
Computational and Structural Biotechnology Journal 20 (2022) 2909–2920
journal homepage: www.elsevier .com/locate /csbj
PERISCOPE-Opt: Machine learning-based prediction of optimal
fermentation conditions and yields of recombinant periplasmic protein
expressed in Escherichia coli
https://doi.org/10.1016/j.csbj.2022.06.006
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: AUC, area under the curve; CfsSubsetEval, Correlation-based Forward Selection Subset Evaluator; ClassifierSubsetEval, Classifier Subset Evalu
cross-validation; E. coli, Escherichia coli; FC1, Feature Category 1; FC2, Feature Category 2; FC3, Feature Category 3; FC4, Feature Category 4; IPTG, isopropy
thiogalactopyranoside; LOOCV, Leave-one-out cross-validation; MAE, mean absolute error; MCC, Mathew correlation coefficient; ML, machine learning; MLR,
learning in R; OD, optical density at 600 nm; PCC, Pearson correlation coefficient; pI, isoelectric point; RF, random forest; RFR, RF regression; RFR-High, RFR for hi
Medium, RFR for medium; RMSE, root mean squared error; RPP, Recombinant protein production; RSM, response surface methodology; SMOTE, Synthetic Minor
sampling Technique; SP, signal peptides; SVM, support vector machines; SVR, SVM regression; SVR-Low, SVR for class: "low"; XGB, XGBoost.
⇑ Corresponding authors.

E-mail addresses: Jiangning.Song@monash.edu (J. Song), Ramanan@monash.edu, upmram@gmail.com (R.N. Ramanan).
1 Present address: Computer Science & Engineering Discipline, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382 055, India.
Kulandai Arockia Rajesh Packiam a,1, Chien Wei Ooi a,b, Fuyi Li c, Shutao Mei d, Beng Ti Tey a,b,
Huey Fang Ong e, Jiangning Song d,f,⇑, Ramakrishnan Nagasundara Ramanan a,⇑
aChemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
bAdvanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
cDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3010, Australia
dBiomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
e School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
fMonash Centre for Data Science, Faculty of Information Technoology, Monash University, Victoria 3800, Australia

a r t i c l e i n f o
Article history:
Received 9 April 2022
Received in revised form 1 June 2022
Accepted 1 June 2022
Available online 3 June 2022

Keywords:
Optimization
Machine learning
Recombinant protein production
Periplasmic expression
Prediction model
Escherichia coli
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Optimization of the fermentation process for recombinant protein production (RPP) is often resource-
intensive. Machine learning (ML) approaches are helpful in minimizing the experimentations and find
vast applications in RPP. However, these ML-based tools primarily focus on features with respect to
amino-acid-sequence, ruling out the influence of fermentation process conditions. The present study
combines the features derived from fermentation process conditions with that from amino acid-
sequence to construct an ML-based model that predicts the maximal protein yields and the correspond-
ing fermentation conditions for the expression of target recombinant protein in the Escherichia coli peri-
plasm. Two sets of XGBoost classifiers were employed in the first stage to classify the expression levels of
the target protein as high (>50 mg/L), medium (between 0.5 and 50 mg/L), or low (<0.5 mg/L). The
second-stage framework consisted of three regression models involving support vector machines and
random forest to predict the expression yields corresponding to each expression-level-class.
Independent tests showed that the predictor achieved an overall average accuracy of 75% and a
Pearson coefficient correlation of 0.91 for the correctly classified instances. Therefore, our model offers
a reliable substitution of numerous trial-and-error experiments to identify the optimal fermentation con-
ditions and yield for RPP. It is also implemented as an open-access webserver, PERISCOPE-Opt (http://
periscope-opt.erc.monash.edu).

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recombinant protein production (RPP) is a noteworthy biotech-
nological technique that finds rising applications in various sectors
such as healthcare, detergents, food industry, and, most impor-
tantly, in research and development [1,2]. Escherichia coli (E. coli)
is considered an ideal host for RPP because it offers numerous
advantages, including simple nutritional requirements, faster cel-
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lular growth, and easiness in achieving high cell densities [3,4].
During RPP, the protein of interest can be directed towards the
periplasmic space of E. coli by the use of a short amino acid
sequence called signal peptides (SP). The periplasmic expression
of recombinant proteins is preferred because the periplasmic space
provides an oxidized environment that improves protein folding,
especifically for proteins containing di-sulphide bonds. Moreover,
the target proteins can be selectively recovered from the periplas-
mic space using the milder cell disruption steps that avoid the
release of cytoplasmic content to the processing fluid [5–8]. The
increasing demands for recombinant proteins have driven the
necessity of optimizing various fermentation process parameters
to achieve the maximal RPP. Despite tremendous works devoted
to the aspects of RPP and technological advancement, achieving
the high yields of recombinant proteins remains a challenge. More-
over, optimization of RPP involves tedious, costly, and time-
consuming experiments to identify the optimal fermentation con-
ditions which are specific to each type of protein [3].

Machine learning (ML) techniques have emerged as a game-
changer in many areas of research, including the field of biotech-
nology. Biotechnological processes such as RPP can be deciphered
using ML-based prediction tools, which are developed using the
available data to provide a rough estimate of the unknown biolog-
ical responses. For instance, there are several notable ML-based
prediction tools for various RPP-based applications, including the
prediction of protein solubility, protein folding rates, and protein
expression yields. PROSO II [9], ccSOL Omics [10], Protein–Sol
[11], DeepSol [12], PaRSnIP [13], SoDoPE [14] and SolTranNet
[15] are among the ML-based tools that predict the protein solubil-
ity with high accuracies. Similarly, the well-known ML-based pre-
diction tools for determining the protein folding rates are K-Fold
[16], Pred-PFR [17], PRORATE [18], and SeqRate [19]. Additionally,
ESPRESSO [20] and Periscope [21] are the advanced ML tools that
can predict the protein expression yields in the cytoplasm and
periplasm of E. coli, respectively; both tools incorporate the con-
cepts of previously developed models used in the determination
of protein solubility and folding rate. The above-mentioned ML-
based tools were developed mainly by using the key features asso-
ciated with the amino acid sequences. This is because the amino
acid sequence primarily influences the protein solubility and fold-
ing rates, which in turn affects many facets of RPP [3,21]. A limited
number of studies have also considered features from other
aspects, such as gene sequences [22] and host strains and/or vec-
tors [23]. Nevertheless, the ML models based on amino-acid
sequence do not necessarily provide a clear notion of the optimized
condition during RPP because the models exclude features related
to the fermentation process conditions, which play vital roles in
increasing the yields of RPP.

The present study aimed to derive a global ML-based model
capable of predicting the optimal protein yield and fermentation
process conditions for a target recombinant protein to be
expressed in the periplasmic space of E. coli. Two sets of XGBoost
(XGB) classifiers were employed in the first stage to classify the
target protein into high (>50 mg/L), medium (between 0.5 and
50 mg/L) or low (<0.5 mg/L) expression levels. In accordance with
the classified level of protein expression, the predictions of optimal
fermentation conditions and yields were then attained using three
sets of regression models based on support vector machine (SVM)
or random forest (RF). This ensembled model was developed by
integrating data from an existing bioinformatics tool, Periscope,
and the data from literature and in-house experiments; in total,
84 protein-types and 103 SP-protein combinations were used in
this study. 11,985 features were initially extracted by considering
all important factors associated with the amino acid sequence
and fermentation process condition. Then, the extraction of key
feature-subsets using stepwise feature selection method was per-
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formed. The resultant robust model gives a good estimate of the
maximal amount of recombinant protein and the fermentation
conditions responsible for the optimal protein expression. Ulti-
mately, our prediction tool could minimize the time spent on
trial-and-error experiments to attain high yields of recombinant
proteins.
2. Methods

2.1. 1. Generation of datasets

The data used in the present study include the amino acid
sequence of the recombinant protein expressed in the periplasm
of E. coli, the corresponding protein expression yield measurable
in milligrams per litre, and the parameters of the fermentation pro-
cess conditions. The data were collected from: i) an existing predic-
tion model, namely Periscope [21]; ii) a literature search using
popular search engines such as Scopus, Google Scholar, and
PubMed; and (iii) our in-house experimental findings (Tables S1
and S2). These data were extracted from the research articles ful-
filling the following criteria: i) E. coli strain as the host and lac pro-
moters for expression; ii) heterologous protein expression in the
periplasm; iii) SP at the N-terminus; iv) batch fermentation at
shake flask scale, and finally, v) neither involving any genetic mod-
ification of the host strain nor including any co-expression vectors.
On the whole, the present study comprised 461 datasets (collection
of data) for 84 proteins and 103 SP-protein combinations. The
sequence redundancy of the 103 SP-protein combinations was
removed using the CD-HIT suite [24] at 90% of the sequence simi-
larity threshold. Soluble protein expression level and protein
expression yield were chosen as the response variables for the clas-
sification and regression tasks, respectively. The independent test
datasets involved (i) data from ten proteins in which their amino
acid sequences are completely unknown/unseen to the model,
and (ii) data from eighteen proteins in which their amino acid
sequences are known but the optimal fermentation conditions
are unseen to the model. The latter data correspond to the optimal
fermentation conditions reported in the studies dealing with the
statistical optimization of recombinant proteins based on response
surface methodology (RSM). The independent test datasets allow
the verification of the global optimization scheme as well as the
validation of the prediction performance of the model on the
unknown amino acid sequences. The test datasets were further
split manually to ensure the equal distributions of high, low, and
medium instances as well as different sizes of proteins in the case
of unseen amino acid sequences. All the data used in the current
study are available as the supplementary information in this
article.
2.2. Feature extraction

A total of 11,985 initial features were extracted and further
classified into four major categories of feature. Since RPP is primar-
ily regulated by the amino acid sequence of a protein, we focused
on the features that can be extracted directly from the amino acid
sequences, as well as features like physico-chemical and structural
properties derived indirectly using these amino acid sequences.
Amongst these features, Feature Category 1 (FC1) constitutes gen-
eral features such as the length of the protein, occurrences of each
type of the 20 amino acid residues, and the maximum number of
consecutive identical amino acid residues. FC1 also included other
features such as the occurrences and the maximum number of con-
secutive amino acid residues with similar physico-chemical prop-
erties. Lastly, the structural features like molecular weight,
isoelectric point (pI), net charge, solubility, protein folding rate,
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and helix/sheet propensity were also added to FC1 (refer to Tables
S3-1 to S3-3 for details). Because of the high dimensionality, the
occurrences of each of the dipeptides were separately grouped into
Feature Category 2 (FC2), as shown in Table S3-4. There is a possi-
bility that the influence of each feature calculated from the amino
acid sequences not only arises from the occurrences of respective
residues but also due to the occurrence frequencies for a given pro-
tein length (i.e., the numbers of amino acid residues). To examine
this possibility, we considered both occurrences as well as occur-
rence frequencies (standardized by the length of the protein) as
two separate features. With these additional features, FC1 and
FC2 consist of 149 and 800 features, respectively. All the interac-
tions between each of the two features from FC1 resulted in the
derivation of 11,026 interactive features classified under Feature
Category 3 (FC3). Finally, Feature Category 4 (FC4) encompasses
10 features extracted from the fermentation process conditions.
The extensive features in FC4 include cell density (measured as
the optical density at 600 nm), inducer concentration upon induc-
tion of protein expression, post-induction temperature and time,
and all the six interactions between these features (Table S3-5).
In order to avoid any potential biases resulted from different levels
of the dataset, normalization of the data was performed using
Equation (1). All features except those in FC3 and interactive fea-
tures from FC4 were normalized since these features were calcu-
lated using the normalized FC1 and FC4 datasets, respectively.

xN;i;n ¼ xi � xmin

xmax � xmin
ð1Þ

where, xN;i;n and xi are the normalized and actual values, respec-
tively, of the feature x for the i-th protein, while xmin and xmax are
the minimum andmaximum actual values of the feature x amongst
all the n proteins.

Cell density differs with respect to the type of fermentation
media used, and accordingly, the cell densities resulting from dif-
ferent types of fermentation media were normalized separately.
Similarly, the lac promoters could be induced by either isopropyl
b-D-1-thiogalactopyranoside (IPTG) or lactose, and therefore, each
type of inducer was normalized individually. As there is no direct
relation reported between media or inducers, normalizations were
performed using Equation (1) for all the data corresponding to each
of the media and inducer type, and the normalized values for all
the data were used directly for further study. The results of predic-
tion of the optimized fermentation conditions assume utilizations
of the most commonly used fermentation medium (Luria Bertani
broth) and inducer (IPTG) as the default parameters.

2.3. Software packages and algorithms

The open-source software packages, Weka 3.8 [25] and R [26],
were used in this study because they offer a wide range of algo-
rithms for data-preprocessing, feature selection, and ML tasks.
The ML tasks such as feature selection and benchmarking experi-
ments were performed using Weka. Furthermore, the models were
trained and evaluated using R with the machine learning in R
(MLR) package [27]. A filter-based method, Correlation-based For-
ward Selection Subset Evaluator (CfsSubsetEval), was used in the
selection of initial features. CfsSubsetEval selects the feature sub-
sets on the basis of their high correlations to the response variable
against their weak inter-correlation. Additionally, a wrapper-based
method known as Classifier Subset Evaluator (ClassifierSubsetEval)
was used in the final step of feature selection where the merits of
the features was obtained by evaluating each feature subset in con-
junction with the classification or regression algorithm; albeit
being a time-consuming approach, ClassifierSubsetEval function
could generate a reliable selection outcome. Three different algo-
rithms, namely SVM, XGB, and RF, were used in both classification
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and regression tasks because they have been widely employed in
bioinformatics for protein-based prediction tasks. These three
algorithms were extensively tested and evaluated in the stages of
feature selection, model training and independent test. Eventually,
the most appropriate algorithm was selected for the specific tasks
of classification and regression.

2.4. Feature selection

In this study, the important features were selected for both clas-
sification and the regression tasks based on a stepwise feature
selection strategy, which includes: (i) Features were selected from
both FC2 and FC3 using the CfsSubsetEval method along with the
search method, Best First. (ii) The numbers of the selected FC3 fea-
tures were further reduced using CfsSubsetEval and Greedy Step-
wise methods. The ‘Generate ranking’ option was set to true, and
the number of features to be retained was fixed as ten. (iii) Finally,
the key optimal features were selected from all the features from
FC1 and FC4 along with previously selected features from FC2 (Step
1) and FC3 (Step 2) using ClassifierSubsetEval. All the three classi-
fication and regression algorithms used in conjunction with Classi-
fierSubsetEval resulted in the selection of different key features
and of varying numbers. The final selections of features as well
as the training algorithm were conducted in consideration of the
performance of the trained model together with the numbers
and nature of the selected features. Furthermore, the relative
importance of the selected features was evaluated according to
the previously reported strategy [21], which is briefly described
here: Each of the selected features was removed one at a time until
all the selected features were removed completely; subsequently,
the models were trained using the best-performing algorithms,
and the changes in performance measures were computed and
compared.

2.5. Training and evaluation of model

The three ML algorithms, SVM, XGB, and RF, were employed in
both classification and regression tasks. Fine-tuning of the hyper-
parameters was not performed because the default values of these
parameters in the MLR package gave a better result. Based on the
performances of the given algorithms on the training datasets,
the best-performing algorithm was chosen for further develop-
ment of the model. Several widely-used performance metrics,
including accuracy, error rate, precision, recall, F-measure, Mathew
correlation coefficient (MCC), and area under the curve (AUC), were
used in the performance evaluation of the classification models
[see Equations (2 – 7)]. Similarly, Pearson correlation coefficient
(PCC), mean absolute error (MAE), and root mean squared error
(RMSE) were also calculated and used for the assessment of regres-
sion models [Equations (8 – 10)] [21]:

Accuracy ¼ TP þ TN
TP þ FN þ FP þ TN

ð2Þ

Error rate ¼ FP þ FN
TP þ FN þ FP þ TN

ð3Þ

Precision ¼ TP
TP þ FP

ð4Þ

Recall ¼ TP
TP þ FN

ð5Þ

F �measure ¼ 2� Precision� Recall
Precisionþ Recall

ð6Þ
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MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð7Þ

PCC ¼ n
P

yPred � yActð Þ �P
yAct

P
yPredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

yAct2 �
P

yActð Þ2
h i

n
P

yPred2 �
P

yPredð Þ2
h ir ð8Þ

MAE ¼ 1
n

X
yAct � yPredj j ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
yAct � yPredð Þ2

r
ð10Þ

where TP, TN, FP and FN represent the numbers of true posi-
tives, true negatives, false positives, and false negatives, respec-
tively. yAct is the actual value of the protein expression yield; yPred
is the predicted protein expression yield; n is the number of
instances used in the prediction.

The predictive performance of the models was assessed using
internal cross-validation (CV) test where the whole dataset was
split into either training dataset or internal testing dataset, based
on the method utilized for CV. Leave-one-out cross-validation
(LOOCV) test was chosen as a CV method for the model assessment
owing to the lower number of datasets used in both classification
and regression tasks. In LOOCV, the model was trained with all
but leaving out one dataset for internal testing, and the whole
training process was repeated until all the datasets had been inter-
nally tested. The performance metrics were averaged for all the
cases during LOOCV. Subsequently, the model was validated using
a set of unseen instances, i.e., independent test dataset, and the
corresponding performance of the model was correlated to the pre-
diction ability of the developed model.

2.6. Webserver implementation

The prediction model has been implemented as an online web-
server, PERISCOPE-Opt (https://periscope-opt.erc.monash.edu/), to
provide users with easy access to the model and its predictions.
Based on the amino acid sequences of SP and protein provided as
inputs, the proposed model predicts the optimal fermentation con-
ditions corresponding to the maximal yield of recombinant
periplasmic protein. Reactjs framework was used in the web
implementation, processing the user-defined input data and then
returning the outcomes of the model predictions. To eliminate
the potential impact of service disruption from other external
web tools linked to our model, PERISCOPE-Opt requires the users
to manually key in the data generated from the relevant external
web tools. A few web tools retrieving the necessary protein infor-
mation were suggested and can be assessed via the web interface.

3. Results

3.1. Computational framework of the proposed optimization model

The proposed prediction model (Fig. 1) was constructed as a
two-stage architecture with the following components: i) two sets
of XGB classifiers in the first stage to classify the expression level of
the given protein as low, medium or high class, and ii) three sets of
regression models trained using the algorithms (SVM and RF) to
quantify the protein yield with respect to each class in the second
stage. In the training of classification model, we adopted two
strategies to address the issue of data imbalance arising from the
unequal distribution of the three classes. Firstly, two binary classi-
fiers were utilized in a way that the first classifier categorized the
given data into the majority class (medium) and both the minority
classes (high and low) together, followed by the classification of
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the minority classes using the second classifier. Secondly, we
applied the Synthetic Minority Over-sampling Technique (SMOTE)
to generate additional dummy data in the minority classes during
both classification tasks (Table S4). Therefore, in the first stage,
XGB–Classifier 1 categorized the input of amino acid sequence into
either the class of medium-level expression or the class of non-
medium-level expression. If the input falls into the class of non-
medium-level expression, then XGB–Classifier 2 would further
classify the input as the class of low-level expression or the class
of high-level expression. Based on the predicted class generated
in the first stage, one of the three regression models, i.e., SVM
regression (SVR) for low expression data (‘‘SVR-Low”), RF regres-
sion (RFR) for medium (‘‘RFR-Medium”) or high (‘‘RFR-High”) were
employed in the second stage to predict the expression yield. The
proposed model was further employed in the computation of
expression levels and yields for 180 combinations consisting of
various levels of process features [namely, optical density at
600 nm (OD) (0.4, 0.7, 1.0), IPTG (0.1, 0.5, 1.0 mM) as inducer, tem-
perature (20, 25, 30, 37 �C) and time (4, 8, 12, 16, 24 h)] for the
given input of amino acid sequence using R programming. Then,
it classified each of the combinations into the respective classes
and quantified the corresponding expression yields. Based on the
resulting expression yields, we are able to arrive at the top ten val-
ues for the optimal periplasmic expression yields of recombinant
proteins and the respective fermentation conditions.

3.2. Features selected for model construction

Our preliminary analysis indicated that the conventional meth-
ods of feature selection employing various WEKA-based algo-
rithms resulted in the extraction of significant features mostly
from FC2 and FC3 but with a very few or no features derived from
FC1 and FC4 (results not shown). This outcome could be mainly
due to the higher number of features in FC2 (800 numbers) and
FC3 (11,026 numbers) than in FC1 (149 numbers) and FC4 (10
numbers), leading to the higher occurrence of their selection.
Therefore, to reduce the bias caused by the high dimensionality
of features, we applied a stepwise feature selection strategy to both
the classification and the regression tasks. Our initial steps of fea-
ture selection adopted a filter-based algorithm, CfsSubsetEval, for
the identification of main features from FC2 and FC3. The impor-
tant FC2 and FC3 features were then combined with all the features
from FC1 and FC4; a wrapper-based method, ClassifierSubsetEval,
was used to further select key features. The selected features for
both classification and regression tasks consists of features mostly
from FC1 and FC4, a few within FC3 and none from FC2 (Tables 1
and S5). The features selected based on the amino acid sequences
are occurrences and occurrence frequencies (i.e., occurrences per
unit length of protein) of amino acids such as glutamic acid (Occ_E,
OF_E), valine (Occ_V), sulfur (OF_S), phenylalanine (OF_F) and
methionine (OF_M), and that of the maximum consecutive alanine
(MNC_A, OF_MNC_A) and cysteine (OF_MNC_C). Apart from that,
the key features based on the physico-chemical properties are
occurrence frequency of aromatic (OF_Aromatic), aliphatic (OF_A-
liphatic) and hydrophilic residues (OF_Hphil_ESG and OF_H-
phil_KD calculated using ESG and KD methods). Other key
features with respect to the structural properties that were identi-
fied to be vital for either classification or regression tasks are
expected number of amino acids in transmembrane helices
(Expno_AA_TM), the ratio of the helix to sheet propensity (Helix_-
to_Sheet_PHD), coil propensity (Coil_PHD) and solubility score
(Pred_Sol). For the features related to fermentation process condi-
tion, temperature and OD�Time are the two most significant fea-
tures to be considered in the classification task, while almost all
the other process-condition features were significant in the regres-
sion task.

https://periscope-opt.erc.monash.edu/


Fig. 1. Framework of the proposed prediction model. Low: yield is<0.5 mg/L, Medium: yield is between 0.5 and 50 mg/L, High: yield is higher than 50 mg/L. Non-medium
refers to both High and Low together.
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3.3. Assessment of feature importance

To further assess the relative importance of the selected fea-
tures for the two classification and three regression tasks, we
trained the models by removing one feature at a time until all were
considered. The respective changes in the predictive performance
were measured by benchmarking the above models against the
model with all the selected key features for each of the tasks (Figs. 2
and 3). OF_Aromatic, OF_MNC_C, and temperature were found to
be the most important features for XGB–Classifier 1, as the removal
of these features led to the drastic decreases in MCC and accuracy
by 8–13% and 3–5%, respectively. Similarly, the removal of Occ_V
or Helix_to_Sheet_PHD affected the performance of XGB–Classifier
2 drastically, as seen from the steep decreases in accuracies by
5–16% and in MCC by 4–15%, respectively. Seq_len can also be con-
sidered an important feature because its elimination impacted
XGB–Classifier 2 negatively, resulting in the decreases of the recall,
F-measure and MCC by 3–4%. For the regression task, the feature
"temperature" was found to be crucial because its removal resulted
in the increases in MAEs and RMSEs by 5–10% and 6–9%, respec-
tively. Additionally, in the cases of SVR-Low and RFR-High, a slight
decrease (0.5–1.5%) in PCC was observed after the elimination of
features "OD" and IPTG. Strikingly, OD�Temp, OD�Time,
IPTG�Temp and Temp�Time are the process-interaction features
deemed to be significant for the regression models "RFR-
Medium" and "RFR-High". The impact of these process-
interaction features on the performance of regression tasks is also
substantiated by removing each of the above-mentioned process-
interaction features during the model training, which has resulted
in 0.1–4% decrease in PCC and 0.1–9% increament in MAEs or
RMSEs. Similarly, the absence of features such as OF_Hphil_ESG
and OF_DmE resulted in the decreases in PCC, and elevated MAEs
and RMSEs. Contrastingly, the interactions between process fea-
tures played a minor role for SVR-Low, suggesting that these pro-
cess interactions, when controlled by fine-tuning process
parameters, can yield a higher level of recombinant protein expres-
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sion. Other than these pertinent features, FC3 interactive features
"Occ_N�MNC_Y" and "Occ_Y�OF_DmE" showed a major decline
(17%) in PCC when they were removed from the training datasets.
In addition, other features such as Occ_E, OF_Hphil_ESG�-
Sheet_PHD, Coil_PHD, OF_Aliphatic, OD, OF_Aromatic, Pred_Sol,
MNC_A, Expno_AA_TM, and OD�Time had minor effects on the
predictive performance after their removal during model training;
nonetheless, we retained these features because they improved the
performance.
3.4. Performance of classification and regression tasks

Both classification tasks, namely i) classification of medium and
non-medium classes, and ii) subsequent classification of high and
low classes, were benchmarked with the three well-known and
widely used algorithms: XGB, RF, and SVM. XGB was found to out-
perform both SVM and RF in both classification tasks (Fig. 4A). In
the internal validation tests, the average accuracies of XGB–Classi-
fiers 1 and 2 are 76.45% and 77.27%, respectively, while their
respective average accuracies in the independent tests are 82.14%
and 85.71%. In both cases of classification tasks, the performance
measures such as precision, recall, F-measure and AUC were also
found to be above 0.75 while the MCC was around 0.5 (Table 2).
Similarly, regression tasks were benchmarked using the similar
algorithms (i.e., XGB, RF, and SVM) coupled with LOOCV for the
three classes - high, low and medium (Fig. 4B). In the internal cross
validation, the PCCs of three regression models were the highest,
i.e., SVR-Low (0.83), RFR-Medium (0.90) and RFR-High (0.87). The
PCCs of these regression models in the independent testing were
also higher than their respective counterparts. As shown in Table 3,
the lower values of MAEs and RMSEs of the three chosen regression
models are in good agreement with the range of expression yields
of each class. The values of PCC, MAE, and RMSE of SVR-Low, RFR-
Medium and RFR-High suggest that the developed regression
model can predict the protein expression yields with greater accu-
racy and reliability. The MAE and RMSE values for SVR-Low



Fig. 2. Feature importance for a) XGB Classifier 1 b) XGB Classifier 2. Performance of the model has been evaluated using ten times 10-fold cross validation (100
experiments).
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remained too low (0.06 and 0.09, respectively), while the values of
these measures increased drastically for RFR-Medium (59–65
times that of SVR-Low) and RFR-High (12–13 times compared to
RFR-Medium) (Table 3). Such an increase in MAE and RMSE values
is common due to the high orders of the ranges within the
expression-yield levels in each of these classes.
3.5. Predictive performance of the developed model

Independent test validation gave an overall classification accu-
racy of 75% for the 28 unseen instances; the prediction results
showed that 21 instances, including the six unseen proteins, were
correctly classified and are close to the real experimental values
(Table 4). Similarly, the model predicted the expression yield of
the correctly classified instances with a high PCC of 0.91. Regard-
less of the misclassification, the PCC for the prediction of all the
28 instances remained substantially high (0.80). The MAE and
RMSE values for the correctly classified instances were found to
be remarkably low, i.e., 22.38 and 62.07, respectively.
3.6. Prediction of the maximal RPP using the proposed model

For a target protein, the proposed model predicted the top ten
protein yields and the corresponding fermentation process condi-
tions. We evaluated all the 28 independent test datasets and pre-
sented the most optimal yields and fermentation conditions
(Table 5). To further evaluate the prediction performance of the
proposed model, we compared the predictions of the top ten opti-
mal yields and fermentation conditions for the proteins used in our
experiments with the predicted yields at the given conditions
using the respective statistical regression equations (Tables S6-1
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to S6-14). The predicted results were in close agreement with each
other, highlighting that our model mimics the individual RSM-
based regression models and has an additional advantage of
extending the predictions to any recombinant protein.
4. Discussion

In the present work, we have developed a robust ML-based tool
that is capable of predicting the top-ten maximal protein expres-
sion yield and their fermentation process conditions for the
expression of recombinant proteins in the periplasm of E. coli.
Importantly, we have combined the key features from both amino
acid sequence and fermentation process to gain a better under-
standing of the important determinants of the recombinant protein
expression and to construct a precise model that yields good pre-
dictions. Our results demonstrate that the developed prediction
model offers greater predictability and reliability as to the experi-
mental findings. The primary reason behind the successful predic-
tion by the optimization model is the strength and diversity of the
datasets used in the development of the model. Another notable
factor is the appropriate selection of the feature-subsets that rep-
resent each of the models precisely.

The screening of important and meaningful features was made
possible by the vast number of features extracted from literature
and the use of the stepwise feature selection strategy. The diverse
sets of the selected features (e.g., amino acid composition, physico-
chemical and structural properties), together with the features
related to the fermentation process, were processed by the step-
wise feature selection strategy to yield a more meaningful predic-
tion result. Our feature selection strategy revealed that the features
based on amino acid sequence seem to play a vital role in the clas-



Fig. 3. Feature importance for a) SVR-Low b) RFR-Medium c) RFR-High. Performance of the model has been evaluated using ten times 10-fold cross validation (100
experiments).
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sification of ‘‘low” and ‘‘high” classes, hinting that the expression
yield of a protein is completely dependent on its amino acid
sequence. Therefore, based on the amino acid sequence, the
expression of a recombinant protein is defined as ‘‘low”, ‘‘medium”
or ‘‘high”, and a further fine-tuning of the process parameters can
result in the substantial amounts of protein expression yields
within that particular class. Apart from that, out of the selected fea-
tures, the occurrence of valine (Occ_V), occurrence frequencies of
aromatic residues (OF_Aromatic) and hydrophilic residues (OF_H-
phil_ESG), difference in the occurrence frequency of aspartic acid
minus glutamic acid residues (OF_DmE), the ratio of the helix to
sheet propensity (Helix_to_Sheet_PHD), temperature (Temp) and
the interaction between temperature and time (Temp�Time)
seemed to be highly relevant and significant. Past studies corrobo-
rated the importance of the selected features as well. For instance,
the probability of expressing the protein in soluble form was inver-
sely correlated to the size of protein [28], thereby hinting that
Seq_len is an essential feature. Besides, the composition of amino
acid was found to be a critical factor inducing the metabolic stress
during RPP in E. coli [29]; hence, the expression of recombinant
protein can be improved by adjusting the amino acids composition
[30]. The present study revealed specifically that the occurrences
and occurrence frequencies of amino acids such as Occ_E, Occ_V,
OF_E, OF_S, OF_F, OF_M, MNC_A, OF_ MNC_A, and OF_MNC_C are
the significant factors for the soluble protein expression in the
periplasm of E. coli. Similarly, the occurrences of the hydrophilic
residues, i.e., proline (P), tyrosine (Y), histidine (H), glutamine (Q)
and asparagine (N) seemed to be key determinants in SVR-Low
and RFR-Medium in this study. The protein solubility was proven
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to be affected by the presence of hydrophilic amino acids in the
protein, which may in turn influence the expression levels of
recombinant protein in E. coli [30,31]. Trevino et al. (2007) showed
that the solubility of ribonuclease from Streptomyces aureofaciens
(RNase Sa) was enhanced by the presence of amino acid residues
such as aspartic acid (D), glutamic acid (E) and serine (S) in the pro-
tein sequence as compared to the other hydrophilic residues such
as asparagine (N), glutamine (Q), and threonine (T) [32]. Therefore,
the occurrence frequency of aspartic acid residues minus glutamic
acid residues (OF_DmE) being a significant feature in RFR-High was
validated. Although pI has been identified as a key feature in the
development of XGB-Classifier 1, it is shown that pI does not affect
the protein solubility or expression of mammalian proteins in
E. coli [33].

Combining fermentation-process-based features with amino-
acid-sequence-based features is a highly beneficial initiative. For
instance, a previous study revealed that the recombinant expres-
sion of insoluble proteins is highly correlated with temperature
and fermentation time [34]. Our results showed that Temp�Time
interaction feature is a significant process feature. Also, it is well
known that a lower cell density could result in a lower expression
yield [35], while different concentrations of inducer have varying
levels of influence on the yields of recombinant protein [36]. Our
findings supported these facts and demonstrated the importance
of OD and IPTG features in the development of regression models
(SVR-Low and RFR-High). Furthermore, existing literature on the
statistical optimization of RPP indicated that the interactions
between the process features are significant in soluble protein
expression [7,37–42]. Our models (XGB Classifier 1, SVR-Low,



Fig. 4. Benchmarking of the performance of different algorithms. a) Classification tasks for both training and testing datasets b) Regression tasks for both training and
testing datasets.

Table 1
Selected features for prediction model.

Feature category Classification models Regression models

XGB–Classifier 1 XGB–Classifier 2 SVR–Low RFR–Medium RFR–High

FC1 Occ_E Seq_len OF_E OF_F OF_DmE
MNC_A Occ_V OF_S OF_M
OF_MNC_C pI_Protpi OF_Aliphatic OF_MNC_A
OF_Aromatic Helix_to_Sheet_PHD OF_Hphil_ESG OF_Aromatic
Expno_AA_TM OF_Hphil_KD OF_Hphil_ESG

Coil_PHD Pred_Sol
FC2 – – – – –
FC3 OF_Hphil_ESG�Sheet_PHD – – – Occ_N�MNC_Y

Occ_Y�OF_DmE
FC4 Temperature – OD Temperature IPTG

ODxTime Temperature OD�IPTG Temperature
OD�Temp OD�Temp OD�Temp
OD�Time OD�Time OD�Time
IPTG�Temp IPTG�Temp IPTG�Temp
Temp�Time Temp�Time Temp�Time

Selected features 8 4 12 12 9
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RFR-Medium, and RFR-High) confirmed that the interactions
among the process features (cell density, inducer concentration,
post-induction time, and temperature) contributed significantly
to the prediction of the expression yields. Further investigation
of the interactions between these process features in governing
the expression of the recombinant protein may be fruitful in gain-
2916
ing a better understanding of the keys facets to achieve high yields
of recombinant protein.

At the given fermentation conditions, the predicted expression
yields of proteins for the correctly classified instances were found
to be closely matching to the actual values given in the indepen-
dent test datasets used (Table 4). For example, the predicted



Table 2
Classification Task – Benchmarking with three algorithms.

Algorithm Classifier 1 Classifier 2

RF XGB SVM RF* XGB SVM

Selected number of features 4 8 16 1 4 6
Accuracy (%) 81.36 76.45 63.35 – 77.27 68.18
Error rate (%) 18.63 23.55 36.65 – 22.73 31.82
Precision 0.814 0.764 0.636 – 0.776 0.682
Recall 0.814 0.764 0.634 – 0.773 0.682
F-measure 0.813 0.764 0.629 – 0.773 0.682
MCC 0.626 0.527 0.267 – 0.549 0.362
AUC 0.913 0.788 0.643 – 0.791 0.747

Performance of the model has been evaluated using leave-one-out cross validation (LOOCV).
* Since there is only one key feature selected, further model training is neither essential nor meaningful in this case.

Table 3
Regression task – Benchmarking with three algorithms.

Algorithm
Regression – Low Regression – Medium Regression – High

RF XGB SVM RF XGB SVM RF XGB SVM

Selected number of features 5 5 12 12 12 14 9 6 10
Pearson Correlation Coefficient (PCC) 0.7891 0.7103 0.8288 0.8971 0.7574 0.8623 0.8664 0.8534 0.8137
Mean Absolute Error (MAE) 0.0738 0.2759 0.0623 3.6673 8.8066 4.6152 47.4097 114.973 47.0493
Root Mean Squared Error (RMSE) 0.0944 0.2993 0.0887 5.7796 13.5347 6.6317 76.694 163.13 90.4669

Performance of the model has been evaluated using leave-one-out cross validation (LOOCV).

Table 4
Predicted yields at the given experimental conditions.

No
SP-protein combination Process conditions Actual expression Predicted expression

OD (au) IPTG (mM) Temperature (�C) Time (h) Yield (mg/L) Level Yield (mg/L) Level

1 pel-B-eGFP 0.5 0.1 18 4 4.7 M 3.0 M
2 Cex-eGFP 0.7 0.5 27 4 4.8 M 0.3 *L
3 ompA-eGFP 1 0.5 18 4 2.8 M 2.0 M
4 ompC-eGFP 0.7 0.5 18 4 5.7 M 2.6 M
5 Lpp-eGFP 0.4 0.1 18 4 0.6 M 1.6 M
6 DmsA-eGFP 1 1 18 4 80.1 H 20.7 M
7 MdoD-eGFP 0.4 0.5 27 4 14.2 M 6.2 M
8 pel-B-TMT 0.4 0.5 28 4 53.2 H 27.1 *M
9 Cex-TMT 0.4 1 38 4 137.5 H 120.8 H
10 ompA-TMT – – – 4 0.0 L 0.0 L
11 ompC-TMT – – – 4 0.0 L 0.0 L
12 Lpp-TMT 0.7 1 18 4 95.5 H 116.5 H
13 DmsA-TMT 0.4 0.7 28 4 482.2 H 175.3 H
14 MdoD-TMT 0.4 1 38 4 24.5 M 9.0 M
15 pelB-IFN 4 (TB) 0.05 25 14 0.4 L 0.1 L
16 pelB-VEGFR2-D3 1 1 37 20 2.0 M 4.1 M
17 pho-rhES 0.6 0.3 25 13.57 2.2 M 1.8 M
18 modspA-CALB 1 12.5%(L) 24 15 h 234.0 H 126.5 H
19 MBP-6 � His-U24 0.5–1.0 0.3 18 16 2.8 M 3.0 M
20 Pel-B-SynVNAR-A6 0.5 0.1 18 21 27.0 M 7.5 M
21 modBlaasp-hAct A 0.6 1 37 8 150.0 H 0.0 *L
22 CusF-GFP 0.5 0.1 12 25 8.0 M 5.2 M
23 ecotin-HArbd 0.6–0.8 0.4–1 30 ‘8–10 10.0 M 13.3 M
24 mBiP-scFv 0.5 0.2 30 5 115.0 H 7.3 *M
25 pelB-scFv-dmOKT3 0.8 0.1 22–24 18–20 0.2 L 13.3 *M
26 stII-vtPA 0.5 1 30 6 0.2 L 0.1 L
27 LTIIb-B-CT-B 0.3 0.02 37 6 190.0 H 8.3 *M
28 pelB-rPA 0.7 1 24 21 0.0 L 0.2 L

The misclassified instances are represented by an asterisk (*). TB – Terrific broth (medium); L – Lactose (inducer).
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expression yields of the recombinant proteins pel-B-eGFP, ompA-
eGFP, MBP-6 � His-U24, and ecotin-HArbd (classified as medium
expression) as well as ompA-TMT, ompC-TMT and stII-vtPA (clas-
sified as low expression) resembled the actual expression levels
of periplasmic proteins in E. coli closely. Only a few instances, such
as the predicted expression yields of cex-TMT and Lpp-TMT (clas-
sified as high expression), showed slight variation from the actual
values of expression yields reported in the literature, while the
2917
predicted expression yields of DmsA-TMT and modspA-CALB
showed moderate deviations from their actual expression yields.
However, the expression yields as predicted from the misclassified
instances varied tremendously, particularly for those instances of
High-class of protein expression being misclassified into either
low or medium class. For example, a high deviation in the pre-
dicted expression yields was noted in the cases of modBlaasp-
hAct A, mBiP-scFv, and LTIIb-B-CT-B, which were misclassified as



Table 5
Predicted maximal predicted yields and the corresponding fermentation conditions.

No SP-protein
combination

Experimental Predicted

Process conditions Optimal
expression

Process conditions Optimal
expression

OD
(au)

IPTG
(mM)

Temperature
(�C)

Time
(h)

Yield
(mg/L)

Level OD
(au)

IPTG
(mM)

Temperature
(�C)

Time
(h)

Yield
(mg/L)

Level

1 pel-B-eGFP 0.5 0.1 18 4 4.7 M 1 0.1 20 4 3.8 M
2 Cex-eGFP 0.7 0.5 27 4 4.8 M 0.7 0.5 25 16 4.6 M
3 ompA-eGFP 1 0.5 18 4 2.8 M 0.7 1 25 24 1.9 M
4 ompC-eGFP 0.7 0.5 18 4 5.7 M 0.7 0.5 25 4 4.3 M
5 Lpp-eGFP 0.4 0.1 18 4 0.6 M 0.7 0.5 30 24 1.9 M
6 DmsA-eGFP 1 1 18 4 80.1 H 1 0.5 30 4 38.4 *M
7 MdoD-eGFP 0.4 0.5 27 4 14.2 M 0.4 0.5 30 8 8.1 M
8 pel-B-TMT 0.4 0.5 28 4 53.2 H 1 0.5 30 4 31.9 *M
9 Cex-TMT 0.4 1 38 4 137.5 H 0.4 1 37 24 141.5 H
10 ompA-TMT – – – 4 0.0 L 1 1 30 24 0.1 L
11 ompC-TMT – – – 4 0.0 L 0.4 1 20 4 26.0 *M
12 Lpp-TMT 0.7 1 18 4 95.5 H 0.4 1 37 24 151.6 H
13 DmsA-TMT 0.4 0.7 28 4 482.2 H 0.4 0.5 30 8 268.3 H
14 MdoD-TMT 0.4 1 38 4 24.5 M 0.4 1 37 8 16.3 M

The misclassified instances are represented by an asterisk symbol (*).
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low or medium classes of protein expression. This undesirable pre-
diction outcome was caused by the very high orders of difference
in the ranges of these three classes; hence, a poor classification
accuracy of both XGB-Classifiers 1 and 2 eventually affects the per-
formance of the overall prediction model. This issue was addressed
by adopting three different regression models to cover a wide
range of protein expression levels as categorized by the classifica-
tion models. If the expression level of a target protein is classified
correctly in the first stage of prediction, the expression yield of the
target protein will be highly likely to be accurately predicted by the
respective regression model.

The maximal protein expression yield was predicted by com-
puting the protein expression yields under various combinations
of fermentation process conditions and by selecting the top-ten
maximal yields. A significant improvement in the prediction per-
formance was noted when different combinations of fermentation
process condition were included in the testing sets (Table 5). One
of the previously misclassified instances, namely cex-eGFP, was
correctly classified when different fermentation process combina-
tions were considered during the testing; accordingly, the pre-
dicted expression yield (4.6 mg/L) was close to the actual levels
(4.8 mg/L). Similarly, the predicted yield of cex-TMT expression
(141.5 mg/L) approximately matched the actual protein expression
levels (137.5 mg/L). Most of the predicted levels of protein expres-
sion were close to their actual levels, except for a few instances
(e.g., DmsA-eGFP, ompC-TMT, DmsA-TMT and Lpp-TMT) showing
slight deviation in the predicted protein expression levels (Table 5).
Therefore, the predicted top-ten expression yields and the corre-
sponding fermentation conditions suggested that the model pre-
dictions were similar to those achieved during experiments
(Table 5 and Tables S6-1 to S6-6). For instance, the fermentation
conditions corresponding to the maximal predicted yields of pel-
B-eGFP, ompC-eGFP, and DmsA-TMT exactly match the experi-
mental conditions that lead to the optimal yields of protein, while
for the other instances, these fermentation conditions are almost
similar to the optimal conditions as predicted by our model. Based
on the supplementary tables (Tables S6-1 to S6-6), it is evident that
process-level features play an important role in the expression of
‘‘high” class, while interactions within process-level features are
significant in the ‘‘medium” expression class, which is also sub-
stantiated by the feature selection strategy (Table 1). Therefore,
our prediction tool enables an easy optimization of RPP by suggest-
ing (i) whether a particular target protein will be able to express in
significant amounts and (ii) the ranges of fermentation parameters
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based on the predicted top-ten expression levels of target protein.
These predictions could provide a good basis towards experiment
design, by choosing an appropriate (i) target protein, (ii) selection
of signal peptide and (iii) a set of fermentation conditions to start
with, in an attempt to achieve the desired yields of recombinant
proteins. Such insights will also be valuable in the subsequent opti-
mization studies conducted to improve the yield and design of the
industrial-scale RPP in E. coli.

The major limitation in model development for predicting pro-
tein expression yields is the scarcity of the availability of experi-
mental results from the relevant studies. Although there are
many reported studies about the production of periplasmic recom-
binant proteins by E. coli, all these data could not be considered in
model development because of: i) the missing information related
to the fermentation process conditions; ii) the lack of or irretriev-
able amino acid sequence; iii) the irrelevant scale of the fermenta-
tion process (micro-level or bioreactor level); iv) the non-
quantifiable protein concentration (in mg/L); v) the vectors using
promoters other than lac promoters, and hosts or vectors being
modified as different genetic variants. Secondly, the data collected
are prone to some degrees of variability contributed from the dif-
ferent protocols of fermentation and protein quantification used
by researchers; for example, the scale of shake flask fermentation
may add up to these variations. Finally, the variability due to speci-
fic host strains of E. coli and the corresponding vectors can vastly
impact the recombinant protein expression yields. However, the
majority of these general limitations have been addressed in the
best possible ways during the development of PERISCOPE-Opt.
For example, in spite of the available data being scarce, which
becomes a trade-off for the prediction accuracy of the optimization
model, the dataset generated for the development of the proposed
model is robust because it consisted of a wide range of proteins (84
different types) and SP-protein combinations (103 different types).
Further, the data incorporated proteins of all sizes (i.e., the smallest
protein contained 80 amino acids while the biggest protein was of
668 amino acids long in size) along with a good number of
instances corresponding to each class: high, low or medium. Next,
the variability due to the data collected from various sources was
kept to minimal by considering data generated using the shake
flask fermentation so that the process conditions, including agita-
tion and mixing, will be quite similar. Micro-scale and
bioreactor-based fermentations were ruled out of present study
as these methods may offer additional variabilities in process con-
ditions compared to shake flask fermentations. Different schemes
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of protein downstream-processing, purification or quantifications
can affect the expression yields of final protein but these recombi-
nant protein yield data collected at the particular fermentation
conditions are still comparable and relevant to our model develop-
ment. Lastly, lac-operator based vectors were considered in the
data collection to avoid biases in protein expression due to the uses
of other types of vector. Genetically improved E. coli host strains
such as those with additional molecular chaperones were avoided
as these strains may exhibit additional variabilities, while the con-
ventionally used E. coli host strains were assumed to express
periplasmic protein similarly. The variability caused by the differ-
ent conventional host strains being used for fermentation were not
resolved as it is out of scope of the present study. Nevertheless,
considering E. coli host strains and other vectors as a profound vari-
able will be a good option as the addition of features with respect
to the properties of E. coli host and vectors will be highly beneficial
to the improvement of the prediction accuracy of the proposed
model. Similarly, other aspects that can potentially help to improve
the prediction accuracy of the developed model is the incorpora-
tion of other relevant features based on gene factors (codon bias
and mRNA secondary structures). Apart from that, the incorpora-
tion of features corresponding to the experimentally-derived struc-
tural properties of proteins instead of using the sequence-derived
and predicted structural properties will tend to improve the per-
formance of the prediction model. The inclusion of these novel fea-
tures in future works will serve as avenues to fine-tune the
developed model for improved prediction.
5. Conclusions

The ML tools available for the protein-based applications gener-
ally consider features with respect to the amino acid sequence and
are incapable of predicting the optimal conditions of RPP. There-
fore, an ML-based model has been developed by combining the
features from amino acid sequence and the fermentation process
to predict the optimal yield as well as the corresponding fermenta-
tion conditions for the expression of a given recombinant protein
in the periplasm of E. coli. Our proposed two-stage framework,
PERISCOPE-Opt, successfully suggested the optimal recombinant
protein yields matching closely with the reported experimental
results. The recommended optimal yields and the corresponding
fermentation conditions give an overall idea of the fermentation
process for the expression of a target protein. PERISCOPE-Opt could
serve as a powerful and reliable web tool that identifies the opti-
mal fermentation conditions and RPP yield without reliance on
the excessive rounds of trial-and-error experiments.
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