiographic approach using radiolabeled apamin [13]. This study also revealed reactive
upregulation of SK channels following unilateral vestibular neurectomy (UVN) in ipsi and
contralateral VNs at both acute (D7 post-UVN: asymmetric positive regulation) and semi-
compensated (D21 post-UVN: symmetrical upregulation) stages of vestibular compensation.

3.3. Conservation of the Antivertigo Effect of Apamin across Species

In the present study, we retrieved in vestibulo-injured rats the antivertigo (AV) effect
of apamin previously demonstrated in vestibulo-injured cats [13]. We used behavioral
assessment parameters widely acknowledged as good indicators of posturo-locomotor
deficits in rodents [14,26]. However, the dose of 0.3 mg/kg which caused significant
reductions in posturo-locomotor and vestibulo-ocular deficits in the UVN cat model only
caused a tendency to improve the various monitored parameters in the UVN rat model,
without reaching statistically significant difference vs. sham administration. By contrast,
simply doubling the administered apamin dosage was sufficient to achieve significant AV
effect vs. control. Doubling the dosage required to produce significant AV effects is not
sufficient by itself to be indicative of a real interspecies sensitivity difference. However,
it should be noted that the reduction of the posturo-locomotor effects observed in the
vestibulo-injured cats with apamin was more pronounced than that observed in rat. Thus,
even if the results of the present study initially confirm a conservation of the apamin AV
effect between the two species, a difference in sensitivity to apamin cannot be excluded. To
what extent this difference may be due to differential expression of SK subunits in cat and
rat VN will need to be further investigated.

3.4. Tendency of SK Channel Antagonists to Mimic the Antivertigo Effect of Apamin

Apamin is a prototypic ‘blocker’ of SK channels, in fact acting through an allosteric
mechanism that physically obstructs the outer channel pore. This action is independent of
gating. Apamin is therefore not considered to be a negative modulator [7,27]. Conversely,
NS8593, a non-charged molecule with a very different structure from apamin, defined this
concept. NS8593 inhibits cloned human and rat SK2 isoforms with equal potency, while
it is inactive on SK3. It causes a reduction in the apparent Ca2+ sensitivity for channel
activation [28]. In the present study, we administrated the compound at 30 mg/kg, a dose
previously demonstrated to induce burst firing in mouse dopamine neurons in vivo [29].
At this specific concentration, NS8593 displayed a trend to alleviate all vestibular symptoms
considered, although never reaching significant difference vs. control. It can be anticipated
that a higher concentration of NS8593 may produce superior and significant antivertigo
effect. The difference in both the structure and mechanism of action of NS8593 vs. apamin,
especially its lower affinity for the SK2 subunit [30], may support the observed discrepancy
between NS8593 and apamin in alleviating the vestibular syndrome evoked in UVN rats.

AG525E1 is a chiral bis-tertiary amine that also differs from the apamin peptide. This
compound was initially developed from chemical modulation of laudanosine, with the aim
of studying the physiological roles of SK channels in the central nervous system in vivo.
AG525E1 has an affinity for SK channels (Ki = 293 nM) approximately 100-fold higher than
the tertiary compound laudanosine (Ki ∼ 30 µM) and similar to the charged compound
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dequalinium (Ki = 221 nM). AG525E1 equipotently blocks SK1, SK2, and SK3 currents in
transfected cell lines. Because of its basic and lipophilic properties, it can reach central SK
targets [31]. The specific structure and mechanism of action of AG525E1 may explain the
observed discrepancy of its AV effect vs. apamin in the rat model of APV. As for NS8593, the
tendency of AG525E1 to reduce the vestibular syndrome over the days of its administration
supports the idea that the AV effect exerted by the SK channel antagonists operates through
the inhibition of the SK2 channel function. However, the non-statistically significant effect
may be dependent on its lower affinity for the SK2 subunit compared to apamin. In addition
to the question of the affinity of the compounds for the SK subunits, other parameters such
as ability to cross the BBB, production of metabolites, related subcellular cascades . . . ) have
to be taken into account to decipher the heterogeneity of the behavioral responses.

3.5. Mirror Effect of SK2 Selective Activator CyPPA

An interesting observation is the exacerbating effect of cyclohexyl-[2-(3,5-dimethyl-
pyrazol-1-yl) -6-methyl-pyrimidin-4-yl] -amine (CyPPA) on the vestibular syndrome ob-
served in vestibulo-injured rats. This effect occurs for certain parameters and at certain time
points, upon administration of CyPPA. Conversely to the above-mentioned compounds
which show little selectivity between the SK2 family members, CyPPA and its more potent
congener NS13001 have fundamentally different structures and also changed selectivity
profiles. Both compounds selectively activate SK2.3 and SK2.2 but are completely inactive
on SK2.1 and SK3.1 [32,33]. The observed exacerbating effect on the vestibular syndrome is
particularly pronounced in the first two days after induction of the lesion, with regard to
the assessment of the vertigo syndrome and the mean velocity, and continues over three
days for the distance moved, time of immobility, and alteration of the locomotor pattern. It
can be anticipated that the selective activation of the SK2.3 and SK2.2 subunits induces a
decrease in the spontaneous firing rate of neurons carrying these subunits. This effect may
occur through increasing the duration of the apamin-sensitive afterhyperpolarization, and
inducing an activity-dependent inhibition of current-evoked action potentials as previously
demonstrated in DA neurons from both mouse and rat midbrain slices [29]. This effect
could mirror those observed with apamin and other SK channel antagonists, by accenting
the SK-channels-mediated syndrome. Of course, it cannot be totally ruled out that CyPPA
may produce the observed effect through another pharmacological target such as TRP
channels [34].

3.6. Superior AV Effect of Apamin vs. Acetyl-DL-Leucine

The comparative study of the antivertigo (AV) effects produced by the administration
of apamin or acetyl-DL-leucine (ADLL) in vestibulo-injured rats allows anticipation of the
potential of apamin to alleviate the vertigo symptoms compared to the French reference
AV compound [35]. Apart from a statistically significant difference in the effect of ADLL
vs. control and apamin visible at D3 in the subjective evaluation of vertigo syndrome, the
AV effect of apamin is always superior to that of ADLL, regardless of the criteria and time
point considered. On this basis, it can thus be anticipated that a significant AV effect of
apamin can be obtained in patients suffering from APV.

3.7. Antivertigo Effect of SK Antagonists and Control of Neuronal Excitability

The role of SK channels in controlling the rhythmicity of neural action potentials is
now well established. It is known that their activation, or increase in membrane expression,
induces a reduction in neuronal discharge frequency, while their pharmacological blockade
induces the opposite effect: an increase in neuronal firing [10–12]. This effect has been
confirmed on type B neurons in the medial VN using both in vitro brain stem slice and
in vivo electrophysiological recordings [24,25,36]. On the basis of these observations, it is
very likely that the antivertigo effect of apamin results mainly from its action of stimulating
neuronal excitability. In particular, apamin by blocking SK channels could accelerate the
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recovery of electrophysiological homeostasis between opposite VNs, thus decreasing the
symptoms of acute vertigo attacks and accelerating vestibular compensation.

3.8. Other Mechanisms of Action for the Antivertigo Effect of SK Antagonist

Although there is much evidence to support an AV effect of SK channel antagonists
occurring through the modulation of VN neuron excitability, it cannot be excluded that the
AV effect of apamin may also be exerted through other actions.

The animal model of unilateral vestibular lesion is also a neuroinflammatory reaction
model since it induces astroglial [37–41] and microglial [22,41–43] reactions, as well as the
expression of inflammatory factors (TNF-a and NF-kB) in deafferent VNs [44]. Apamin
could display, through an action on the SK channels carried by glial cells (astrocytes
and microglia) [45,46], a modulating effect on the central inflammation which occurs
within the deafferented VNs after UVN. Apamin could thus slow down or even prevent
chronic inflammation consecutive to vestibular lesion. There is a growing interest in
developing drugs to target microglia and thereby control neuroinflammatory processes,
and apamin is a promising candidate. It was recently shown that apamin significantly
inhibits proinflammatory cytokine production and microglial cell activation [47].

The AV action of apamin may also take place through the involvement of serotonin.
By blocking the SK channels carried by raphe serotonin neurons projecting directly to
the VN [48], apamin could specifically enhance the excitability of brainstem vestibular
neurons, as previously demonstrated in a microiontophoretic study in the rat [49,50]. In this
same line of thought, the effects of dorsal raphe electrical stimulation exert a generalized
excitatory influence by serotoninergic fibers on LVN neurons [51]. It could also have an
anxiolytic effect which would be beneficial for the central compensation [52,53]. In fact,
apamin increases the activity of serotonergic neurons, inducing an increase in its release at
the level of the amygdala, the main nervous center regulating emotions [54].

Through a stimulating action on the release of dopamine, apamin could also induce a
normalization of excitability, an improvement in motor control, as well as a motivational
effect. By an action on the SK channels expressed by dopaminergic neurons which project
directly onto the VN, apamin could, like serotonin, normalize the excitability of the VN
neurons, through the dopaminergic receptors they express [55]. It is of interest to mention
that regulation of SK channels is also observed in substantia nigra in a rodent model of
Parkinson’s disease, and that treatment with apamin improves motor deficits by inten-
sifying the excitability of dopaminergic neurons, resulting in an increase in dopamine
secretion [56–59]. Substantia nigra is the main cerebral source of dopaminergic neurons
involved in the regulation of motricity, the progressive degeneration of which is one of
the main causes of Parkinson’s disease. A recent review documents the anatomical and
functional correlation between Parkinson’s disease and vestibular system dysfunction [59].
There is indeed substantial evidence of Parkinsonian neuropathological changes (Lewy
bodies and lipofuscin) in the VN complex [60,61]. The common denominator of these
two pathologies is postural instability as the main symptom. Finally, clinical trials in
Parkinson’s patients show that bee venom does not induce toxicity and slightly improves
motor scores [62]. The administration of the venom through specific acupuncture points
appears to be beneficial to idiopathic Parkinson’s patients [63]. Taken together, these data
suggest that apamin attenuates locomotor postural deficits resulting from vestibular dam-
age, through an indirect action on the dopaminergic system of the substantia nigra. Finally,
through a facilitating action on the release of dopamine in the affectivo-motivational sphere,
apamin could also have a motivation booster effect. This aspect is very important in human
clinics for functional recovery. It is important to emphasize that it has been observed in vivo
and post-mortem that the organization of neurotransmitter systems (dopamine, serotonin,
and others) is similar between the rat and man. Thus, these supposed mechanisms of
action are probably the same in humans.



Pharmaceuticals 2021, 14, 1226 10 of 16

3.9. Limitations of the Study

In the case of groups AG525E1 and NS8593, only trends of change could be seen,
instead of statistical significance. This is likely due to the number of animals used in
this study. We can anticipate that a higher number of animals per group would have
led to significant results for these specific compounds, as observed for apamin, ADLL,
and CyPPA. In the same way, higher doses of AG525E1, NS8593, and CyPPA would have
probably induced significant effects. For ethical reasons, we chose to omit vehicle groups, as
Kolliphor and HP-ß-CD were never demonstrated to influence the absorption, distribution,
or metabolisms of any tested compounds. It has been evidenced that regardless of the
dosage or the administration duration (daily injections at 30% up to 91 days for Kolliphor,
injections of up to 10g/kg for HP-ß-CD), these compounds never produced overt toxicity
in rats [64,65]. Note that we used the following in the present study: doses of 5% Kolliphor
and 10% HP-ß-CD in daily administration over only 4 consecutive days.

4. Materials and Methods
4.1. Animals and Ethical Statements

Experiments were performed on 52 Long Evans male rats 10–12 weeks old (250/300 g)
originating from our own breeding, from parents supplied by Charles River (St Germain
sur l’Arbresle, France). All experiments were performed in accordance with the National
Institutes of Health’s Guide for Care and Use of Laboratory Animals (NIH Publication
no. 80-23) revised in 1996 for the UK Animals (Scientific Procedures) Act of 1986 and
associated guidelines or the Policy on Ethics approved by the Society for Neuroscience in
November 1989 and amended in November 1993 and under the veterinary and National
Ethical Committee supervision (French Agriculture Ministry Authorization: B13-055-25).
The present study was specifically approved by Neurosciences Ethic Committee N◦71 of
the French National Committee of animal experimentation. Every attempt was made to
minimize both the number and suffering of animals used in this experiment. The animals
were housed in a large confined space with 12–12 h diurnal light variations with free access
to water and food. They were housed at the LNC UMR 7291 animal facility.

4.2. Study Design

To determine the impact of SK modulators and acetyl-D-L leucine (ADLL) treatment
on the kinetic of vestibular syndrome and vestibular compensation in UVN rats, we
administrated the compounds during the acute phase of the vestibular syndrome following
the lesion, and we observed the consequences of this treatment at the behavioral level.
For each behavioral investigation, acquisitions were performed before surgery (preop)
and at different time-points (days) during the post-operative time (D1, D2, D3, D7, and
D10) to evaluate the effect of these different treatments on the kinetics of the vestibular
syndrome and compensation (Figure 6). Animals were randomly divided into seven
groups: UVN + placebo group referred to as control group (n = 9), lesioned and treated
with NaCl 0,9%; two UVN + apamin groups receiving two different doses (0.3 mg/kg;
n = 6) and (0.6 mg/kg; n = 8); UVN+ AG525E1 group (n = 8); UVN+ NS8593 group
(n = 8), UVN + CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl) -6-methyl-pyrimidin-4-
yl]-amine) group (n = 5), and UVN + ADLL group (n = 6). The different groups were
randomly monitored at each time point. At the behavioral level, we measured the kinetics
of the vestibular syndrome and compensation using different evaluations performed at
different time points after the lesion.
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4.3. Unilateral Vestibular Neurectomy

Animals were subjected to a left-side vestibular nerve section under visual control
through a dissecting microscope under isoflurane anesthesia 30 min after a subcutaneous
injection of buprenorphine (Buprecare®; 0.02 mg/kg). The vestibular nerve was sectioned
at a post ganglion level as close as possible to the brainstem. Before awakening the animal,
a solution of Ringer Lactate (Virbac; 10 mL/kg) was administered subcutaneously in order
to alleviate the dehydration resulting from the inability of the animal to drink normally as
a consequence of the injury. The success of the surgery (full section of the vestibular nerve)
was verified at the histological level by the observation under optical microscopy of the full
section of the 8th cranial nerve between Scarpa’s ganglion and brainstem vestibular nuclei
(see [66] for details), and confirmed at behavioral level by the expression of characteristic
vestibular syndrome composed of an acute phase between D1 and D3 during which the
posturo-locomotor deficits reached maximum values, and a compensation phase during
which the vestibular deficit was progressively reduced. Animals which did not follow
these criteria were not considered in the analysis.

4.4. Drugs Administration

The pharmacological treatments were administrated once a day by intraperitoneal
(i.p) injections in double blind test conditions, during the acute phase of the vestibular
syndrome (30 min following the surgery, and at D1–D3 post UVN). The UVN + placebo
group was administrated with NaCl 0.9%. The SK modulators and acetyl-D-L leucine (Tan-
ganil) were administrated at different times before each behavioral test to take into account
the molecules’ half-time, and at the following concentrations: apamin (0.3 and 0.6 mg/kg
dissolved in NaCl 0.9%, injection 30 min before test, Genepep SA, Montpellier, France),
AG525E1 (10 mg/kg, dissolved in NaCl, injection 15 min before test, University of Liege,
Liege, Belgium), NS8593 (30 mg/kg diluted in 10% (2-hydroxypropyl)-β-cyclodextrin
(HP-β-CD); injection 5 min before test, Pharmaceutical Chemistry Lab, University of Liege,
Liege, Belgium), CYPPA (15 mg/kg, diluted in 5% solution of Kolliphor RH40 in saline;
injection 10 min before test, Alomone Labs Ltd., Jerusalem, Israel), ADLL (60 mg/kg,
injection 15 min before test, gift from Otorhinolaryngology and Head Neck Surgery De-
partment, Conception University Hospital, Marseille, France). Systemic administration
of the selected drugs was chosen as the compounds were found to cross the blood-brain
barrier [29,31,33,67]. The animals were allocated to different subgroups, allowing compari-
son between vehicle-lesioned and drug-lesioned rats. For each subgroup, we determined
through adapted behavioral tests the effects of the drug treatments on the acute phase of
the vestibular syndrome and the recovery of posturo-locomotor functions.
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4.5. Behavioral Investigations
4.5.1. Qualitative Evaluation of the Vestibular Syndrome

We evaluated the vestibular syndrome intensity and kinetic by using a cumulative
qualitative scale listing stereotypical postural and locomotor deficits evoked following
UVN adapted from [41]. Each of the following symptoms was scored on the qualitative
scale. Tail hanging behavior: Animals were picked up from the ground at the base of the
tail and body rotation was scored from 0 (no rotation) to 3 (several rotations of 360◦).
Rearing: the ability of the rat to rear was scored from 0 (rearing is observed) to 1 (rearing
is absent). Grooming: the ability of the rat to groom correctly was scored as follows: 0
(correct grooming of full body) 1 (grooming of the face, belly, and flanks but not the base
of the tail), 2 (grooming of the face and belly), 3 (grooming of the face), 4 (inability of the
animal to groom itself). Displacement: quality of the displacement of the rat was scored
from 0 (displacement of the rat with no visible deficit) to 4 (inability of the animal to
move forward or presence of retropulsion). Head tilt was scored by estimating the angle
between the jaw plane and the horizontal with 0 (absence of head tilt) to 3 (for a 90◦

angle). Barrel rolling was scored as follows: 0 (absence of barrel rolling), 1 (barrel rolling
evoked by an acceleration in the vertical axis of the rat in our hand), 2 (barrel rolling
evoked by handling the animal), 3 (spontaneous barrel rolling). Circling was scored as
follows: 0 (absence of circling behavior), 1 (rare episodes of circling behavior evoked
by handling of the animal), 2 (presence of circling behavior). Bobbing is assimilated to
cephalic nystagmus and was scored from 0 (absence of bobbing) to 1 (presence of bobbing).
Circling was scored as follows: 0 (absence of circling behavior), 1 (rare episodes of circling
behavior evoked by handling of the animal), 2 (presence of circling behavior). Circling
refers to rapid rotational behavior that is observed in different disease models. This
phenotype is common to rodent models of various pathologies with cerebral asymmetry
(Parkinson’s disease, schizophrenia, depression, or anxiety). Circling may be a result of
striatal electrophysiological imbalances resulting from excitability asymmetries observed
in the VN after unilateral vestibular loss (see [66]).

4.5.2. Quantitative Evaluation of the Vestibular Syndrome

Animals were individually placed in an open field (80 cm length × 80 cm width × 40 cm
height). Their behavior was recorded for 10 min using a digital camera and analyzed
with EthoVision™ XT 14 software (Noldus). The surfaces of the open field were cleaned
thoroughly between trials. To minimize stress, the room was lit as dimly as possible, while
allowing us to clearly discern the rats. At the beginning of the session, the rat was placed
on the right side of the field, head facing the wall. A first acquisition was performed the
day before the lesion, serving as a reference value, and then acquisitions were performed
at days (D) 1, 2, 3, 7, 10 post-lesion. We used the dynamic subtraction method. EthoVision™
automatically detected the following body points throughout the recordings: nose, body
center, and tail base of each animal. We used 3 analysis profiles for 23 variables selected for
analysis. We used the total distance moved (cm), the mean velocity (cm/s), the meander,
and the immobility time (s) to assess the locomotor activity of the rat. For more details
see [16].

4.5.3. Data Treatment and Statistical Analysis

Statistical analyses were evaluated by one-way repeated measures ANOVA followed
by a simple contrast to compare the postoperative time with the preoperative time for
each group (JASP). The number of animals per group was anticipated using statistical tests
(https://biostatgv.sentiweb.fr/?module=etudes/sujets#, accessed on 15 March 2018) with
expected effect size 0.6, power 0.85; p values: 0.05. Differences between the Sham and NVU
group were evaluated by two-way repeated measures ANOVA. If significant effects were
found, Dunnett multiple comparisons test was performed (GraphPad, Prism). Results were
considered significant at p < 0.05. In the Results section, data are presented as statistical
value, degrees of freedom, and exact p value.

https://biostatgv.sentiweb.fr/?module=etudes/sujets#
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5. Conclusions

Altogether, these data confirm the significant antivertigo benefit of apamin in vestibulo-
injured rats, with improvement of locomotion and mobility shortly (one day) after the
insult, and reduction of syndrome intensity and improvement of both velocity and distance
traveled after a week. It can be anticipated that the antivertigo effect of apamin results
from a direct action on the normalization of neuronal excitability within the VNs, consid-
ered the key parameter of vestibular compensation. Its antivertigo effect could also result
from indirect actions on other neural networks, whose modulation would be beneficial for
the compensation.
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