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Abstract

Weight‐for‐age (WFA) growth faltering often precedes severe acute mal-

nutrition (SAM) in children, yet it is often missed during routine growth

monitoring. Automated interpretation of WFA growth within electronic health

records could expedite the identification of children at risk of SAM. This study

aimed to develop an automated screening tool to predict SAM risk from WFA

growth, and to determine its predictive ability compared with simple changes in

weight or WFA z‐score. To develop the screening tool, South African child

growth experts (n = 30) rated SAM risk on 100 WFA growth curves, which were

then used to train an artificial neural network (ANN) to assess SAM risk from

consecutive WFA z‐scores. The ANN was validated in 185 children under five

(63 SAM cases; 122 controls) using diagnostic accuracy methodology. The

ANN's performance was compared with that of changes in weight or WFA

z‐score. Even though experts' SAM risk ratings of the WFA growth curves

differed considerably, the ANN achieved a sensitivity of 73.0% (95% confidence

interval [CI]: 60.3; 83.4), specificity of 86.1% (95% CI: 78.6; 91.7) and receiver‐

operating characteristic curve area of 0.795 (95% CI: 0.732; 0.859) during

validation with real cases, outperforming changes in weight or WFA z‐scores.

The ANN, as an automated screening tool, could markedly improve the

identification of children at risk of SAM using routinely collected WFA growth

information.
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1 | INTRODUCTION

Children in South Africa (South African National Department of Health

[NDOH], Statistics South Africa [SSA], South African Medical Research

Council [SAMRC], 2017; Shisana et al., 2013) and other low‐and middle‐

income countries (Fagbamigbe et al., 2020; Moyer et al., 2020) remain at

risk of severe acute malnutrition (SAM). According to the World Health

Organization (WHO), SAM is diagnosed in children aged 6–59 months

with weight‐for‐length/height z‐score <–3, mid‐upper arm circumfer-

ence < 11.5 cm, or bilateral oedema (WHO, United Nations Children's

Fund [UNICEF], 2009).

The authors' personal observations and communication from

colleagues working at public hospitals in Tshwane, Gauteng Province

suggest that SAM is often preceded by growth faltering, character-

ized by slower‐than‐expected weight gain or even weight loss.

Weight‐for‐age (WFA) growth is routinely monitored at South

African primary healthcare (PHC) facilities as an early indicator of

undernutrition or illness (South African NDOH, 2014, 2015).

Unfortunately, effective growth monitoring is hindered by equipment

unavailability, staff shortages and poor clinician proficiency in growth

curve interpretation (Blaauw et al., 2017; Cloete et al., 2013; Kitenge

& Govender, 2015). Consequently, even obvious WFA growth

faltering is poorly identified, while weight‐for‐length/height and

mid‐upper arm circumference are rarely monitored at all (Blaauw

et al., 2017; Kitenge & Govender, 2015).

Digitization of certain aspects of the South African Road‐to‐

Health Booklet (RtHB) as an electronic clinic record has been

considered by the South African Department of Health to address

various surveillance problems in the growth monitoring programme.

Electronic growth charts could integrate tools for automated growth

curve interpretation, including an algorithm to identify WFA growth

faltering. However, there is no clear, quantitative definition of growth

faltering (Olsen, 2006; Roberfroid et al., 2005). Healthy growth

maintains an approximately consistent WFA z‐score over time, but

some intraindividual variability is typical, and it is unclear what degree

of deviation should be considered problematic (National Institutes for

Health and Care Excellence, 2017; Roberfroid et al., 2005; WHO,

2012). In practice, clinicians' interpretation of a growth curve is

largely qualitative, informed by clinical experience and context,

making it difficult to quantify and reproduce.

Given the inherent complexity of growth curve interpretation,

more sophisticated computational approaches—for example, machine

learning—may prove more appropriate than simple rule‐based

algorithms for identifying growth faltering. Machine learning uses

mathematical modelling to identify patterns in data and associate

those patterns with specific outputs (Wiens & Shenoy, 2018).

Artificial neural networks (ANNs) are a machine learning method

that may be well suited to assessing growth curves. Programming or

‘training’ an ANN is analogous to human learning: the ANN is

presented with a large data set of inputs and associated outputs,

from which it develops a classification system to associate any given

input with the appropriate output (Bishop, 2006; Engelbrecht, 2007;

Wiens & Shenoy, 2018). For this study, the ANN was trained using

growth curves (presented as a series of consecutiveWFA z‐scores) as

input, with associated classifications of SAM risk as output.

The first phase of this study aimed to develop an ANN for

predicting SAM risk from WFA growth curves, while the second

phase evaluated the predictive validity of the ANN using real‐life

clinical cases, and compared it with simple mathematical indicators

based on changes in weight or WFA z‐score.

2 | MATERIALS AND METHODS

2.1 | Development of the ANN

Training data for the ANN were collected through a survey of South

African child growth experts. Experts were recruited purposively by

contacting the Departments of Human Nutrition/Dietetics, Public Health

and Paediatrics at 11 South African universities and the Dietetics

Departments of 10 tertiary/academic public hospitals. Participants were

also asked to recommend colleagues for recruitment.

To obtain input data for training the ANN, 100 WFA growth

curves were compiled from a selection of local and international

growth monitoring training materials (Chopra et al., 2000; Savage &

Copeman, 2006; Savage King & Burgess, 1993; Uganda Ministry of

Health, 2003; WHO, 2012), plus self‐developed curves for

inadequately represented clinical scenarios. For each growth curve,

WFA z‐scores and digital images were generated using WHO Anthro

software v3.2.2 (2011; WHO) and Microsoft Excel (see Supporting

Information: Appendix). Output data for training the ANN were

obtained from respondents' classification of each WFA growth curve

as representing low, medium or high risk of SAM (the operational

meanings of which were clearly defined in the survey introduction).

The 100 charts were divided into two comparable surveys of 50

charts each, to lessen the respondent time burden. Experts were

Key messages

• Growth faltering preceding severe acute malnutrition

(SAM) is poorly identified during routine growth mon-

itoring, and opportunities for preventative interventions

are missed.

• Consistently identifying growth faltering is challenging,

even for experts in child growth. Digitized growth

monitoring tools incorporating automated pattern

recognition by an artificial neural network (ANN) can

assist clinicians in identifying growth faltering.

• In this study, an ANN was trained to identify children at

risk of SAM based on weight‐for‐age growth curves, with

promising results. With further refinement, the ANN

could greatly improve the identification of children with

growth faltering and facilitate earlier interventions to

prevent SAM.
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randomly assigned to receive either Survey A or Survey B. Each

electronic survey (developed using Google Forms) consisted of

instructions, informed consent, biographical questions and 50 growth

chart images presented in random order. Three charts were repeated

per survey to assess intrarater reliability. Interrater reliability

(agreement) was investigated for each survey in terms of the number

of risk categories that were selected for each chart, and the

percentage of experts who agreed on each rating. Descriptive data

for the two groups of expert respondents were compared using

Fisher's exact test.

The WFA z‐scores (input) and respondents' SAM risk classifica-

tion (output) for each curve were used to train the ANN

(Mathematica v12.0, 2019; Wolfram Research). Various computa-

tional approaches were attempted, including K‐nearest neighbour,

random forest and multilayer perceptron approaches. For each

training attempt, 10% of the charts were randomly removed before

training and used for posttraining testing. The ANN with the highest

posttraining test score was then validated.

The presence of oedema, although an important factor in the

diagnosis of SAM, was not explicitly included in the training of the

ANN. Instead, a reminder check for oedema will be built into the final

application as a separate function and a positive response (i.e.,

oedema is present) will result in a recommendation to refer the child

to a higher level of care regardless of weight.

2.2 | ANN validation

The predictive validity of the ANN was evaluated using a diagnostic

accuracy assessment methodology with a case–control design.

Children under five with SAM (cases) were recruited from two

public‐sector hospitals in Tshwane District, Gauteng Province, South

Africa. SAM was diagnosed using WHO criteria, as the presence of

any one of a weight‐for‐length/height z‐score < –3, mid‐upper arm

circumference < 11.5 cm or bilateral oedema (5). Controls—children

under five without SAM—were recruited as a consecutive conve-

nience sample at three PHC clinics in these hospitals' referral areas

(July 2018–2019). Availability of a patient‐held RtHB with at least

three recorded weights was required for inclusion. Preterm‐born

children and children with medical/congenital conditions requiring

disease‐specific growth references were excluded.

An a priori power calculation (nQuery Advanced v8.1.0.0. 2017;

Statistical Solutions Ltd.) indicated that 63 cases and 126 controls

would be sufficient to reject H0: Sensitivity = 75% in favour of Ha:

Sensitivity ≥ 90%.

Sociodemographic, medical and birth information were collected

from the RtHB and parent/caregiver interview. All past weight

measurements (and associated dates) were obtained from the RtHB.

At recruitment, weight was measured by clinic nurses during routine

growth monitoring (for controls) or by hospital dietitians at admission

(for cases) using the facilities' electronic scales and recorded at 0.1 kg.

Facility weights were used unaltered to reflect a real‐world scenario.

Length/height was measured and recorded at 0.1 cm. Cases were

measured at admission by hospital dietitians using hospital equip-

ment, while controls were measured at recruitment by the investiga-

tor (S. N.), using a rigid wooden length board (ShorrBoard Portable

Height/Length Measuring Board; Weight and Measure LLC) for

recumbent length (≤2 years) and a rigid, free‐standing stadiometer

(Leicester Height Meter; Seca) for standing height (>2 years).

2.2.1 | Data preparation and analysis

Growth parameters were converted to z‐scores using WHO Anthro

v3.2.2 (2011; WHO). Data analysis was performed using Stata version

15.1 (2017, StataCorp LLC). Significance was set at 5% using two‐sided

probabilities. Descriptive data for the case and control groups were

compared using Student's t test (normally distributed continuous

variables), two‐sample Wilcoxon's rank‐sum (Mann–Whitney) test

(nonnormally distributed continuous variables) and Fisher's exact test

(categorical variables).

Diagnostic accuracy calculations (as per STARD 2015; Cohen et al.,

2016) were performed, comparing the risk of SAM as exposure to the

presence/absence of SAM as the outcome. To define the risk of SAM for

the exposure variable, each child was classified as being ‘at risk’ or ‘not at

risk’ of SAM based on their WFA growth curve, using all weights

recorded in the RtHB preceding the weight that was used to define the

presence/absence of SAM. Two approaches were used:

(a) ANN: The ANN classified each child's consecutive WFA z‐scores

as representing low, medium or high risk of SAM. To facilitate

diagnostic testing, it was decided a priori to combine the medium‐

and high‐risk groups into a single ‘at risk’ class, with the low‐risk

class considered as ‘not at risk’.

(b) Simpler mathematical indicators: The difference between the last

two recorded weights (preceding the final weight measurement

that was used to define the outcome) and their WFA z‐scores

were obtained by subtracting the earlier value from the latter. Six

cut‐offs were evaluated for indicating a child as ‘at risk’ of SAM:

weight loss (difference < 0), weight stagnation/loss (difference ≤

0), any decrease in WFA z‐score and decreases of more than

0.33, 0.50 and 0.67 WFA z‐scores, respectively.

The primary analyses focused on sensitivity and specificity, as

(unlike predictive values) they are unaffected by the high proportion

of SAM cases in the sample. The area under the receiver‐operating

characteristic curve (ROC‐AUC) was calculated as a measure of the

balance between sensitivity and specificity for each indicator of SAM

risk. To explore the effect of SAM prevalence on the performance of

the ANN, the positive and negative predictive values (PPV and NPV)

were recalculated using a hypothetical sample of 1000 children with

four different SAM prevalence rates: an estimated average under‐5

SAM prevalence of 1%, based on the prevalence of severe wasting

described in large‐scale South African nutrition surveys (South

African NDOH, SSA, SAMRC, 2017; Shisana et al., 2013) as well as

0.5%, 3.0%, 5.0% and 10% to allow for variation in prevalence.

NEL ET AL. | 3 of 10



3 | RESULTS

3.1 | ANN development

Expert survey responses: From 69 experts contacted, 30 responses

were received (Survey A: 13 responses; Survey B: 17 responses;

response rate = 43.5%). The professional profile of the respondents

(Table 1) evinces their expertise in child growth and nutrition.

Comparison of expert responses revealed substantial inter-

rater disagreement, as shown in Table 2. All respondents agreed

on the risk classification of only 10/100 charts, while 41/100

charts were simultaneously classified as low, medium and high

risk by different respondents. For 15/100 charts, <50% of the

experts agreed on the most‐selected rating. Calculation of

Cohen's κ confirmed the lack of agreement among the respon-

dents, with κ values for the different risk categories ranging from

0.16 to 0.59 (Table S1) Interrater agreement varied with the

growth pattern represented by the charts, being highest for

charts representing healthy weight gain and lowest for charts of

low‐birth‐weight children (Table S2).

TABLE 1 Professional profile of respondents.

Total (N = 30),
n (%)

Survey A (N = 13),
n (%)

Survey B (N = 17),
n (%)

p Valued

(difference)

Place of worka

University 12 (40.0) 6 (46.2) 6 (35.3) 0.360

Public health facility 17 (56.7) 6 (46.2) 11 (64.7)

Nongovernmental 1 (3.3) 1 (7.7) 0

Nature of current and recent work (relating to child growth and nutrition)

Teaching at a tertiary institution 15 (50.0) 6 (46.2) 9 (52.9) 1.000

In‐service training of healthcare providers 9 (30.0) 4 (30.8) 5 (29.4) 1.000

Research 9 (30.0) 4 (30.8) 5 (29.4) 1.000

Policy development 7 (23.3) 3 (23.1) 4 (23.5) 1.000

Clinical work: Primary healthcare level 2 (6.7) 1 (7.7) 1 (5.9) 1.000

Clinical work: Hospital level 10 (33.3) 3 (23.1) 7 (41.2) 0.440

Health promotion at the community level 2 (6.7) 2 (15.4) 0 0.179

Other 1 (3.3) 1 (7.7) 0 0.433

Professionb

Medical practitioner (doctor) 9 (30.0) 3 (23.1) 6 (35.3) 0.691

Dietitian/nutritionist 21 (70.0) 10 (76.9) 11 (64.7)

Highest qualificationc

Bachelor's degree (4+ years) 2 (6.7) 2 (15.4) 0 0.150

Bachelor's plus postgraduate diploma 5 (16.7) 1 (7.7) 4 (23.5)

Master's degree 17 (56.7) 6 (46.2) 11 (64.7)

PhD degree or equivalent 6 (20.0) 4 (30.8) 2 (11.8)

Years’ experience working in child health and nutrition

0–3 1 (3.3) 0 1 (5.9) 0.974

4–7 8 (26.7) 3 (23.1) 5 (29.4)

8–12 7 (23.3) 4 (30.8) 3 (17.6)

13–20 5 (16.7) 2 (15.4) 3 (17.6)

>20 9 (30.0) 4 (30.8) 5 (29.4)

aNo respondent selected 'Private sector', 'Research entity' or 'Other'.
bNo respondent selected 'Nurse'.
cNo respondent selected 'Diploma' or 'PhD plus postdoctoral'.
dFisher's exact test.

4 of 10 | NEL ET AL.



Intrarater (test–retest) reliability varied. In both surveys, the

chart representing a clear high‐ or low‐risk growth pattern was

classified identically both times by all respondents. The four charts

with more ambiguous or complex growth patterns were rated

identically both times by 9/13 (69.2%), 10/13 (76.9%), 12/17

(70.6%) and 14/17 (82.4%) of respondents, respectively. McNemar's

test for symmetry revealed no directional bias (p = 0.223–0.606).

3.1.1 | ANN training

The ANN was initially trained using each individual expert's

classification of each chart as a separate input, yielding a total of

1500 growth charts (1350 for training, 150 for testing). However, the

inconsistency in the expert responses prevented the ANN from

converging on an effective solution, although the multilayer

perceptron approach with backpropagation learning (training accu-

racy = 54.5%) was found to be superior to K‐nearest neighbour

(training accuracy = 18.2%) and random forest (training accuracy =

35.7%) approaches.

To improve training accuracy, the experts' responses were

combined to give a single SAM risk classification for each chart.

Each individual response was assigned a numeric value (low risk = −1,

moderate risk = 0 and high risk = +1) and the mean of all responses

was calculated for each chart. The mean value was then assigned a

risk category (low risk = −1 to −0.66, moderate risk = −0.67 to +0.66

and high risk = +0.67 to +1). This yielded a training data set of 100

growth charts (90 for training, 10 for testing). The ANN trained with

this data set (using the multilayer perceptron approach) achieved

sufficient posttraining accuracy (73.3%) to justify validation with real

clinical data.

3.2 | ANN validation

3.2.1 | Sample description

A total of 63 SAM cases and 126 controls were recruited, but four

controls were excluded due to incomplete growth information. The

sample is described in Table 3.

Cases and controls differed significantly in their age, who they

lived with, HIV status, immunization status and number of comorbid-

ities. Further analyses revealed significant differences in patterns of

comorbidities: mild upper respiratory tract infections were the most

common comorbidity among controls (n = 12 controls (9.8%), 0 cases;

p = 0.009), while cases had higher prevalence of acute gastroenteritis

(n = 15 cases (23.8%), 1 control (0.8%); p < 0.001) and broncho-

pneumonia (n = 3 cases (4.8%), 0 controls; p = 0.038). Oedema was

reported in 25 (39.7%) of the cases.

3.2.2 | Diagnostic accuracy

The diagnostic accuracy of the ANN and simpler mathematical

indicators of SAM risk are described in Table 4. Any decrease in the

WFA z‐score had the highest sensitivity (77.8%), but the specificity

was poor (49.3%). Weight loss had the highest specificity (91.0%),

but at the cost of sensitivity (44.4%). The ANN had the highest

ROC‐AUC (0.795), indicating a good balance of high sensitivity

(73.0%) and specificity (86.1%). There was minimal overlap between

the 95% confidence intervals of the ANN and the weight‐based

indicators, and no overlap with the WFA z‐score‐based indicators,

affirming its superior predictive ability. Due to the significant

difference in the ages of the cases and controls, the diagnostic

accuracy analysis was repeated with only children aged 0–24 or

6–24 months. This had minimal effect on the diagnostic perform-

ance in the 0–24 months group (n = 168; sensitivity = 72.6%,

specificity = 86.8%, ROC‐AUC = 0.797), although specificity was

somewhat decreased for the 6–24 months group (n = 120; sensitiv-

ity = 73.3%, specificity = 81.7%, ROC‐AUC = 0.775).

Table 5 shows the positive and negative predictive values for the

ANN at various SAM prevalence rates, with 34% representing the

artificially high prevalence rate in the validation sample. As SAM

prevalence decreases, the PPV declines rapidly (from 21.7% at 5.0%

prevalence to 2.6% at 0.5% prevalence), while the NPV increases

(from 98.4% at 5.0% prevalence to 99.8% at 0.5% prevalence).

4 | DISCUSSION

This study highlighted two important findings: first, the interpretation of

WFA growth curves may be more difficult than is commonly believed (as

evidenced by the disagreement among the surveyed experts). and

second, automated interpretation of WFA growth curves shows promise

in improving the identification of children at risk of SAM.

TABLE 2 Expert agreement on risk of severe acute malnutrition,
represented by weight‐for‐age growth charts.

Survey A (13
respondents;
N = 50 charts), n
(%) of chartsa

Survey B (17
respondents;
N = 50 charts), n
(%) of chartsa

Total (30
respondents;
N = 100 charts),
n (%) of chartsa

Number of risk classes selected by different experts for the same growth
chart

1 6 (12.0) 4 (8.0) 10 (10.0)

2 28 (56.0) 21 (42.0) 49 (49.0)

3 16 (32.0) 25 (50.0) 41 (41.0)

% of experts agreeing on the most‐selected risk class per chart

100 6 (12.0) 4 (8.0) 10 (10.0)

75–<100 17 (34.0) 13 (26.0) 30 (30.0)

50–<75 22 (44.0) 23 (46.0) 45 (45.0)

<50 5 (10.0) 10 (20.0) 15 (15.0)

aEach survey consisted of 50 charts. Each chart was rated as low risk/

medium risk/high risk.
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TABLE 3 Description of the validation sample.

Characteristic Controls (N = 122), n (%)a Cases (N = 63), n (%)a p Valueb (difference)

Age category (months)

<6 46 (37.7) 2 (3.2) <0.001

6–<12 32 (26.2) 24 (38.1)

12–<24 28 (23.0) 36 (57.1)

≥24 16 (13.1) 1 (1.6)

Sex

Male 58 (47.5) 40 (63.5) 0.060

Female 62 (50.8) 23 (36.5)

Lives with

Both parents 84 (68.9) 18 (28.6) <0.001

Mother only 34 (27.9) 40 (63.5)

Other 1 (0.8) 4 (6.3)

Race

Black African 116 (95.1) 60 (95.2) 0.800

Other 5 (4.9) 0

Neonatal feeding (first month of life)

Exclusive breastfeeding 99 (81.1) 47 (74.6) 0.760

Exclusive formula feeding 15 (12.3) 9 (14.3)

Mixed feeding 4 (3.3) 1 (1.6)

HIV status

Exposure unknown 3 (2.5) 1 (1.6) <0.001

Unexposed 85 (69.7) 28 (44.4)

Exposed, HIV infection status unknown 6 (4.9) 2 (3.2)

Exposed, confirmed HIV uninfected 25 (20.5) 19 (30.2)

HIV‐positive, on HAART 1 (0.8) 8 (12.7)

HIV‐positive, not on HAART 0 3 (4.8)

Immunizations

Up to date 117 (95.9) 46 (73.0) <0.001

Not up to date 5 (4.1) 16 (25.4)

Current illness (number of acute
comorbidities)

0 108 (88.5) 32 (50.8) <0.001

1 12 (9.8) 27 (42.9)

2 or more 2 (1.6) 4 (6.4)

Age (months)

Mean (SD) 12.5 (12.4) 13.7 (6.5) ‐c

Median (IQR) 7.8 (4.1–17.7) 12.7 (9.7–16.9) <0.001d

Birthweight (kg)

Mean (SD) 3.2 (0.4) 3.1 (0.4) 0.035e

Median (IQR) 3.2 (2.9–3.4) 3.0 (2.9–3.3) 0.030d
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TABLE 3 (Continued)

Characteristic Controls (N = 122), n (%)a Cases (N = 63), n (%)a p Valueb (difference)

Birth length (cm)

Mean (SD) 50.5 (4.0) 50.1 (0.6) 0.566e

Median (IQR) 51.0 (49.0–52.0) 50.0 (49.0–52.0) 0.233d

Abbreviations: HAART, highly active antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range; NA, not applicable; SD, standard

deviation.
aWhere %s in a category do not add up to 100, data were missing for some respondents.
bFisher's exact test used, unless specified otherwise.
cAnalysis of difference between means inappropriate (nonnormal distribution).
dTwo‐sample Wilcoxon's rank‐sum (Mann–Whitney) test.
eStudent's t test.

TABLE 4 Predictive validity of WFA growth faltering‐related indicators of SAM, expressed in terms of diagnostic accuracy parameters.

Indicator of SAM risk
n classified 'at risk'

Sensitivity (%) (95% CI) Specificity (%) (95% CI) ROC‐AUC area (95% CI)Cases (n = 63) Controls (n = 122)

Artificial neural network rating 46 17 73.0 (60.3; 83.4) 86.1 (78.6; 91.7) 0.795 (0.732; 0.859)

Any weight loss 28 11 44.4 (31.9; 57.5) 91.0 (84.4; 95.4) 0.677 (0.610; 0.744)

Weight stagnation/loss 30 17 47.6 (34.9; 60.6) 86.1 (78.6; 91.7) 0.668 (0.599; 0.738)

Any decrease in WFA z‐score 49 62 77.8 (65.5; 87.3) 49.2 (40.0; 58.4) 0.635 (0.567; 0.703)

WFA z‐score decrease >0.33 38 39 60.3 (47.2; 72.4) 68.0 (59.0; 76.2) 0.642 (0.568; 0.715)

WFA z‐score decrease >0.50 32 29 50.8 (37.9; 63.6) 76.2 (67.7; 83.5) 0.635 (0.562; 0.708)

WFA z‐score decrease >0.67 26 15 41.3 (29.0; 54.4) 87.7 (80.5; 93.0) 0.645 (0.577; 0.713)

Abbreviations: CI, confidence interval; ROC‐AUC, area under the receiver operating characteristic curve; SAM, severe acute malnutrition; WFA, weight
for age.

TABLE 5 Effect of changes in SAM prevalence on the positive and negative predictive values of the ANN

Prevalence (%) n (SAM)
n
(no SAM)

True
positives (a)

False
positives (b)

True
negatives (c)

False
negatives (d)

PPV (%)
(a/[a + b])

NPV
(%) (c/[c + d])

34.0 340 660 248.2 91.7 568.3 91.8 73.0 86.1

10.0 100 900 73 125,1 774,9 27 36.9 96.6

5.0 50 950 36.5 132.1 818.0 13.5 21.7 98.4

3.0 30 970 21.9 134.8 835.2 8.1 14.0 99.0

1.0 10 990 7.3 137.6 852.4 2.7 5.0 99.7

0.5 5 995 3.7 138.3 856.7 1.4 2.6 99.8

Note: Calculated for a hypothetical sample of N = 1000, using results from the ANN with sensitivity = 73.0% and specificity = 86.1%.

Abbreviations: ANN, artificial neural network; NPV, negative predictive value; PPV, positive predictive value; SAM, severe acute malnutrition.

Calculations: n(SAM) =N × prevalence; n(no SAM) = N ‐ n(SAM); true positives = n(SAM) × sensitivity; false positives = n(no SAM) − true negatives; true
negatives = n(no SAM) × specificity; false negatives = n(SAM) − true positives.

Due to the qualitative nature of growth curve interpretation,

differences of opinion between clinicians are inevitable. However, in

this survey disagreement predominated to an unexpected extent. It is

well documented that frontline PHC health workers struggle with

interpreting growth charts (Blaauw et al., 2017; Cloete et al., 2013;

Kitenge & Govender, 2015), but the results of this survey suggest

that the same may be true even for experts in the field. The lack of a

‘gold standard’ definition for growth faltering may be partly to blame,

as it negatively affects reproducibility (i.e., interrater reliability)

(Olsen, 2006; Roberfroid et al., 2005). This further highlights the
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potential value of an automated growth monitoring tool to assist with

clinical decision making at the PHC level.

Despite the inconsistencies in the training data, the ANN was

able to identify children at risk of SAM based on WFA z‐scores: in

the validation sample, the ANN identified 46/63 cases (73.0%) as

being at risk of SAM before the onset of SAM, while wrongly

classifying only 17/122 (13.9%) of the controls as at risk of SAM.

The ROC‐AUC (0.795) affirms the ANN's superior ability to

distinguish between children with and without SAM, compared

with the other indicators assessed. WFA growth as a predictor of

SAM has not been widely studied, making it difficult to determine

whether the ANN could outperform well‐trained clinicians.

However, the ANN did outperform the status quo: none of the

63 included SAM cases had been identified as being at risk during

routine growth monitoring, but the ANN was able to identify the

risk of SAM at the same time point in 46 of these cases.

There were a number of differences between the validation

sample cases and controls. These factors may be related to the

aetiology of SAM, including living with the mother only (which may

affect household income and food security), higher rates of HIV

infection and other acute comorbidities in cases, and lower rates of

up‐to‐date immunization, which may suggest poor attendance of

routine growth monitoring. On the one hand, this affects the

comparability of the cases and controls, but on the other hand, it

provides important insights into additional factors that may distin-

guish children with SAM from those without SAM. Selectively

sampling SAM cases to be comparable to controls, particularly with

regard to HIV infection and comorbidities, would exclude a large and

clinically significant portion of children with SAM.

This study evaluated the sensitivity and specificity of the ANN in a

sample with a predetermined case:control ratio. However, PPV and NPV

—that is, the degree to which a positive/negative test result predicts the

true presence/absence of the target condition—are affected by the

population prevalence of the target condition (Gleason et al., 2010). The

variation in the PPV and NPV of the ANN according to SAM prevalence

(Table 5) suggests that the screening tool would be of greater practical

value in populations with a higher prevalence of SAM, as the PPV is

higher. A low PPV implies a high number of false positives—many children

are identified as being at risk of SAM when they are not truly at risk. The

management of false positives carries resource costs (primarily nursing

time), which may place unnecessary strain on an already overburdened

growth monitoring programme (Blaauw et al., 2017; Kitenge & Govender,

2015). Thus, the value of the ANN as a screening tool in PHC depends on

both scientific and practical considerations, including local SAM preva-

lence and resource availability.

It must be acknowledged that WFA growth is an imperfect

indicator for predicting SAM, which is diagnosed by entirely different

criteria, namely, weight‐for‐length/height, mid‐upper arm circumfer-

ence and/or oedema (WHO, UNICEF, 2009). Anecdotal reports from

local clinicians suggest that WFA growth faltering commonly

precedes SAM. There is a paucity of published research on the

WFA growth in children with SAM. In this study, 30/63 (47.6%) of

SAM cases had a history of weight stagnation/loss before the SAM

diagnosis, supporting the notion that WFA growth faltering is a

reasonably common antecedent to SAM.

As the aetiology of SAM is often multifactorial, other socio-

demographic and/or medical information may be useful to assess SAM

risk (Rieger & Trommlerová, 2016). For example, a study conducted in the

Democratic Republic of the Congo identified nine indicators (birthweight,

diarrhoea, number of daily meals, duration of breastfeeding, age at

complementary food introduction, maternal age, parity, family SAM

history and number of under‐5 children) as important predictors of SAM

risk (Mukuku et al., 2019). A scoring system incorporating these factors

could predict SAM risk with 93.5% sensitivity and 93.1% specificity, far

outperforming this study's WFA‐based indicators. Similarly, a study using

machine learning to predict underweight (i.e., low WFA) in Bangladeshi

children developed a model (using child age, maternal education level,

wealth index, place of residence, maternal BMI and birth interval) that

achieved a sensitivity of up to 94.66% (albeit with lower specificity of

69.76%) (Talukder & Ahammed, 2020). Taken together, these studies

suggest that WFA growth may not be the single most important factor to

consider when evaluating SAM risk. Nonetheless, weight is routinely

measured, and the opportunity for identifying children at risk of SAM

should not be wasted. Automated assessment of WFA growth could be a

useful first step to identify children who need more in‐depth assessment,

which may include further anthropometric measurements (e.g., weight‐

for‐length/height and mid‐upper arm circumference) and other aspects of

nutrition assessment.

Some limitations of this study must be acknowledged. First, the

expert survey recruited a relatively small sample, yielding a small

training data set that likely had a negative impact on ANN training.

Second, due to the purposive sampling procedure, the experts cannot

be considered representative of all South African child health and

nutrition experts. This limits the generalizability of the findings

regarding interrater agreement. Similarly, the sampling design for the

validation study limits the generalizability of the findings to an

unselected population of children, a fact underscored by the effect of

SAM prevalence on the PPV and NPV of the ANN.

The exclusion of children born preterm is an important limitation,

as these children may be at increased risk of SAM. This may also have

affected the age distribution of the SAM cases, reducing the

number of SAM cases below the age of 6 months. Future validation of

the ANN with preterm‐born children will be important to address this

gap. The validation sample also contained few children over the age of 2

years (particularly cases); therefore, further validation with SAM cases

aged 2–5 years would be needed before the ANN can be used with

confidence in this age range. Nonetheless, the highest incidence of SAM

is seen in children under the age of 2 years, and thus the ANN has been

validated in the most important target audience.

This study pioneers a novel approach to identify children at risk of

SAM, using WFA data that are routinely collected at PHC in most low‐

and middle‐income countries (De Onis et al., 2012). However, some

questions remain to be explored by future research. The value of WFA as

a predictor of SAM, compared with other anthropometric and

nonanthropometric indicators should be assessed, and the best,

population‐specific combination of indicators to predict SAM risk should
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be identified. The predictive value of serial measurements of MUAC, in

particular, deserves investigation: MUAC is one of the diagnostic

indicators for SAM, and a declining MUAC may be just as valuable as

weight loss in identifying children at risk of SAM. Unfortunately, MUAC is

not routinely measured at most PHC facilities, which precluded its

inclusion in the current study. In addition to growth parameters, other

sociodemographic, health‐related and dietary factors should be investi-

gated as predictors of SAM. Additionally, appropriate responses to the

identification of ‘at‐risk’ children should be investigated, including further

assessment (measurement of length/height and MUAC, dietary assess-

ment), nutrition intervention (counselling, education and/or supplementa-

tion), appropriate referral (to nutrition services or higher levels of care)

and more rapid follow‐up. The safety and effectiveness of these

interventions as well as their feasibility within the healthcare system

need to be evaluated, particularly in light of the higher numbers of false

positives that will be seen in areas with low SAM prevalence.

Future steps for improving the ANN include increasing the size of the

training data set, ideally including real cases with a known outcome in the

training data. Furthermore, before implementation of the ANN in any

real‐world setting can be considered, it must be validated in children born

preterm, as they were excluded from this study. Finally, the programme

or application in which the ANN will be embedded needs to be

developed, with the inclusion of other relevant factors related to the

aetiology and/or diagnosis of SAM, such as examination for oedema. The

ANN is an important and ground‐breaking first step, yet much work

remains to be done to develop a fully functional clinical tool for the

identification of children at risk of SAM.

5 | CONCLUSIONS

Automated evaluation of WFA growth curves by an ANN shows promise

in identifying children at risk of SAM. Further refinements, such as

incorporating assessment for oedema and the presence of additional

SAM risk factors, could further improve the predictive validity of the

ANN. Using automated growth curve assessment in routine growth

monitoring, as opposed to relying on health workers' judgement alone,

could improve the early identification of children at risk of SAM, thus

facilitating targeted and timely interventions to prevent SAM.
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