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Obesity, diabetes, and hypertension have increased by epidemic proportions in recent

years among African Americans in comparison to Whites resulting in significant adverse

cardiovascular disease (CVD) disparities. Today, African Americans are 30%more likely to

die of heart disease than Whites and twice as likely to have a stroke. The causes of these

disparities are not yet well-understood. Improved methods for identifying underlying

risk factors is a critical first step toward reducing Black:White CVD disparities. This

article will focus on environmental exposures in the external environment and how

they can lead to changes at the cellular, molecular, and organ level to increase the

personal risk for CVD and lead to population level CVD racial disparities. The external

environment is defined in three broad domains: natural (air, water, land), built (places

you live, work, and play) and social (social, demographic, economic, and political). We

will describe how environmental exposures in the natural, built, and social environments

“get under the skin” to affect gene expression though epigenetic, pan-omics, and related

mechanisms that lead to increased risk for adverse CVD health outcomes and population

level disparities. We also will examine the important role of metabolomics, proteomics,

transcriptomics, genomics, and epigenomics in understanding how exposures in the

natural, built, and social environments lead to CVD disparities with implications for clinical,

public health, and policy interventions. In this review, we apply an exposome approach to

Black:White CVD racial disparities. The exposome is a measure of all the exposures of an

individual across the life course and the relationship of those exposures to health effects.

The exposome represents the totality of exogenous (external) and endogenous (internal)

exposures from conception onwards, simultaneously distinguishing, characterizing, and

quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors

and their relationship to disease. Specifically, it assesses the biological mechanisms

and underlying pathways through which chemical and non-chemical environmental
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exposures are associated with CVD onset, progression and outcomes. The exposome is

a promising approach for understanding the complex relationships among environment,

behavior, biology, genetics, and disease phenotypes that underlie population level, Black:

White CVD disparities.

Keywords: exposome, cardiovascular disease, genomics, epigenomics, metabolomics, transcriptomics,

proteomics, lipidomics

INTRODUCTION

The elimination of racial health disparities has been a stated
national priority for over 30 years, yet little progress has been
made in reducing them (1, 2). To date, while research on
cardio-vascular disease (CVD) has identified a plethora of risk
factors for CVD and CVD disparities our understanding of
underlying causal mechanisms and pathways remains limited
(3, 4) hindering our ability to develop effective prevention and
treatment interventions.

Fundamental Concepts, Issues, and
Problems
The exposome was described by Wild in 2005 (5) as “life-course
environmental exposures (including lifestyle factors), from the
prenatal period onwards”. Yet, a conceptual framework and
the tools needed to study the complex interactions between
environment and health are still lacking (5).

External Environment
Juarez (6) previously proposed an ontology of the external
environmental which directly and indirectly affects health
and health-related behavior as comprised of three broad
domains: natural, built, and social environments (7). The natural
environment was identified as being comprised of three elements
in which people interact on a daily basis: air, water, and soil
and can have negative or beneficial effects on health and health
behavior. There is increasing awareness that green space, defined
as “open, undeveloped land with natural vegetation” such as
parks, forests, and may have salutogenic effects on health (8).

The built environment was described as including the
characteristics of manmade entities of the communities in which
we live, work and play, such as the neighborhoods in which we
reside, homes in which we live, the buildings in which we work,
and the transportation infrastructure that ties them together. The
built environment is constructed largely of materials that are
synthetic, chemically processed or treated, all of which can affect
our health. Toxic chemicals that leak into the indoor air from
the built environment are largely invisible and undetectable in
our daily activities. The US Environmental Protection Agency
estimates that people spend up to 90% of their time in
buildings (9).

The degree to which neighborhood is vital to health and
health behaviormay vary considerably, depending on local public
policy decisions. For instance, planning decisions that influence
the location of supermarkets, fast-food eateries, farmers markets,
and convenience stores can have profound effects on people’s
diets and their health (10). Inaccessible or non-existent sidewalks

and bicycle or walking paths may contribute to sedentary habits.
Additionally, a person’s level of physical activity can be directly
related to poor health outcomes such as obesity, cardiovascular
disease, diabetes, and some types of cancer.

The social environment is comprised of the social, economic,
and political conditions in which people live, work, and
play. Social forces determine the conditions of daily life and
are shaped by macro-level factors and include social norms,
culture, social policies, economic conditions, and political
systems (11). According to the Centers for Disease Control
and Prevention, complex, integrated, and overlapping social
structures and economic systems are responsible for most health
inequities (12).

Exposome
Environmental exposures are recognized as playing an important
role in the etiology of many chronic diseases (13). Measuring the
totality of environmental exposures that a person experiences
across the life course has emerged as a recent field of study,
now referred to as exposomics (14–16). An exposomics
approach addresses the cumulative risks associated with
interactions between multiple environmental exposures,
biological perturbations, and epigenetic variations over time and
over the life course (17–19).

There is an increasing recognition of the need for complex
models to help us better understand how multiple and
cumulative, environmental exposures affect chronic disease
onset, progression, and outcomes at critical life stages, over the
life course, and across generations (20, 21). However, much
of the research on environmental exposures to date, has been
largely limited to identifying relationships between individual
chemical exposures and single health outcomes (3, 4, 22). The
multiple mechanisms and pathways underlying CVD suggest
the need for applying complex models that can account for the
relationships between multifactorial, environmentally-induced,
health-related symptoms, disease outcomes, and population level
disparities (23, 24).

Exposomics provides an approach for understanding how
environmental exposures where you live, work, and play can
lead to CVD onset, progression, and outcomes. It combines
a real world approach with cumulative risk models and big
data tools capable of distinguishing exposure mechanisms
and pathways underlying chronic diseases. It supports the
use of computational and mathematical models and analytics
capable of analyzing and modeling the complex relationships
between multiple and cumulative exposures from the natural,
built, and social environments, at different stages of life, with
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disease phenotypes, health outcomes, and population level
disparities (25). Finally, the exposome provides a framework
for understanding how biological mechanisms and exposure
pathways at different stages of life and across the life course are
involved in increasing and/or decreasing the risk for CVD.

The Exposome and Cardio-Vascular
Disease
There is increasing evidence that racial disparities in CVD may
be the result of “late manifestations of progressive vascular
dysfunction initiated in early life” (26). This hypothesis points
to multiple and cumulative exposures to stressful psychosocial
and environmental forces as the underlying causes of CVD and
CVD disparities. Additionally, the hypothesis states that adverse
exposures that occur early in life actually enhance disease-
promoting pathways impacting biologically-based, disease-
susceptible phenotypes over the life course. This hypothesis
is consistent with the Developmental Origins of Health and
Disease (DOHaD) concept and the findings here provide for
the formulation of new strategies for research as well as for
interventions in the policy, public health, and clinical arenas (27).
The various environmental, personal and social factors associated
with CVD are schematically depicted in Figure 1.

Common CVD risk factors at the individual-level, include
those that are non-modifiable and unique to individuals (i.e.,
age, race, gender, family history, and genetics), those that are
modifiable (sedentary behavior (28–30), waist circumference,
obesity, medication non-adherence (31, 32), alcohol intake
(33, 34), exercise (35, 36), BMI, smoking (37, 38) occupation
(39), and education (40); and others that are vascular-
related (i.e., abdominal obesity, atherogenic dyslipidemia, raised
blood pressure, insulin resistance, glucose intolerance, pro-
inflammatory, and prothrombotic states). Other biological risk
factors for CVD include high blood pressure (41), allostatic
load (42–44) dyslipidemia, serum total cholesterol, decreased
HDL cholesterol, triglycerides, fasting insulin (45), serum
creatinine (45), serum uric acid (46) serum hsCRP (47),
homocysteine, inflammation, hypertriglyceridemia, thrombosis,
insulin resistance, serum lipids, and blood glucose (48–50),
fibrinogen (50), and homocysteine (51).

Common CVD risk factors found in the natural environment
include heavy metals (arsenic cadmium, lead, and mercury),
pesticides, and solvents. Other risk factors found in the natural
environment that contribute to CVD risk, include indoor
pollution (second hand smoke, biomass fuels) (52), and outdoor
air pollution comprised of particulate matter (PM10, PM2.5,
ultrafine particles), complex mixtures of gases that include
carbon monoxide (CO), diesel exhaust, nitrogen dioxide (NO2),
ozone (O3), and sulfur dioxide (SO2) (53–59). Numerous
epidemiological studies have found that ambient PM in air
pollution is strongly associated with increased CVD morbidities
and mortality, including atherosclerosis, cardiac arrhythmias,
myocardial infarction (MI), diabetes, hypertension, ischemic
stroke, and vascular dysfunction at relatively low concentrations
(56, 60). There is growing evidence to suggest that particulate
matter may help explain racial CVD disparities not accounted for

by non-modifiable and social, demographic, and behavioral risk
factors (55).

Common CVD risk factors found in the built environment
include neighborhood level conditions (walkability,
perceived/actual safety) and access to a healthy food
environment (cost of healthy and unhealthy food and
physical access assessed by density/availability of healthy or
unhealthy stores/restaurants).

Common CVD risk factors associated with the social
environment, include access to insurance and health care services
(61–64), community stressors (65, 66), lack of trust in health
care providers (64), population density, residential segregation
(67, 68), socio-cultural beliefs and norms (car ownership, cultural
influences), and availability of social supports (69). Public policies
that have been identified as common CVD risk and/or protective
factors, and as such, can have a direct or indirect outcome on
CVD, including zoning ordinances regarding parks, foot paths
and cycle ways, or policies that discourage driving or encourage
use of public transit.

Using the exposome to model the contributions of multiple
environmental exposures across the life course on CVD is in
its formative stage. The exposome approach is presented in
this article as a conceptual model for integrating exogenous,
chemical and non-chemical exposures from the natural, built
and social environments with data derived from internal,
endogenous environment, using high-throughput “omics”
techniques including genomics, epigenomics, transcriptomics,
proteomics, metabolomics, and lipidomics, and clinical data
(including diagnoses, clinical care, pharmacy, and health
outcomes). Identification of biological mechanisms and causal
pathways of CVD risk have important implications both for
CVD risk assessment and stratification as well as for public
health interventions, programs and policies (70).

This review will cover progress that has been made in
identifying the source of external environmental exposures and
the mechanisms and pathways through which these exposures
affect the internal environment, and together how they can be
analyzed with biomarkers of exposure (environmental toxicants
such as metals and hydrocarbons), biomarkers of effect (vascular
and cellular adhesion molecule, c-reactive protein, β-defensin,
interleukin-6, isoprostanes, glutathione, glutathione peroxidase
3, superoxide dismutase 3, and DNA methylation changes), and
biomarkers of CVD susceptibility [glucose, insulin, low density-
and high density lipoproteins, triglycerides, apoE genotyping
(apoB, apoA1, and apoE)] to predict adverse CVD outcomes.
The various pollutants and biomarkers associated with CVD are
schematically presented in Figure 2. Implications for CVD racial
disparities will be discussed.

Biomarkers From the Perspective of
Exposure Biology
As detailed in the aforementioned sections, environmental
and life-style factors play a pivotal role in assessing the
pathophysiology of CVD. In this regard, biomarkers play a
key role in decoding the exposome as they are measures
of characteristics that represent either normal or pathogenic
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FIGURE 1 | Applying an exposome approach to cardio-vascular disease onset, progression, and outcomes.

FIGURE 2 | Multi-pollutant approach to biomarkers and CVD outcomes.

biological processes. From a causal pathway perspective, the three
major categories of biomarkers that assist in CVD assessment are
given below.

Biomarkers of Disease Susceptibility
These markers are indicators of increased sensitivity to the effects
of suspected environmental toxicants that can be measured in a
biological sample or system. These markers provide information
on what target systems are most vulnerable from the standpoint

of a disease etiology. Biomarkers that fall under this category are
concentrations of glucose, insulin, triglycerides, LDL and HDL
cholesterol, and apolipoprotein (apo)B, apoAI, and apoE assays.
These markers when measured in blood samples have shown a
strong correlation with incidence of CVD in patients (71, 72).
Also qualified under this category are genotyping studies that
have identified participants that harbor apoE variants (73). These
studies have helped us to assess which sub-groups of populations
are at risk from CVD because of carrying apoE variants.
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Biomarkers of Exposure
These markers provide information on the importance of
various exposure pathways and risk. These markers enable direct
measurement of toxicants of interest in the body from an
accessible biological matrix such as blood, urine, tissues etc.
Persons, who are occupationally exposed to environmental heavy
metal toxicants such as Pb, Cd, As, Hg and PAHs, individually, or
in mixtures are at increased risk for developing CVD and renal
diseases (74).

Biomarkers of Effect
These markers are responses elicited as a result of interaction of
an organism with a gamut of physical, social and environmental
factors as mentioned in the earlier sections. The responses
are measured at the level of tissue-, -organ and -whole
organism function. Commonly measured biomarkers of CVD
are F2 isoprostanes, Glutathione content (GT; total & oxidized),
Glutathione peroxidase 3 assay (GP3), Superoxide dismutase
3 assay (SOD3), C-reactive protein (CRP), interleukin (IL) 6,
8 and 10, β- Defensin and Vascular Cell Adhesion Molecule1
(VCAM1). High levels of defensin, isoprostanes, VCAM1, CRP,
IL, reduced GT, and SOD have been reported from patients, who
are diagnosed with CVD (75–78).

CURRENT RESEARCH GAPS

Disruption of physiological homeostasis is one of the key
steps in development of several diseases. Therefore, for
understanding the pathophysiology of various diseases including
CVD, a comprehensive assessment of various key biological
events is necessary. Most studies of biomarkers used to date
are hypothesis-driven and focus on a specific metabolite or
protein or a toxicant isomer or congener. This approach
is laborious and often focuses on biomarker of focus in
its natural domain [biological site; (79)]. Molecular events
such as gene expression and signaling events depend on
the exposure scenario. In the case of complex diseases, they
need to be categorized into sub-phenotypes on the basis of
patient’s genotype, which limit our capabilities in developing
a broad and generalizable biomarker (80). To bridge this gap,
researchers have leveraged the high-throughput technologies
and computational biology to mine datasets for differential
expressions at the level of genome, epigenome, transcriptome
and proteome, collectively referred to as “omics” technologies.
Integrative omics technologies has emerged as an approach with
great promise for providing a more comprehensive view of
biology, understanding disease mechanisms and pathways, and
informing disease treatments (81).

DEVELOPMENTS IN THE FIELD

In this overview, we use an exposome approach to guide our
discussion of how to combine diverse types of data and the utility
of this approach for understanding CVD onset, progression, and
outcomes. This section highlights developments in the field, and
as such, references are representative studies and were not chosen
on the basis of a systematic review, as such an undertaking is

beyond the scope of this special issue. Inasmuch as possible,
we have included objective evidence, regardless of whether the
studies reported have been validated yet, as this review is expected
to stimulate discussion among researchers on the role of omics
in CVD.

Biomarkers From the Perspective of
Systems Biology and Development of
Novel Biomarkers
In recent years, the use of key biological molecules for disease
prediction and diagnosis have been harnessed differently. These
molecules include metabolites and cellular macromolecules
(proteins, lipids, and nucleic acids) which have varied functions
including but not limited to cell signaling and immune
modulation, serving as endogenous toxins, and environmental
sensors. How these molecules synergistically influence organ
function, rendering immunity, nutrient sensing and overall
physiology play a key role from the perspective of systems
biology (82).

An exposome approach is used to describe the integration
of biological processes and how disruption of these processes
by chemical and non-chemical stressors associated with
environmental exposure, lifestyle, dietary habits, and occupation
affects disease onset, progression, and outcomes. This type
of comprehensive approach could reveal information used in
delineating the site, level of toxicity, and mode of action of the
response, and may be beneficial in defining adverse effect levels.

The utilitarian value of systems biology is best understood
by employing -omics approaches. These approaches will give
rise to new biomarkers, which when standardized and validated
could provide information on mode of action and dose-
response relationships, inform and risk assessment purposes (83).
The potential of omics approaches to elucidate mechanisms
of toxicity (84) are schematically depicted in Figure 3. The
various omics technologies employed for CVD risk prediction
and the development of new biomarkers is detailed in the
following sections.

Genomics
Genomics, by definition, is the structure and action of the
genome. In simple terms, it is the study of any individual’s
genes including interactions with each other and the individual’s
internal and external environment. In the past decade, there
has been a quantum leap in knowledge about the human
genome. As a result, thousands of genomes of persons from
different ethnic backgrounds have been sequenced. Advances in
technologies have helped us harvest genomic data for stratifying
diseases into genetic and non-genetic categories. Additionally,
the knowledge gained from genomics is useful for disease
diagnosis and treatment.

Genomic biomarkers, including metabolomic, proteomic,
lipidomic, epigenetic, and proteomic biomarkers are a complex
topic. Even though the research literature shows hundreds
of thousands of disease-associated molecular markers, very
few of those are considered robust enough to be of clinical
utility (85). The European Medical Agency coined the term
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FIGURE 3 | The various “omics” approaches widely used to elucidate the pathways that underlie pathophysiology of CVD and development of biomarkers [modified

from Selley et al. (84)]. The sold arrows represent how different omics are interlinked and could be useful to investigate the mechanisms associated with CVD. The

dashed arrows represent how individual omics could serve as biomarkers for distinguishing sub-phenotypes and helpful for clinical application of the findings.

“Genomic biomarker,” which is defined as “DNA or RNA
characteristics that serve as an indicator of normal biologic
processes, disease processes, and/or response to therapeutic or
other interventions” (85) In this context, a genomic biomarker
should reflect expression, function and regulation of genes. DNA
characteristics include: single nucleotide polymorphisms (SNPs),
DNAmodifications, insertions, deletions, copy number variation
and cytogenetic rearrangements. RNA characteristics include
RNA sequence, RNA expression levels, RNA processing (splicing
and editing) and microRNA levels (85).

Relevance of Genomics in Non-chemical

Exposure-Induced CVD
Genomic studies are very relevant in non-toxicant exposure
situations. The microarray-based gene profiling of peripheral
blood mononuclear cells obtained from patients suffering from
peripheral arterial disease (PAD) revealed upregulation of 40
genes and downregulation of 47 genes (86). The upregulated
genes mediated immune response, inflammation, stress response,
platelet activation, and aggregation while the downregulated
genes are involved in transcriptional regulation. These findings
could help in characterizing biomarkers for PAD. Other studies
have shown altered gene and pathway expression linked to
atherosclerosis. An analysis of atherosclerotic plaques showed
dysregulation of several genes and differentially-expressed
pathways linked to inflammation, especially leukocyte trafficking
and signaling (87).

Genomic studies also have shown a close link between
metabolic diseases and CVD. In patients with metabolic diseases
such as diabetes, gene expression analyses revealed upregulation
of 59 genes and down regulation of four genes (88). A great
majority of the genes were related to endothelial dysfunction,
which is the first step in vascular damage andmay eventually lead
to atherosclerosis and other cardiac disorders. A comprehensive
review on relevance of GWAS and related measures analyzed
across the genome in relation to CVD was provided by Ganesh
et al. (89). The genetic underpinnings of coronary artery disease,
stroke, hypertension, hypercholesterolemia, cardiomyopathies,
arrhythmias, and aortic aneurysms were discussed in great detail
in this review, and endorsed by the American Heart Association.
The genomic biomarker data compiled from the several studies
cited in Ganesh et al. (89) have therapeutic implications.

Relevance of Genomics in Chemical

Exposure-Induced CVD
Cigarette smoke causes changes to the genetic material (DNA
mutations) in smokers. These perturbations lead to smoking-
related CVD. Smoking-related DNA damage in CVD has been
reported to be manifested in different ways. The increase of
micronuclei was correlated with development of atherosclerosis.
Genomic instability (loss of heterozygosity and microsatellite
instability) was found in atherosclerotic plaques. Additionally,
DNAmismatch repair genes and nitric oxide synthase genes were
found to be differentially expressed (90). Microarray analysis
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of genes isolated from the peripheral blood mononuclear cells
showed 100 differentially expressed genes between cigarette
smokers and moist snuff consumers. Genes from most cigarette
smokers exhibited characteristic alterations in gene expression
related to immune pathways (91). As smoking is strongly linked
to CVD, studies like this help shortlist the possible biomarkers.

There are not many reports from human subjects that
could link toxicant-induced gene expressions to CVD. In such
cases, toxicant-gene signatures could be derived for widely
distributed environmental toxicants from the Comparative
Toxicogenomics Database (CTD; manually-curated information
on toxicant X gene interactions and toxicant X gene X disease
relationships). These toxicant-gene signatures could be linked
with differentially expressed genes derived from the Gene
Expression Omnibus Database (GEO; large gene expression data
repository). This approach could be used for different diseases,
including CVD (81, 85).

Epigenomics
DNAmethylation is the most well-known epigenetic regulator of
gene expression without a change in the DNA sequence (92–94).
DNA methylation is a biological process where a methyl group
is added to deoxycytosine bases to form deoxymethylcytosine at
mostly CpG sites (92). In the genome, regions with a high content
of CpGs are known as CpG islands, which are found in ∼ 50%
of gene promoters, regulatory regions of gene expression (93–
95). CpG island shores and shelves are sequences immediately
flanking and up to two and four kilobases upstream and
downstream of CpG islands, respectively (94). DNA methylation
is accomplished with enzymes called DNA methyltransferases
(DNMTs) (92, 94). These DNMTs transfer a methyl group from
the methyl donor, S-adenosyl-L-methionine (SAM), to form
5-methyl cytosine (5mC) at CpGs (92–94). De novo DNMTs
(DNMT3A and DNMT3B) adds the new methyl groups in
cytosines that were not previously methylated (96). DNMT1
is responsible for the maintenance of methylation patterns
during replication (97). DNA methylation is a dynamic and
reversible biochemical process. What this means is that methyl
groups at CpGs can be removed or demethylated and added.
Reversing DNA methylation process is mediated by the ten-
eleven translocation (TET) family enzymes-dependent oxidative
pathways (98, 99).

Changes in DNA methylation have been associated with
the biological and pathophysiological mechanisms of CVD
(100–109). Frequently, studies show an association of DNA
methylation of repetitive sequences such as LINE1 (>500,000
copies, accounting for about 20% of the genome (109) with
various types of CVD (100, 102–104, 110). A study of
cross-sectional and longitudinal analyses showed a significant
association of LINE-1 hypomethylation (lowering methylation)
with ischemic heart disease (Hazard ratio = 2.9, 95% CI = 1.3–
6.2), suggesting hypomethylation of LINE-1 may be an indicator
of risk for the disease (100). Similarly, myocardial infarction
risk was significantly associated with hypomethylation of LINE-
1 in men, but not in women (110). Consistently, an evidence-
based systemic review article from 12,648 individuals across
31 studies concluded that there is an inverse association of

global LINE1 methylation with CVD (103). In general, global
hypomethylation is linked to a heightened risk of CVD. In
contrast, a cross-sectional study of 420 Japanese subjects showed
significant positive associations of blood LINE-1 methylation
with the prevalence of dyslipidemia (102), which is a known risk
factor for CVD (104). This conflicting finding may be explained
by the difference in LINE-1 DNA methylation with other factors
associated with race/ethnicity (111).

With advances in technologies for DNAmethylation profiling,
molecular epidemiologic studies show an association of genome-
wide DNA methylation alterations with CVD (103, 105–
108). A meta-analysis from 11,461 individuals identified seven
differentially-methylated CpGs, annotated to DTX3L-PARP3,
NLRC5, and ABO (105). The first two genes were negatively
associated with circulating inflammatory cytokine, TNF-α
levels (105), indicating the potential of DNA methylation for
therapeutic applications. A systemic review found 34 CpGs
linked to CVD, including methylation at F2RL3, ABCA1,
KCNQ1, and C1QL4 (103).

In two large cohort studies, the Women’s Health Initiative
study (n = 2,129) and the Framingham Heart Study (n =

2,726), altered DNA methylation in three genes (SLC9A1,
SLC1A5, and TNRC6C) was significantly associated with CVD
risk (106). Further, these studies found a causal impact of
SLC1A5’s methylation on CVD (106). Gene-specific promoter
DNA methylation was altered in the blood of patients
with coronary artery disease, the most common CVD (107),
compared to controls. Another recent study identified over
60,000 CpGs to be differential methylation in ischemic
from non-ischemic cardiomyopathy (108). By integration of
genome-wide methylation data and gene expression profiling,
these studies found corresponding genes were enriched in
oxidative metabolism, anaerobic glycolysis, and altered cellular
remodeling (108).

Relevance of Epigenomics in Non-chemical

Exposure-Induced CVD
While chemical exposures are the most widely investigated
environmental factor linked to DNA methylation, non-chemical
exposures in the social environment also been found to impact
DNA methylation (112–117). Furthermore, neighborhood
environmental factors such as socioeconomic position or
socioeconomic status are known to be CVD risk factors
(118, 119). Thus, it is plausible that DNAmethylation may play a
mediator of the association between social exposure and CVD in
which DNA methylation alters stress and inflammation-related
biological pathways (120).

A study of 1,226 individuals of the Multi-Ethnic Study of
Atherosclerosis (MESA) study identified several differentially
methylated CpGs associated with multi-dimensions of
neighborhood characteristics (121). That study reported
socioeconomic disadvantages were significantly associated
with stress (CRF, SLC6A4) and inflammatory-related genes
[F8, TLR1. (121)] Neighborhood social environment measured
by aesthetic quality, safety, and social cohesion, also was found
to be associated with stress (AVP, BDNF, FKBP5, SLC6A4) and
inflammation-related genes [CCL1, CD1D, F8, KLRG1, NLRP12,
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SLAMF7, TLR1 (121)]. A study of a Mexican-American birth
cohort (n = 241) found a positive association of LINE-1
with living in the most impoverished neighborhoods, but no
association was found with socioeconomic status (122). Other
studies have shown that maternal social resources may alter
the imprinted MEG3 methylation of offspring, as measured in
newborns’ cord blood (123). Given that maternally expressed
MEG3 is a long-noncoding RNA playing a role in angiogenesis
and diabetes-related microvascular dysfunction (124), altered
MEG3 methylation under the prenatal condition may relate to
adult health such as CVD.

Relevance of Epigenomics in Chemical

Exposure-Induced CVD
DNA methylation also provides the potential for a biomarker of
exposure to reflect environmental and lifestyle risk factors and
a biomarker of effect to demonstrate susceptibility to exposure-
associated diseases. Although DNA methylation is structurally
stable by a covalent modification (123), it can be modified by
environmental exposure that leads to disease, including CVD or
increased risk for developing CVD (120–122, 125–136).

Numerous chemical and non-chemical exposures also have
been associated with both altered global and gene-specific DNA
methylation. The exposure triggers inflammatory gene activation
and oxidative stress leading to various types of CVD. Global
hypomethylation (LINE-1 or ALU) or gene-specific promoter
hypermethylation have been associated with chemical exposure
such as air pollution [ambient particulate matter (PM)] (109,
111–114, 125, 137–139), heavy metals (140–143), and tobacco
smoke (144, 145), as well as non-chemical exposures (109, 112–
114, 125, 146).

Air pollution has been associated with CVD and DNA
methylation suggesting an underlying biological process linking
air pollution and CVD. A cohort study of 718 elderly individuals
showed a negative relationship between PM2.5 and LINE-1
methylation [(β = −0.13, 95% CI, P = 0.001 (125)]. Another
study showed PM-induced hypomethylation of ALU and its
association with increased diastolic blood pressure (124). In
a recent large genome-wide association study (n = 8,397)
in the multi-racial/ethnic U.S. populations, three PM-sensitive
CpGs (MATN4, ARPP2, and CFTR) were found annotated to a
neurological, pulmonary, endocrine, or cardiovascular disease-
related gene (126). However, the finding was not replicated in
an independent dataset, comprised of white, European men and
women living in Germany, which may be due to the differences
in environmental diversity and/or other factors associated with
race/ethnicity (126).

Coagulation and inflammation are pathogenetic mechanisms
related to CVD (60). Methylation levels at a coagulation factor
III (F3) gene have been found to be significantly associated
with black carbon concentration while a significant decrease in
mediated effects of sulfate and ozone on ICAM-1 protein, a
putative early CVD risk marker have been found (127).

Heavy metals such as cadmium and arsenic also have been
linked to increased risk for CVD and cardiovascular mortality
(147, 148). Cadmium: An experimental animal study revealed
that lowering DNA methylation by the DNA methylation

inhibitor attenuates cadmium-induced cardiac contractile (128).
A genome-wide DNA methylation profile of 43 women
revealed associations of promoter methylation of GSTM and
COL1A2 with mercury exposure and lead, respectively (129).
A strong association of blood cadmium levels with MEG3
hypermethylation was observed in African American women
(β = 3.52, P = 0.01) compared to those in White women (β
= 1.24, P = 0.56) or Hispanic women [β = 1.18, P = 0.34
(130)]. Arsenic: Global hypomethylation measured by LINE-1
and ALU has been associated with increased arsenic exposure
(131). Exposure to arsenic in utero has been found to influence
over 550 CpGs in cord blood with enriched genes linked to CVD
(30) while plasma folate, a methyl donor nutrient, also has been
found to act as an effect modifier of the association (131).

Tobacco smoking has been identified as the primary risk
factor for CVD causing one of every four deaths from CVD
(149). A study of 934 individuals of the community-based Multi-
Ethnic Study of Atherosclerosis (MESA) revealed 176 CpGs
associated with urinary cotinine levels (133). A recent study
of 485 carotid endarterectomy patients identified four CpGs
corresponding to AHRR and ITPK1. Another large study (n= 16
cohorts, n = 15,907) found 2,623 smoking-linked CpGs with
some genes related to coronary heart disease (enrichment P =

0.0028) (134). Similarly, differential methylation in 211 CpGs
was found among individuals with a history of myocardial
infarction, and about 20% of corresponding genes are related
to cardiovascular function (135). Three CpGs located in ZFHX3
and SMARCA4 were associated with myocardial infarction, even
after adjusting for CVD risk factors (136). Interestingly, the
methylation levels of these CpGs seemed to be affected by single
nucleotide polymorphisms in these CpGs, indicating a cross-talk
between genetic and epigenetic factors (136).

Transcriptomics
In this section, we focus on how transcriptomics might
provide new opportunities for discovery that may lead to the
next generation of therapeutics and analytics for altering and
predicting negative cardiovascular disease trajectories. The term
transcriptomics refers to the collective methodology applied to
the study of RNA and of the RNA group as the transcriptome.
The most studied RNA group is represented by the messenger
RNAs (mRNAs) didactically defined as ribonucleotide sequences
that are complementary to the coding strand of the genomic
DNA (150). For an excellent review, please see (150).

Relevance of Transcriptomics in Non-chemical

Exposure-Induced CVD
For the purposes of this review, we will focus on long-noncoding
RNAs (lncRNAs), an RNA group that has stimulated much
discussion over the past two decades as potential biomarkers.
This heterogeneous group of lncRNAs are responsible for
the regulation of gene expression at both the transcriptional
and post transcriptional levels (151). lncRNAs were first
characterized in breast cancer studies and have only recently
been applied to cardiometabolic diseases (152). A seminal
study demonstrated that the myocardial transcriptome is
dynamically regulated in advanced heart failure and that
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lncRNAs expression profiling can be used to discern adverse
outcome pathways in compromised hearts (153). Subsequent
studies have utilized microarray technology to interrogate
plasma samples in patients that had either undergone (or
not) left ventricular remodeling after myocardial infarction.
These studies identified a mitochondrial lncRNA LIPCAR
as a potential biomarker of developmental processes in
myocardial infarction patients, with additional association with
cardiovascular death, independent of other risk factors (154).
These studies and others laid the foundation for currently
accepted hypotheses that lncRNAs have significant regulatory
roles in cardiac pathophysiology and a potential prognostic
indicator of cardiovascular disease development (155).

When discussing the myriad of diseases that fall under the
broad cardiovascular designation of acute myocardial infarction
(AMI), it is particularly relevant to note the disproportionality
of this diagnosis in susceptible and vulnerable populations
where there is hypothesized to be a place-based, disparate
health outcome (156). AMI is a sudden cardiovascular event
that stimulates remodeling of the myometrium and often
leads to heart failure particularly in susceptible and vulnerable
populations (149). In order to mitigate the observed mortality
in this population, a therapeutic strategy is needed with a facile
diagnosis that is both specific and sensitive. Just as various
proteins are released subsequent to acute myocardial infarction
(such as creatinine kinase and troponin C), as reviewed by
Viereck et al. (157), it is likely that heart tissue damage causes an
additional release of ncRNAs analogous to the release of proteins.
As in the documented cases for established biomarkers such
as circulating miRNAs, lncRNAs, and most probably, circular
lncRNAs present as viable prospects that likely reflect cardiac
myometrial injury, potential involvement of other organ systems,
and cumulative cardiometabolic trajectory of the patient (158).
lncRNA with strong diagnostic and prognostic relevance are

presented in Table 1 (adapted from with permission from the
authors; Viereck et al. (157).

This study reported that global lncRNA profiling from
plasma was conducted in patients with left ventricular cardiac
remodeling after AMI enumerated a mitochondrial transcript,
referred to as long intergenic ncRNA predicting cardiac
remodeling (LIPCAR), long (154). This study demonstrated the
predictive power of LIPCAR as a biomarker and giving promise
to this class of RNSa. It previously has been established that,
MYHEART (myosin heavy-chain–associated RNA transcript), a
lncRNA that protects the heart from hypertrophic remodeling,
was upregulated in AMI patients as compared with control
patients and has a positive correlation with a well-known cardiac
injury marker UCA1 (urothelial carcinoma-associated 1) that
was downregulated shortly after AMI development (159).

Relevance of Transcriptomics in Chemical

Exposure-Induced CVD
There are limited transcriptomic biomarker studies in human
subjects exposed to toxicants. Most of the studies pertaining to
development of transcriptomic biomarkers have been carried out
in animal models, which we have not addressed here as it is
beyond the scope of this review. In complex exposure scenarios
such as exposure to cigarette smoke or particulate matter, which
contain a variety of toxicants, exposure assessment on the basis
of transcriptomics is rather difficult. This is because multiple
toxicants in the mixture elicit expression of the same marker
making interpretations complicated (160).

In one human study of toxic exposures, Charlesworth et al.
(161) reported the genome-wide quantitative transcriptional
profiles from lymphocytes of non-smokers and smokers. After
adjusting for residual genetic effects, 323 unique genes were
identified whose expression levels were significantly correlated
with smoking behavior. Most of the genes were linked to

TABLE 1 | LncRNA biomarker in cardiovascular disease and injury.

Disease LncRNA Regulation Purpose Normalization Controls Cases Event Rate

(Follow-Up Time)

AMI UCA1 Biphasic Diagnostic U6 snRNA 15 49 AMI

LIPCAR Biphasic Diagnostic/prognostic:

death

or LV remodeling

Cell-miR-39 246 AMI, 344 HF LV remodeling:

38.5% (1 y)

MYHEART ↑ Diagnostic 5S rRNA 28 47 AMI

CAD CoroMarker ↑ Diagnostic B-actin 20 20 CAD

CoroMarker ↑ Diagnostic Internal control 187 221 CAD

LncPPARδ ↑ Diagnostic Gapdh 171*† 211 CAD

HEM Uc004cov.4 ↑ Diagnostic Cell-miR-39 26 28 HNCM, 57 HOCM

Uc022bqu.1 ↑ Diagnostic Cell-miR-39 26 28 HNCM, 57 HOCM

HF SENCR ↑ Diagnostic Cell-miR-39 12 78 Type 2 diabetes

mellitus

*† Indicates if controls have been matched to age and sex.

AMI, acute myocardial infarction; CAD, coronary artery disease; CCS, case-control study; HCM, hypertrophic cardio-myopathy; HF, heart failure; HNCM, hypertrophic nonobstructive

cardiomyopathy; HOCM, hypertrophic obstructive cardiomyopathy; LIPCAR, long intergenic ncRNA predicting cardiac remodeling; lncRNA, long noncoding RNA; LV, left ventricle;

MYHEART, myosin heavy-chain–associated RNA transcript; N/A, not available; rRNA, ribosomal RNA; SENCR, smooth muscle and endothelial cell–enriched migration/differentiation–

associated long noncoding RNA; snRNA, small nuclear RNA; and UCA1, urothelial carcinoma-associated 1. Reprinted in partial form with permission from the author.
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pathways associated with immune response, cell death, natural
killer cell signaling, and toxicant metabolism. Some of the genes
associated with the affected pathways were linked to CVD.
Additionally, some genes that were slated for testing in non-
chemical exposure settings could also be used in a variety of
chemical exposure settings.

Proteomics
Proteomics is the study of large-scale expression, function and
interaction of proteins of an individual in healthy or disease
states (162). Environmental toxicants, drugs, diet etc. react with
proteins in several ways, including the formation of adducts,
alteration of phosphorylation status (phorbol esters), alteration
of thiols (ROS), and conversion of side chains to aldehyde
or ketone groups (ROS) [reviewed in Dowling and Shehan
(163)]. All these interactions lead to change in specific levels of
proteins, which could be used as biomarkers. In regard to CVD,
the perturbations to cellular protein homeostasis (proteostasis)
caused by diet, obesity and stress (164) and environmentally-
induced ‘wear and tear’ (165) leads to senescence of cardiac cells.
For characterizing markers associated with aging of cardiac cells
and CVD, the power of recent technological developments in the
field of proteomics should shortly allow for the identification and
validation of hitherto unknown biomarkers.

Relevance of Proteomics in Non-chemical

Exposure-Induced CVD
In addition to traditional biomarkers used for CVD such as c-
reactive protein and fibrinogen (166), there are a plethora of
proteins associated with cardiovascular physiology that could
serve as biomarkers in a non-chemical exposure situation. Studies
conducted with heart muscle cells have revealed key pathway-
associated proteins that could serve as markers of non-chemical
exposures. The protein kinase C (PKC) is one of the key
molecules involved in cell signaling through endothelial nitric
oxide synthase (NOS) and Akt signaling that has been suggested
as a marker (167). Similarly, proteins involved in mitochondrial
signaling in the myocardium of different cardiac phenotypes
are reflected in stress response and energy metabolism in
mitochondria. Abnormalities in profiles of elastin and collagen
involved in arterial wall dilation are other potential markers
of vascular injury (166). The inhibition of leucocyte adhesion
molecule and caveolins are indicative of endothelial dysfunction
and could serve as markers for atherosclerotic disease (166).
Troponin, associated with cardiac muscle contraction is another
potential biomarker for myocardial injury (166).

In the Framingham Heart Study, a discovery proteomic
platform was used to target 85 circulating protein biomarkers
and identify risk for cardiovascular disorders (168). The
researchers shortlisted key biomarkers on the basis of their
association with atherosclerotic CVD. Among the biomarkers
reported, leptin and N-terminal pro-b-type natriuretic peptide
were associated with incident heart failure. Cardiovascular and
cardiometabolic mortalities were associated with arabinogalactan
protein 1 (AGP1), C-type lectin domain family 3 member
B (CLEC3B; tetranectin), cystatin-C, kallikrein B1 (KLKB1),
insulin-like growth factor 1, N-terminal pro-b-type natriuretic

peptide, peripheral myelin protein 2 (PMP2), soluble receptor for
advanced glycation end products (sRAGE), and uncarboxylated
matrix Gla protein (UCMGP) (168). Studies in a multi-ethnic
cohort revealed a positive association between glycosylated
acute phase protein (GlycA: a novel biomarker of systemic
inflammation) and suboptimal cardiovascular health (169). Study
results indicated that GlycA, derived from glycosylation of
major acute inflammatory proteins and a stable biomarker
of systemic inflammation compared to other markers (167,
170) could be deployed for biomonitoring populations that
have different lifestyles (dietary preferences, smoking etc.) or
experience chemical exposures (occupational workers).

Relevance of Proteomics in Chemical

Exposure-Induced CVD
Persons who are occupationally exposed to environmental heavy
metal toxicants such as Pb, Cd and As, individually or in
mixtures, are at increased risk for developing CVD and renal
diseases (166). Poreba et al. (171) reported that occupational
exposure to lead causes cardiac dysfunction and hypertension
and suggested the use of cystatin C in serum as a prognostic
marker for CVD.

In a population-based proteomics study, Borné et al. (172)
examined the association between blood cadmium levels and 88
potential protein biomarkers for CVD. Their findings revealed
that tumor necrosis factor receptor-2, matrix metalloproteinase-
12, cathepsin L1, urokinase plasminogen activator receptor, and
chemokine (C-X3-C motif) ligand-1 proteins were associated
with blood cadmium in non- smokers and long-term former
smokers and were significantly associated with incidence of
CVD. These marker proteins suggest likely pathways by
which cadmium exposure contributes to the development and
promotion of CVD.

Similarly, chimney sweeps, who are occupationally exposed
to particulate matter and PAHs, were reported to have CVD-
related proteins [protein-glutamine gamma-glutamyltransferase
2 (TGM2), glyoxalase I (GLO1), NF-kappa-B essential modulator
(NEMO), follistatin (FS), prointerleukin-16 (IL-16), and heat
shock protein beta-1 (HSP 27)] in their sera. These serum
protein markers also showed a positive association with the
monohydroxylated metabolites of PAHs (173). Some of these
proteins were correlated with homocysteine and cholesterol.
Elevated level of homocysteine has been previously established
as a risk factor for CVD by inducing endothelial damage
and causing vasoconstriction by reducing the levels of nitric
oxide, which is a vasodilator (174). Exposure to PAHs also may
have induced oxidative stress in chimney sweeps, which could
lead to endothelial dysfunction and inflammation resulting in
atherosclerosis and hypertension (175). The increased expression
of GLO1, NEMO, FS, and HSP 27 in chimney sweeps could
be a compensatory response against PAH-induced oxidative
damage (173).

In another occupational exposure study involving coke oven
workers, blood concentrations of serum amyloid A (SAA), an
acute phase inflammatory marker protein, was correlated to 1
hydroxypyrene, a biomarker of long-term PAH exposure (176).
Since SAA contributes to atherosclerotic plaque formation (177),
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it could be used as a predictive biomarker of CVD risk in
humans (178).

Metabolomics
Metabolomics research which comprise both exogenous and
endogenous metabolites has gained momentum in recent
years. Metabolomics provide a comprehensive picture of the
metabolite concentrations in the body in response to any
kind of pathophysiological stimuli or genetic modifications
(179, 180). Exogenous metabolites are related to diet and
medicine intake whereas endogenous metabolites are produced
as a result of several metabolic processes that occur in either
a healthy or diseased state. Both categories of metabolites
serve as novel biomarkers: the exogenous for dietary habits
and therapeutic compliance and the endogenous for disease
processes (180). Metabolomics provides an ideal platform
for integrating genomic, lipidomic, epigenetic, transcriptomic
and proteomic variations in an individual, notwithstanding
the inherited genetic variations among individuals. It also is
responsive to environmental exposures (toxicants), dietary and
lifestyle (physical activity, smoking etc.) factors (181).

Relevance of Metabolomics in Non-chemical

Exposure-Induced CVD
Thirteen identified—and four unidentifiedmetabolites associated
with altered lipid metabolism were recorded among White and
African-American participants of the Bogalusa Heart Study
(182). An association of metabolites with lipids provide insight
into mechanisms that underlie lipid regulation and have
implications for identifying new biomarkers for dyslipidemia,
a major risk factor for cardiovascular disease. In the BHS
cohort, five metabolites were reported to be associated
with left ventricular diastolic dysfunction. Study findings
also implicated the biological pathways underlying serum
metabolome associated with heart failure (183). Another study
revealed dysregulated metabolism in patients with coronary
heart disease (CHD). The metabolic profile was indicative of
reduced phospholipid metabolism and increased monoglyceride
and abnormal fatty acid metabolism. The metabolites linked to
the altered metabolic pathways are potential plasma biomarkers
for diagnosis of CHD (184).

Relevance of Metabolomics in Chemical

Exposure-Induced CVD
In recent years, high-resolution metabolomics (HRM) has been
used to relate internal exposure of participants to complex
traffic-related air pollution mixtures (185). In one study,
plasma and saliva samples collected from the participants and
subjected to HRM revealed differences in endogenous signaling
processes that were related to oxidative stress, inflammation,
nucleic acid damage, and repair. Such studies underscore the
importance of untargeted HRM in the development of metabolic
biomarkers for exposure and response to pollution arising from
particulate matter.

The metabolomics approach has been successfully employed
for identifying metabolic disorders associated with PM2.5 in
human lung cells (186). Exposure to PM2.5 was found to alter

sphingolipidmetabolism and expression of key enzymes involved
in this process. Additionally, PM2.5 exposure was found to induce
the secretion of pro-inflammatory cytokines, which, along with
the altered endogenous metabolites could serve as biomarkers of
effect at the metabolic level.

An exhaustive review by Bonvallot et al. (187) revealed
that in addition to PM2.5, diverse groups of toxicants such as
PAHs, heavy metals, organochlorine compounds, and plasticizers
affect common metabolic pathways. Ambient and occupational
exposures to these toxicants lead to disruption of signaling
pathways associated with inflammation and oxidative stress,
which are drivers of atherosclerosis and metabolic disorders
(188). However, to apply biomarkers derived frommetabolomics
on a population level, more research is needed to validate
these biomarkers in different groups of similarly exposed
population (189).

Lipidomics
Lipidomics, an offshoot of metabolomics, denotes the study
of global lipid and lipid derivative profiles (separation and
identification) in biological fluids. Similar to metabolomics,
lipidomics entails a high-throughput approach. Lipidomics
serves to identify the involvement of lipids in inflammatory
processes, immune system regulation, cell signaling, and onset
of diseases. Knowledge gained from altered lipid profiles could
be used to introduce lipid mediators (drugs to lower the lipid
levels) in different inflammatory and metabolic conditions (190).
A lipidomics approach is very powerful as it enables identification
of hundreds of lipid species that could be tied to cardiovascular
risk, including obesity, and diabetes diseases in a population
setting (191).

Relevance of Lipidomics in Non-chemical

Exposure-Induced CVD
In individuals who are not exposed to toxicants, but are at risk
for CVD due to their lifestyle habits (diet and smoking), lipid
profiles in plasma and erythrocyte membranes are potential
biomarkers. Non-alcoholic fatty liver disease (NAFLD) share
common features such as inflammation and excess lipid
accumulation with other cardiometabolic diseases and could
serve as disease markers (192). In a study of adolescent CVD
population-based samples, Syme et al. (193) found several
novel glycerophosphocoline (a glycerolipid) subtypes associated
with CVD risk factors, including excess visceral fat, fasting
insulin, and triacylglycerol levels. Plasma samples obtained
from a population-based study found cholesterol esters (CEs),
lysophosphatidylcholines, phosphatidylcholines, phosphatidyl-
ethanolamines (PEs), sphingomyelins, and triacylglycerols
(TAGs) were associated with CVD. Of these, TAGs and CE
have the strongest predictive value for CVD and offer promise
as new biomarkers that could outperform the lipid classes that
currently are being used (194). Lipidomic profiles associated
with high LDL-C and triglycerides also have been identified
as biomarkers common to both familial hyperlipidemia and
population-based hyperlipidemia indicating their robustness
in providing molecular lipid signatures for coronary artery
disease (195).
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Relevance of Lipidomics in Chemical

Exposure-Induced CVD
In a study of PM2.5 -induced cytotoxicity to human lung cells,
nineteen lipids were found to be increased and three decreased
as a result of PM exposure, suggesting lipotoxicity. In a recent
epidemiological study by Zhang et al. (196), PM2.5 exposure was
found to cause inflammation and alterations in lipids associated
with atherosclerosis. The findings of this study suggest that
inflammation promoted plaque accumulation that was initiated
through lipid dysregulation.

In a cohort of patients with chronic obstructive pulmonary
lung disease (COPD), and suspected cardiac issues, an increase
in glycerol (phospho) lipids including triglycerols, decrease in
ω-3 polyunsaturated fatty acids, imbalance in eicosanoids and
decrease in hydroxyoctadecadienoic acids, was noted in smokers
(197). Since these lipids also play an important role in CVD,
alterations in observed lipid profiles could be expected in people
suffering from CVD. Lipids from exhaled breath condensate
(EBC) collected could also serve as biomarkers to distinguish
between healthy people and those who are at risk for lung
and heart diseases due to their smoking habits. In a study
using EBC, products of major arachidonic acid lipoxygenation
and cyclooxygenation pathways were found to be elevated in
smokers. As these compounds are markers of inflammation, their
concentrations in serum are indicative of lung and cardiovascular
health issues (198).

Aside from epidemiologic studies, the utility of lipids as
biomarkers have been explored in human cell lines exposed to
toxicant mixtures such as cadmium and benzo(a)pyrene (199).
Even though some lipidomic studies were conducted in animal
models that mimic human exposure to toxicants, the data derived
from such studies provide clues about the different classes of
lipids that are enriched in coronary artery plaques in humans.
This information will be useful for identifying a set of lipid
biomarkers in human studies (200).

DISCUSSION

Research of biomarkers, and their relationship to CVD onset,
progression and outcomes remain largely in its infancy.
Incorporating the use of biomarkers of exposure, effect, and
disease susceptibility into the current lexicon of CVD, over the
long term, should contribute significantly to our understanding
of cardiac pathophysiology and enable more contemporary,
accurate cumulative risk stratification, diagnosis, and prognosis
of cardiovascular disease and injury.

FUTURE DIRECTIONS

Known clinical risk factors for cardiovascular and/or
cardiometabolic disease are only able to account for a fraction
of the decline in the trajectory in people that have been
diagnosed. Clinical variables by themselves may not be sufficient
to discriminate between fast progressing and stable states of
cardiovascular and cardiometabolic diseases, whereas a duality
of protein markers and clinical measures, may contribute to a

more robust discrimination of CVD trajectories (201). Going
forward, the use of Big Data to Knowledge (BD2K), an exposome
paradigm, and computational, Bayesian, and spatial temporal
approaches offer tremendous promise in identifying biomarkers
of subclinical, cardiovascular/cardiometabolic disease, informing
novel diagnostic and treatment options, and informing public
and environmental health policy (Figure 4). The purpose of such
studies will be to determine if biomarkers of exposure, effect, or
disease susceptibility might enhance prediction of future disease
trajectories and provide earlier opportunities for intervention.

Sequencing and alignment of BD2K technologies in concert
with large, novel, datasets that are harmonized within the context
of multiple and longitudinal OMICS data and exposures from
the natural, built, physical, and social environment holds great
promise for the robust identification of cardiovascular/cardio-
metabolic subclinical risk markers and our ability to discriminate
cardio-metabolic trajectories in early stage patients with sub-
clinical risk factors (201–203). They also are likely to provide new
opportunities for completing exposures pathways, from source
of exposure in the external environment to disease outcome,
to population-level disparities. An exposomics approach should
allow us to identify how and why people who live or spend
time in certain communities experience disparate rates of
CVD and other diseases. Implications of this are that it
should also allow us to identify locations of place based
environmental stressors associated with CVD and other diseases,
and initiate actions to mitigate or protect individuals from
adverse effects. Within the next half-decade, cross-omics
technologies will afford opportunities to identify biomarkers
for refining sub-clinical diagnosis among vulnerable subsets
of patients and translate findings into clinical and policy
interventions (204).

One emerging area of inquiry pertaining to CVD is
integrated omics, that could immensely benefit from the recent
developments in systems biology. The concept of integrated
omics, also referred to as multi-omics, poly-omics, trans-
omics and pan-omics includes integration of multi-dimensional
omics data to provide a holistic assessment of a disease
in question (205). This is an exciting approach to embrace
because the etiology of some diseases is complicated as there
are several causative factors. Additionally, applying one set of
omics data may provide correlative information or associations
resulting from reactive processes, while the causative processes
go unaddressed (206, 207). Therefore, adopting a multi-omics
approach is beneficial as it provides mechanistic insights into
some complex diseases, which develop over time as a result of
gene X environment interactions. In regard to CVD, there are
some multi-omics studies, which were summarized by Leon-
Mimila et al. (208). The subjects in these studies included patients
suffering from various type of CVD such as coronary artery
disease, dilated cardiomyopathy, congestive heart failure, and
participants from the Framingham Heart Study etc. The omics
strategies employed included various combinations of genomics,
transcriptomics, epigenomics lipidomics, and proteomics.

The advantages notwithstanding, integrated omics approach
has its own set of challenges. Each omics data set has its own
complexity and completeness. Added to this, the quality of output
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FIGURE 4 | Graphical representation of a Population Level Cardiovascular Risk Trajectory Model derived from the use of Public Health Exposome 4.0 framework and

combinatorial algorithm tool chain with input from cross-omics technologies. The model demonstrates how baseline incidence of cardiovascular risk might interact

with chemical and non-chemical stressor exposures. This example shows how in African Americans, reducing PM2.5 exposures with a healthy diet, regular exercise,

and socioeconomic status may combine to decrease the overall risk of CVD.

from each analytical platform, lack of standard nomenclature,
heterogeneity of data, handling large data volumes, data
archiving and sharing with public are other issues (205). The
recent developments in bioinformatics and big data (the BD2K
technologies mentioned above) could resolve most of these
issues. While the multi-omics approaches are promising to probe
into the causative factors of CVD, more studies are needed to
exploit the full potential of metabolomics and lipidomics in
combination with other omics technologies for the identification
of novel biomarkers that could be used in clinical settings and to
inform environmental policy.

Another research area that deserves mention in biomarker
development and deployment for assessing CVD risk from an
integrated omics perspective is the microbiome. Gut microbiota
has been implicated in development of cardiovascular disease.
The microbiota interferes with the host metabolic pathways,
resulting in obesity and insulin resistance, which increase
the risk for cardiometabolic disorders [reviewed in (209)
including atherosclerosis (210)]. Studies conducted on patients
with coronary artery disease (CAD) showed differences in
composition of gut microbial community and disease sub-types.
Aside from the composition of gut microbes, the metabolites
generated by these microbes also showed a significant association
with severity of CAD (211). Additionally, metabolomic studies
done with gut- and serummicrobiome of atherosclerotic patients
revealed that microbes play an important role in the progression

of atherosclerosis (212). The studies of Liu et al. (211) and Kappel
et al. (212) clearly indicated that the metabolites produced by the
gut microbes could serve as prognostic markers for CVD risk.
From the standpoint of health disparities, microbiome plays a key
role as it influences the biological processes that are shaped by
social and environmental factors. Integration of these processes
and factors and translating the findings to communities is a
major challenge, but not insurmountable (213). Therefore, in
the context of obtaining a holistic view of human phenotypes
and disease, incorporation of microbiome in integrative omics is
beneficial to gain a thorough understanding of the disease (81).

LIMITATIONS

One major limitation with biomarker studies is that a majority
of these studies have not yet been validated. In studies involving
large cohorts and multi-dimensional high throughput omics
studies, reproducibility, and false positive results pose an issue
(212). Typically, an ideal biomarker has to fulfill three criteria
of validity, which include content validity (the extent to which
a biomarker represents the biological phenomenon studied),
construct validity (disease characteristics and manifestations),
and criterion validity (the degree to which the said biomarker
correlates with the disease) to be considered as a robust one
(214). Going by these criteria, we do not yet know how many of

Frontiers in Public Health | www.frontiersin.org 13 August 2020 | Volume 8 | Article 379

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Juarez et al. The Exposome and Cardiovascular Disease

the biomarker studies could pass the muster. Additionally, the
likelihood of categorizing biomarkers as biomarkers of exposure
or susceptibility by some investigators may be interpreted
by others as biomarkers of effect (disease outcome). In
other words, the designation of biomarkers as prognostic or
diagnostic ones remain blurred (214, 215). In clinical settings,
biomarker validation requires concordance between biological
and clinical endpoints, disease diagnosis and disease staging etc.
to enhance the utility of these markers in therapeutic applications
(215). From a health disparities standpoint, there is a dearth
of information on specific omics-related studies in African-
American, Hispanic and Native American populations. The lack
of information on validation details could be one of the key
reasons why the omics approaches have not yet moved into clinic.
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