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Abstract: The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and
other sugars. While much is known about glucose metabolism, relatively little is known about the
receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose
receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors),
while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in
coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements
of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems
have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and
energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids,
cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor,
while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways.
Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of
glucose-dependent signal transduction in yeast.

Keywords: metabolomics; transcriptomics; G-protein-coupled receptor; transceptor; G protein; RAS;
glucose; yeast

1. Introduction

Most eukaryotic organisms use glucose as the principal source of carbon and energy.
Changes in glucose availability result in important metabolic and transcriptional changes
that dictate the transition between respiratory and fermentative metabolism [1–4]. Among
the best understood systems is that of the yeast Saccharomyces cerevisiae (meaning “sugar fun-
gus” and “beer”). Biochemical studies of yeast fermentation led to the discovery of enzymes
(meaning “in yeast”) and the founding of biochemistry as a distinct scientific discipline.

While the details of glucose metabolism are well understood, we know compara-
tively little about changes in signal transduction and cellular metabolism in response to
glucose availability. These include changes attributed to glucose binding to cell surface
receptors and activation of signaling pathways immediately downstream of the recep-
tor but upstream of glycolysis. In this instance, an increase in glucose is transmitted by
two distinct processes (Figure 1). In the first, glucose is detected by a G-protein-coupled
receptor (GPCR) known as Gpr1 and transmitted through G protein α and β subunits,
named Gpa2 and Asc1 respectively [5–13]. Glucose also activates the small G proteins Ras1
and Ras2, through the action of guanine nucleotide exchange factors [14–20]. In contrast
to ras2∆ however, ras1∆ has no observed phenotype under standard laboratory growth

Biomolecules 2022, 12, 175. https://doi.org/10.3390/biom12020175 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12020175
https://doi.org/10.3390/biom12020175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-4658-9765
https://orcid.org/0000-0002-4807-2578
https://orcid.org/0000-0003-2443-0729
https://doi.org/10.3390/biom12020175
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12020175?type=check_update&version=1


Biomolecules 2022, 12, 175 2 of 26

conditions [21]. Collectively [22–33], these proteins activate the effector enzyme adenylyl
cyclase [24,34–36] leading to an increase in cellular cAMP [9,26,37]. This second messenger
binds directly to protein kinase A, which goes on to phosphorylate multiple intracellular
proteins involved in glucose uptake, metabolism and storage [38–44].
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Figure 1. Glucose-sensing pathways in yeast. Two receptor pathways in S. cerevisiae respond to
glucose availability. Gpr1 transmits its signal through the large G-protein Gpa2 [5–7,9–11] while Cdc25
and Sdc25 activate the small G-proteins Ras1 and Ras2. The transceptors Snf3 and Rgt2 recruit the
protein kinases Yck1 and Yck2 as well as the transcription corepressors Mth1 and Std1 [45–49]. GPCR:
G-protein coupled receptor; GAP: GTPase activating protein; GEF: guanine nucleotide exchange
factor; AC: adenylyl cyclase; PDE: phosphodiesterase; TF: transcription factor; CKI: casein kinase I;
PKA: protein kinase A.

The second glucose-sensing system consists of the cell surface proteins Snf3 and Rgt2.
Although they resemble glucose transporters, Snf3 and Rgt2 appear to have lost their
transporter function and instead serve exclusively as receptor or “transceptor” proteins.
Following glucose addition [45–47], Snf3 and Rgt2 recruit the Type I casein kinases Yck1
and Yck2 as well as the transcription corepressors Mth1 and Std1 [48,49]. Subsequent
phosphorylation of these factors results in their ubiquitination and degradation [50–52];
this derepresses genes encoding hexose transporters and promotes the uptake of the
newly available sugars [47,53–62]. Here, we compare the function of the two glucose
signaling pathways. In particular, we employ transcriptomics and metabolomics to provide
a comprehensive view of the cellular response to glucose. Our analysis reveals new and
complementary functions for the two glucose sensing receptors and an unexpected role for
Ras2 as an integrator of these two receptor pathways.

2. Materials and Methods
2.1. Yeast Strains

The prototrophic (wildtype) strain used throughout was constructed from BY4741
(MATa his3∆1 leu2∆0 met15∆0 ura3∆0). HIS3, LEU2, MET15 and URA3 were integrated
at the endogenous loci with sequence amplified by PCR from S288C strain DNA. All
single mutants (gpr1∆, gpa2∆, ras1∆, ras2∆, snf3∆ rgt2∆) were constructed by transforming
the wildtype strain with corresponding sequence from the Yeast Knock-Out collection
that replaces the target gene with KanMX4 [63]. The snf3∆ rgt2∆ double mutant was
constructed by switching the mating type of snf3 from MATa to MATα, with HO expressed
from a plasmid, and then mating to an isogenic rgt2 strain. The diploid was then sporulated
and spore products with the snf3∆ rgt2∆ double knock-out were confirmed with PCR.

Cells maintained at 30 ◦C in Synthetic Complete (SC) (2% glucose) medium were
centrifuged and washed twice and then resuspended into 10 mL SC (0.05% glucose) and
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cultivated for 1 h. For high and low glucose treatment, 245 µL of 65.5% or 0.05% glucose
was added to 10 mL cell culture respectively, each for exactly 2 min (metabolomics) or
10 min (transcriptomics). Subsequent analysis was performed as described previously [13],
and as summarized below.

2.2. Sample Preparation for RNA-seq

500 µL of cell culture was centrifuged at 1000× g for 1 min at 4 ◦C; the resulting cell
pellet was flash frozen by liquid nitrogen. Cells stored at −80 ◦C were resuspended with
600 µL buffer RLT 1% (v/v) 2-mercaptoethanol from the QIAGEN RNeasy Mini Kit (Cat
No.: 74106), transferred to 2 mL OMNI prefilled ceramic bead tubes (SKU: 19-632), loaded
onto an OMNI Bead Mill Homogenizer (SKU:19-040E) and agitated three times at 5 m/s
for 1 min at 4 ◦C while cooled on ice for 3 min between each cycle. The resulting lysate was
clarified by centrifugation at 11,000× g and used for total RNA extraction with QIAGEN
RNeasy Mini Kit (Cat No.: 74106) with on-column DNase digestion. Extracted total RNA
for each sample was evaluated for purity and quantified with the Qubit RNA HS Assay
kit (Cat No.: Q32855) and an Invitrogen Qubit 2.0 Fluorometer (Cat No.: Q32866), each
according to manufacturer’s instructions.

RNA libraries were prepared with Kapa stranded mRNA-seq kits, with KAPA mRNA
Capture Beads (KAPA code: KK8421; Roche Cat No.: 07962207001) through the UNC High
Throughput Sequencing Facility. All procedures were according to manufacturer’s instructions.

2.3. RNA Sequence Analysis

Quality of raw sequence was checked with the FASTQC algorithm (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 29 July 2020). Sequence
alignment to genome indices, generated based on Saccharomyces cerevisiae data downloaded
from Ensembl.org, was performed with the STAR algorithm [64]. Quantification on the
transcriptome level was performed with the SALMON algorithm [65]. Differences in
transcript abundance were determined using a negative binomial generalized linear model
in DESeq2 package in R [66,67]. Differentially Expressed Genes (DEGs) were defined as
having adjusted p-value < 0.05, absolute log2 fold-change >1 and baseMean >100. A series
of baseMean thresholds have been tested, including 0, 50 and 100. The conclusion remains
unchanged. Therefore, the most stringent threshold (baseMean >100, which filters out
>20% of genes) was chosen for data analysis.

PCA analysis was performed using the internal PCA function of DESeq2 package with
variance stabilizing transformation (vst) normalized data.

2.4. Transcriptomics Pathway Enrichment Analysis and Over-Representation Analysis

Pathway enrichment analysis for transcriptomics data was performed with Cluster-
Profiler package in R [68]; Log2 fold-change for each comparison (mutantH vs. wtH)
was extracted from corresponding DESeq2 analysis. GSEA analysis was then performed
with gseKEGG function, with organism set to ‘sce’ (Saccharomyces cerevisiae), permutation
number set to 1000, minimal and maximal size for each analyzed geneset as 3 and 200,
p-value cutoff set to 0.05, p-value adjustment method set to ‘BH’ (Benjamini–Hochberg).

Over-representation analysis for the corresponding subsection of the Venn diagram was
performed with the enrichKEGG function in the ClusterProfiler package, with organism set to
‘sce’ (Saccharomyces cerevisiae), minimal and maximal size for each analyzed geneset as 3 and 200,
p-value cutoff set to 0.05, p-value adjustment method set to ‘BH’ (Benjamini–Hochberg).

2.5. Sample Preparation for Metabolomics

Three millilitres of cell culture was mixed with 45 mL cold pure methanol on dry ice
and after 5 min centrifuged in a precooled rotor (−80 ◦C). Cell pellets were stored at−80 ◦C
and resuspended with extraction reagent (8:2 methanol-water solution) to 3 × 108 cell/mL,
transferred to 2 mL ceramic bead MagNalyser tubes and subjected to homogenization with
Bead Ruptor Elite Bead Mill Homogenizer (OMNI International, Singapore) at 6.0 m/s for

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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40 s in two cycles at room temperature. This homogenization step was repeated twice. After
centrifugation at 16,000× g for 10 min at 4 ◦C, 500 µL of the supernatant was transferred
into low-bind 1.7 mL microfuge tubes. Total pools were made by combining an additional
65 µL of the supernatant from each sample and then aliquoting this mixture into low-bind
1.7 mL tubes at a volume of 500 µL. Samples and blanks were dried using a speedvac
vacuum concentrator overnight. Following storage at −80 ◦C, samples were resuspended
in 100 µL reconstitution buffer (95:5 water:methanol with 500 ng/mL tryptophan d-5),
vortexed at 5000 rpm for 10 min, and then centrifuged at room temperature at 16,000× g
for 4 min. Supernatant was transferred into autosampler vials for LC-MS.

2.6. UHPLC High-Resolution Orbitrap MS Metabolomics Data Acquisition

Metabolomics data were acquired on a Vanquish UHPLC system coupled to a QEx-
active HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer (ThermoFisher Scientific,
San Jose, CA, USA), as described previously [69]. Our UPLC–MS reversed phase platform
was established based on published methods [70,71]. Metabolites were separated using an
HSS T3 C18 column (2.1 mm × 100 mm, 1.7 µm, Waters Corporation, Milford, MA, USA)
at 50 ◦C with binary mobile phase of water (A) and methanol (B), each containing 0.1%
formic acid (v/v). The UHPLC linear gradient started from 2% B, and increased to 100% B
in 16 min, then held for 4 min, with the flow rate at 400 µL/min. The untargeted data were
acquired in positive mode from 70 to 1050 m/z using the data-dependent acquisition mode.

2.7. Metabolomics Data Normalization and Filtration

Progenesis QI (version 2.1, Waters Corporation) was used for peak picking, alignment,
and normalization as described previously [69]. Samples were randomized and run within
two batches with blanks and pools interspersed at a rate of 10%. Starting from the un-
normalized data for each of the batch runs, the data were filtered so as to only include
signals with an average intensity fold change of 3.0 or greater in the total pools compared
to the blanks. Individual samples (including pools, blanks, and study samples) were then
normalized to a reference sample that was selected by Progenesis from the total pools via
a function named “normalize to all”. Signals were then excluded that were significantly
different between pools of batch 1 and pools of batch 2 based on an ANOVA comparison
calculated in Progenesis (q < 0.05). After normalization and filtration, 2397 signals passed
the QC procedures and were used for further analysis.

The filtered and normalized data were mean-centered and Pareto-scaled prior to
conducting the unsupervised principal component analysis using the ropls R package.

2.8. In-House Compound Identification and Annotation

Peaks were identified or annotated by Progenesis QI through matching to an in-
house experimental standards library generated by acquiring data for approximately
1000 compounds under conditions identical to study samples, as well as to public databases
(including HMDB, METLIN and NIST), as described previously [69]. Identifications and
annotations were assigned using available data for retention time (RT), exact mass (MS),
MS/MS fragmentation pattern, and isotopic ion pattern. The identification or annotation of
each signal is provided in Supplementary Materials. Signals/metabolites that matched to
the in-house experimental standards library by (a) RT, MS, and MS/MS are labeled as OL1,
or (b) by RT and MS are labeled OL2a. An OL2b label was provided for signals that match
by MS and MS/MS to the in-house library that were outside the retention time tolerance
(±0.5 min) for the standards run under identical conditions. Signals matched to public
databases are labeled as PDa (MS and experimental MS/MS), PDb (MS and theoretical
MS/MS), PDc (MS and isotopic similarity or adducts), and PDd (MS only) are also provided
(Supplementary Materials).
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2.9. Compound Annotation, Metabolic Pathway Enrichment Analysis and
Over-Representation Analysis

Compound annotation and pathway enrichment analysis for metabolomics was per-
formed with the MetaboAnalystR 3.0 package in R [72,73] (https://www.metaboanalyst.
ca/docs/RTutorial.xhtml, accessed on 5 June 2020). For compound annotations, molecular
weight tolerance (ppm) was set to 3.0, analytical mode was set to positive and retention
time was included. Pathway enrichment analysis was performed with the ‘integ’ module
(using both Mummichog v2.0 and GSEA) with the yeast KEGG database. The p-value
threshold for Mummichog was set at 0.05.

Normalized peak data from Progenesis QI were used as input for MetaboAnalystR.
The interaction term estimated how the response amplitude of each mutant is different
from wildtype, which is (mutantH-mutantL)-(wtH-wtL). The modeled p-value and t score
for the interaction term associated with each peak were then used as inputs for pathway en-
richment analysis. Significantly perturbed metabolites (SPMs) were defined as annotations
that have adjusted p-value < 0.05 (FDR) from the output of MetaboAnalystR. Signifi-
cantly perturbed pathways were defined as having combined p-value < 0.05 (Mummichog
and GSEA).

Over-representation analysis for the corresponding subsection of the Venn diagram
was performed with the Enrichment Analysis module in MetaboAnalystR, with KEGG
ID for each metabolite as the input. FDR adjusted p-value < 0.05 was the threshold for
over-represented pathways.

2.10. Integration of Transcriptomics and Metabolomics Data

Integration analysis was performed with the ‘joint pathway analysis’ module of
MetaboAnalystR (https://www.metaboanalyst.ca/docs/RTutorial.xhtml, accessed on 20
November 2020). Gene input together with log2 fold-change was generated based on the
corresponding DESeq2 analysis, with the threshold set as adjusted p-value < 0.05, absolute
log2 fold-change >1 and baseMean >100 (DEGs); metabolite input together with log2
fold-change was generated based on MetaboAnalystR analysis, with the threshold set as
adjusted p-value < 0.05 (SPMs). Integration analysis was performed on ‘all pathways’,
which includes both metabolic pathways as well as gene-only pathways. Enrichment
analysis was performed using ‘Hypergeometric test’. Topology measure was set to ‘Degree
Centrality’. Integration method was set to ‘combine queries’, which is a tight integration
method with genes and metabolites pooled into a single query and used to perform
enrichment analysis within their “pooled universe”. Significantly enriched pathways were
defined as having FDR adjusted p-value < 0.05.

2.11. Yeast RNA Extraction, DNase Treatment, and Reverse Transcription for qPCR

RNA was extracted from cells using hot acid phenol. TES solution (10 mM Tris-HCl,
pH 7.5; 10 mM EDTA; 0.5% SDS) was used to resuspend pellets then the resuspension
was incubated for one hour at 65 ◦C. The RNA was separated via phenol-chloroform
extraction and any residual DNA was degraded with RQ1 DNase (Promega, Madison,
WI, USA). To further purify the RNA, RNeasy mini kit (Qiagen, Frederick, MD, USA)
was used and the final RNA concentration was determined via spectrophotometry with a
NanoDrop One (ThermoFisher Scientific, Waltham, MA, USA). cDNA was produced via
reverse transcription from 250 ng RNA using a High-Capacity cDNA Reverse Transcription
Kit (ThermoFisher Scientific) following manufacturer’s protocol.

https://www.metaboanalyst.ca/docs/RTutorial.xhtml
https://www.metaboanalyst.ca/docs/RTutorial.xhtml
https://www.metaboanalyst.ca/docs/RTutorial.xhtml


Biomolecules 2022, 12, 175 6 of 26

2.12. qPCR

qPCR primers were ordered from Integrated DNA Technologies:
YER100W_FWD primer 5′ GAAGCCACGACAGGATCAAT 3′

YER100W_REV primer 5′ ATCCCCCTCATCCAATTTTC 3′

YBR117C_FWD 5′ GTCACTCATGCGCTCTTCTG 3′

YBR117C_REV 5′ GAGTCGGAAATGGGAAAGCC 3′

YPL061W_FWD 5′ GGCGCCAAGATCTTAACTGG 3′

YPL061W_REV 5′ CCACCTTCAAACCTGTGCTC 3′

YJL153C_FWD 5′ CATGGTTAGCCCAAACGACT 3′

YJL153C_REV 5′ CGTGGTTACGTTGCCTTTTT 3′

YFL030W_FWD 5′ TGATCCCAGGCCCCATTATC 3′

YFL030W_REV 5′ AATATGTCCCACCCCAACGT 3′

To perform qPCR, cDNA was diluted 50-fold and amplified with SsoAdvanced Univer-
sal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) following manufacturer’s proto-
cols with adjustments: 45 cycles were used to increase amplification and anneal/extension
time was extended to 45 s. qPCR was performed in technical triplicate for each of the six
biological replicates per genotype. CFX Maestro Software (Bio-Rad) was used to determine
the threshold cycle (Ct). ∆Ct values were determined in reference to YER100W and final
∆∆Ct values were calculated and normalized in reference to wildtype cells. p-values were
calculated on ∆Ct values between genotypes via independent, non-parametric, one-tailed
Mann–Whitney U tests with the expected change in expression as was found by RNAseq.
One exception was that of TKL2 in snf3∆ rgt2∆ vs. wildtype comparison in which the
RNAseq data did not yield a statistically significant change, in this case, a two-sided Mann–
Whitney U-test was applied. The Benjamini–Hochberg Procedure was used to correct for
multiple comparisons.

3. Results
3.1. Unsupervised Principal Component Analysis (PCA)

It is well established that yeast employs two different receptor systems in response to
glucose. To investigate the impact of each receptor system, we used untargeted transcrip-
tomics and metabolomics on wildtype cells and mutants lacking the GPCR Gpr1, the large
G protein Gpa2, the small G proteins Ras1 or Ras2, or the transceptors Snf3 and Rgt2, under
high or low glucose conditions. Log phase wildtype and mutant cells (all prototrophic)
were grown for 1 h in low (L, 0.05%) glucose, then divided and either left untreated or
treated with high (H, 2%) glucose for 2 min (metabolomics) or 10 min (transcriptomics).
These time points were selected based on prior data, showing an early and transient spike
of cAMP and a subsequent induction of genes within 10 min of glucose treatment [1,13].

Principal Component Analysis (PCA) is an unsupervised multivariate analysis method
useful for the visualization of the relationship between observations and variables. When
applied to our transcriptomics data, PCA revealed good differentiation based on the
proximity of data points for a given treatment and genotype (Figure S1a). This analysis
revealed that PC1, which aligns primarily with treatment, accounts for 89% of variance
while PC2, which aligns primarily with genotype, represents 4% of variance. Thus, the first
2 components explained 93% of the variance. For metabolomics, the first 2 components
explained 50% of the variance (Figure S1b). With the exception of ras1∆, the mutants were
distant from wildtype in both measurements. While gpr1∆ aligned closely with gpa2∆,
snf3∆ rgt2∆ was on the opposite side of wildtype. The ras2∆ mutant was located between
the two receptor mutants. These measures indicate distinct effects of the two receptor
systems, and a potential role for Ras2 in both.

3.2. Glucose Sensing in Wildtype Cells

Glucose has multiple and complex effects on metabolism and gene expression. To
validate our approach, we first performed pathway enrichment analysis, comparing high
and low glucose in wildtype cells. For transcriptomics we used the ClusterProfiler package
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in R [68] and performed gene set enrichment analysis (GSEA) with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database [74–76]. As expected, perturbed pathways were
mainly associated with carbohydrate, amino acids, lipids and nucleotide metabolism as
well as transcription, ribosome, replication, and cell cycle pathways (See Table 1 in [13],
reproduced in Table S1). These pathways are important for cell growth following the
addition of glucose [77]. For metabolomics we used MetaboAnalystR, which integrates
the results of Mummichog and GSEA, to produce the combined p-values reported for each
pathway (See Table 1 in [13] reproduced in Table S1) [72,73,78]. We identified enrichment
in six pathways associated with metabolism of carbohydrates, amino acids, and lipids,
which is consistent with our transcriptomics analysis. Below we elaborate on how the two
receptor systems function individually and in relation to one another.

Table 1. Single- and multi-omics integration results for gpr1∆. The first block shows GSEA for
transcriptomics with adjusted p-value < 0.05, arranged in ascending order; second block shows
MetaboAnalystR pathway enrichment analysis for metabolomics with combined p-value < 0.05,
arranged in ascending order; third block shows MetaboAnalystR joint pathway analysis with adjusted
p-value < 0.05, arranged in ascending order, as detailed in the methods.

Transcriptomics Metabolomics Integration
Enriched
Pathways

Adjusted
p-Value

Enriched
Pathways

Combined
p-Value Enriched Pathways Adjusted

p-Value

Oxidative
phosphorylation 0.0082

Fructose and
mannose
metabolism

0.0021 Oxidative phosphorylation 5.24 × 10−19

Starch and sucrose
metabolism 0.0082 Purine metabolism 0.0034 Galactose metabolism 8.60 × 10−13

Amino sugar and
nucleotide sugar
metabolism

0.0075 Starch and sucrose metabolism 6.56 × 10−10

Galactose
metabolism 0.0075 ABC transporters 7.22 × 10−8

Tyrosine
metabolism 0.0090 Glycolysis or Gluconeogenesis 1.75 × 10−7

Glutathione
metabolism 0.0107 Arginine biosynthesis 5.76 × 10−5

Lysine
biosynthesis 0.0177 Alanine, aspartate and glutamate

metabolism 0.0001

Arginine
biosynthesis 0.0229 Purine metabolism 0.0001

Butanoate
metabolism 0.0375 Citrate cycle (TCA cycle) 0.0001

Fructose and mannose metabolism 0.0003
Amino sugar and nucleotide
sugar metabolism 0.0009

Cysteine and
methionine metabolism 0.0025

Pentose phosphate pathway 0.0025
Nitrogen metabolism 0.0128
beta-Alanine metabolism 0.0128
Glycine, serine and
threonine metabolism 0.0175

Pyruvate metabolism 0.0264
Glutathione metabolism 0.0266

3.3. Comparison of Glucose Signaling by the GPCR and Transceptor Systems

Transcriptomics analysis. We next determined the transcriptional response to high glucose,
comparing wildtype cells with mutants lacking the GPCR (gpr1∆), or the two transceptors
(snf3∆ rgt2∆). In comparison to wildtype, gpr1∆ affected pathways related to oxidative
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phosphorylation as well as starch and sucrose metabolism, both of which are centered on
carbohydrate utilization and energy metabolism (Tables 1 and S2). In comparison to wildtype,
snf3∆ rgt2∆ affected pathways related to RNA polymerase, ribosome, autophagy and amino
acid metabolism, which are centered on nitrogen utilization and translation (Tables 2 and S3).
Thus, under high glucose conditions, the GPCR and transceptor pathways primarily regulate
carbohydrate and amino acid metabolism, respectively.

Table 2. Single- and multi-omics integration results for snf3∆ rgt2∆. First block shows GSEA for
transcriptomics with adjusted p-value < 0.05, arranged in ascending order; second block shows
MetaboAnalystR pathway enrichment analysis for metabolomics with combined p-value < 0.05,
arranged in ascending order; third block shows MetaboAnalystR joint pathway analysis with adjusted
p-value < 0.05, arranged in ascending order, as detailed in the Methods.

Transcriptomics Metabolomics Integration

Enriched Pathways Adjusted
p-Value Enriched Pathways Combined

p-Value Enriched Pathways Adjusted
p-Value

Ribosome 0.0076 Purine metabolism 0.0005 Ribosome 1.12 × 10−74

Ribosome biogenesis
in eukaryotes 0.0076 Arginine biosynthesis 0.0026 Purine metabolism 1.76 × 10−9

Sulfur metabolism 0.0076 Cysteine and
methionine metabolism 0.0027 Longevity regulating

pathway 9.20 × 10−6

RNA polymerase 0.0154
Glyoxylate and
dicarboxylate
metabolism

0.0055 Alanine, aspartate and
glutamate metabolism 2.05 × 10−5

Nitrogen metabolism 0.0165 Glycine, serine and
threonine metabolism 0.0085 Arginine biosynthesis 0.0004

Autophagy 0.0165 Taurine and hypotaurine
metabolism 0.0172 Glycine, serine and

threonine metabolism 0.0006

Alanine, aspartate and
glutamate metabolism 0.0289 Glutathione metabolism 0.0174 Glycolysis or

Gluconeogenesis 0.0049

Proteasome 0.0465 Methane metabolism 0.0254 Starch and
sucrose metabolism 0.0080

Cysteine and
methionine metabolism 0.0088

One carbon pool by
folate 0.0174

Glyoxylate and
dicarboxylate
metabolism

0.0174

Sulfur metabolism 0.0193
Pyruvate metabolism 0.0193
Histidine metabolism 0.0193
Galactose metabolism 0.0261
Peroxisome 0.0295
Glycerolipid metabolism 0.0392

We then performed over-representation analysis (ORA) for differentially expressed
genes (DEGs), comparing gpr1∆ vs. wildtype and snf3∆ rgt2∆ vs. wild-type, both un-
der high glucose conditions. In each case, we defined the DEGs as having an adjusted
p-value < 0.05, absolute log2 fold-change value >1 and baseMean >100. Whereas GSEA
is a type of functional class scoring that considers a complete list of ranked items (all
gene transcripts in this application), ORA considers a thresholded subset of items (DEGs,
defined above). In this way, we were able to gain a detailed understanding of how the
mutants are similar and how they differ from one another. Figure 2a shows a Venn di-
agram comparing the specific DEGs for each mutant vs. the wildtype strain (Table S4).
As shown in Figure 2b, DEGs unique to gpr1∆ were primarily related to carbohydrate
and energy metabolism, consistent with Gpr1’s function as a sensor of glucose availability.
DEGs unique to snf3∆ rgt2∆ were mainly related to ribosome, purine, cofactor and vitamin
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metabolism (Figure 2c). While the two mutant strains had concordant effects on some DEGs
(Figure 2d), they had—contrary to our expectations—substantial and opposing effects on a
broad set of DEGs primarily related to carbohydrate and amino acid metabolism (Figure 2e).
Thus, GSEA and ORA are in agreement, and indicate that the two receptor pathways are
largely distinct. When the pathways converge on a shared set of carbohydrate- and amino
acid-related transcripts (DEGs), they do so largely in opposition to one another.
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Figure 2. Comparing differentially expressed genes (DEGs) of gpr1∆ and snf3∆ rgt2∆. (a) Venn
diagram of subsets of DEGs, for gpr1∆ vs. wildtype and snf3∆ rgt2∆ vs. wildtype, after glucose
addition to 2%. Upper semicircle shows up-regulated DEGs and lower semicircle shows down-
regulated DEGs. Numbers in the overlapping region are shared DEGs regulated in the same direction.
Numbers in parenthesis are shared DEGs regulated in the opposite direction, and are placed in the
area corresponding to the direction of regulation. DEGs used for ORA analysis that are (b) unique
to gpr1∆; (c) unique to snf3∆ rgt2∆; (d) shared and change in the same direction; (e) shared and
change in the opposite direction. Listed are all pathways and their functional categories with adjusted
p-value < 0.05.

Metabolomics analysis. Gene transcription is regulated by, and in turn regulates, complex
metabolic processes in the cell. To better understand the relationship of these two glucose-
sensing systems, we examined the role of each receptor type after glucose addition, and
did so using untargeted metabolomics. Based on MetaboAnalystR, our mass spectrometry
data show that the gpr1∆ cells were enriched in nine pathways related to carbohydrate
and amino acid metabolism (Tables 1 and S2), while snf3∆ rgt2∆ cells were enriched in
eight pathways, including those related to amino acid and purine metabolism, but not
central carbohydrate metabolism (Tables 2 and S3). A Venn diagram shows shared and
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unique metabolites that were significantly perturbed in each strain (Figure 3a and Table S5).
Values were obtained from the output of MetaboAnalystR and represent annotations
with adjusted p-value < 0.05. These are hereafter referred to as significantly perturbed
metabolites (SPMs). ORA revealed that several purine metabolites changed in the same
direction (Figure 3b) while a substantial number of carbohydrate metabolites changed in
the opposite direction (Figure 3c). As expected, the signals identified and annotated by
MetaboAnalyst mirror those obtained using in-house library annotation, developed with
data acquired for standards run under the same conditions as the study samples, as well as
matching to public databases (PD), as described in our companion manuscript [13], and
reported in Table S6. Subsequent analysis relied on MetaboAnalystR, which is well-suited
for annotating a large number of signals.
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served on the single-omics level: Gpr1 is primarily dedicated to carbohydrate metabolism 
while Snf3 and Rgt2 work to coordinate other species in response to glucose addition.  
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Figure 3. Comparing significantly perturbed metabolites (SPMs) of gpr1∆ and snf3∆ rgt2∆. (a) Venn
diagram of subsets of SPMs, for gpr1∆ vs. wildtype and snf3∆ rgt2∆ vs. wildtype, after glucose
addition. Upper semicircle shows up-regulated SPMs and lower semicircle shows down-regulated
SPMs. Numbers in the overlapping region are shared SPMs regulated in the same direction. Numbers
in parenthesis are shared SPMs regulated in the opposite direction, and are placed in the area
corresponding to the direction of regulation. SPMs used for ORA analysis that are (b) shared and
change in the same direction; (c) shared and change in the opposite direction. Listed are all pathways
and their functional categories with adjusted p-value < 0.05.

Integration analysis. Our analysis above shows that the GPCR Gpr1 regulates car-
bohydrate metabolism while the transceptors Snf3 and Rgt2 regulate ribosome, amino
acid, cofactor and vitamin metabolism. Effects that are shared but opposing are primarily
related to carbohydrate metabolism; however, these represent only a small subset of the
DEGs and SPMs affected by Snf3 and Rgt2. In general, and to our surprise, the glucose
transceptors did little to regulate the metabolism of glucose and other sugars. This is
most likely because we measured changes after ten minutes, while past studies measured
changes after longer treatments. We infer that the transceptors are involved in longer term
effects on carbohydrate metabolism. To gain a deeper understanding of the functional
relationship between changes in gene transcription and host metabolites, we employed the
joint pathway analysis module in MetaboAnalystR, as described previously [13,72,73]. In
this application, we input all DEGs (transcriptomics) and SPMs (metabolomics) and queried
for those over-represented in KEGG. By integrating the data in this manner, we increased
the power of our analysis and were able to obtain more information than could be gleaned
from transcriptomics or metabolomics alone. Once again, we found that Gpr1 primarily
regulates carbohydrate and energy metabolism (Tables 1 and S2) while Snf3 and Rgt2 pri-
marily regulate the ribosome, amino acids, lipids and cofactor metabolism (Tables 2 and S3).
Both receptor systems affect genes or metabolites involved in carbohydrates, amino acids
and purine metabolites. Thus, integration analysis confirms what we observed on the
single-omics level: Gpr1 is primarily dedicated to carbohydrate metabolism while Snf3 and
Rgt2 work to coordinate other species in response to glucose addition.
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To visualize the functional relationship of the two receptor systems, we projected the
inputs of our integration analysis onto the pertinent yeast metabolic pathways in KEGG.
From this projection it was evident that the two receptor types regulate distinct and comple-
mentary processes. Specifically, Gpr1 affects pathways related to carbohydrate metabolism
and, within those pathways, a larger number of genes and metabolites compared to Snf3
and Rgt2 (Figures 4a and S2 and Tables 1 and 2). On the other hand, Snf3 and Rgt2 affect
pathways related to amino acids and, within those pathways, affect a far greater number of
genes and metabolites in comparison to Gpr1 (Figures 4b and S3 and Tables 1 and 2). As
presented from the single-omics analysis above, the shared effects on carbohydrate and
amino acids were mostly antagonistic while the shared effects on purines were concordant.
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Figure 4. KEGG pathways regulated by GPR1 or SNF3 and RGT2. Regions of interest in the KEGG
pathway are shown with genes displayed as rectangles and metabolites displayed as circles. KEGG
compound name for each metabolite is labeled beside the circle. Standard gene names are labeled
inside the rectangle. For enzyme complexes, the gene name for the major component is shown followed
with an ellipsis. The directions of irreversible enzymatic reactions are shown by the arrows. Reversible
reactions are connected by straight lines. DEGs and SPMs are highlighted in red (gpr1∆) and blue
(snf3∆ rgt2∆). Shared DEGs and SPMs are colored half red and half blue. (a) as compared with snf3∆
rgt2∆, gpr1∆ affected more components in citrate cycle (TCA cycle, functional category: carbohydrate);
(b) as compared with gpr1∆, snf3∆ rgt2∆ affected more components in alanine, aspartate and glutamate
metabolism (showing aspartate and glutamate specifically, functional category: amino acid).
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In summary, our transcriptomics and metabolomics pipeline established a distinct
role for each receptor. Two minutes after sugar addition the GPCR and transceptors have
opposing effects on many of the same metabolites (Figure 3). After ten minutes however,
they confer changes on a largely different set of gene transcripts (Figure 2): whereas the
effects of Gpr1 are mostly limited to genes controlling carbohydrate metabolism, Snf3 and
Rgt2 affect more diverse species, including genes that are related to amino acids, lipids,
ribosome, cofactors and vitamins. These differences could be the cause, or consequence,
of reduced growth under glucose limiting conditions. Snf3 and Rgt2 do little to alter
carbohydrate metabolism, and any changes that do occur are largely in opposition to Gpr1.
Such antagonistic effects may allow the cell to fine-tune responses and to optimize temporal
control of enzyme activities.

3.4. Comparison of Glucose Signaling through Large and Small G Proteins

Gpr1 acts through a G protein comprised of an α subunit Gpa2 and an atypical Gβ

subunit Asc1 [6–9,12]. In parallel, guanine nucleotide exchange factors (Cdc25 and Sdc25)
activate the small G proteins Ras1 and Ras2 [14–20]. Somewhat paradoxically, deletion
of Gpr1 or Gpa2 also leads to the activation of Ras2 [79]. These opposing effects may be
mediated by Asc1 [13]. Our recent analysis of Gpa2 and Asc1 revealed that they have mostly
opposing effects on transcripts and metabolites. When the effects are congruent however,
they mirror those observed for their shared activator Gpr1 [13]. To better understand how
the receptors transmit their signals in response to glucose addition, we next compared the
function of the large and small G proteins (Gpa2, Ras1 and Ras2) using the same analytical
pipeline as described above.

Transcriptomics Analysis. We began by determining the transcriptional profiles of
individual gene deletion mutants, by GSEA as described above. The ras1∆ mutant yielded
no DEGs, consistent with the lack of phenotype for ras1∆ in standard laboratory growth
conditions [21]. As shown in Tables 3 and 4 (also Tables S7 and S8), the gpa2∆ mutant
affected pathways related to oxidative phosphorylation and ribosome biogenesis. These
pathways were likewise regulated by ras2∆. In addition, ras2∆ affected RNA polymerase,
carbohydrate metabolism and autophagy (Table 4). Overlap between the large and small G
proteins was expected given that both are activators of adenylyl cyclase. However, based
on the Venn diagram, these mutants had correspondent effects on only a small number
of genes and opposing effects on even fewer (Figure 5a and Table S9). Based on ORA,
for the small number of shared DEGs, gpa2∆ and ras2∆ had mostly concordant effects on
processes related to carbohydrate, amino acid and lipid metabolism (Figure 5b). DEGs
unique to ras2∆ affected a broad spectrum of processes, encompassing all major species in
KEGG, including the metabolism of energy, carbohydrates, amino acids, nucleotides, lipids,
cofactors and vitamins (Figure 5c). In contrast, DEGs unique to gpa2∆ affected a small
number of processes, related to carbohydrate, energy and lipid metabolism (Figure 5d).
Thus, upon glucose addition, Gpa2 regulates carbohydrates and lipids, while Ras2 affects
all major categories of metabolic processes.

Table 3. Single- and multi-omics integration results for gpa2∆. First block shows GSEA for transcrip-
tomics with adjusted p-value < 0.05, arranged in ascending order; second block shows MetaboAn-
alystR pathway enrichment analysis for metabolomics with combined p-value < 0.05, arranged
in ascending order; third block shows MetaboAnalystR joint pathway analysis with adjusted
p-value < 0.05, arranged in ascending order, as detailed in Methods.

Transcriptomics Metabolomics Integration

Enriched Pathways Adjusted
p-Value Enriched Pathways Combined

p-Value Enriched Pathways Adjusted
p-Value

Ribosome biogenesis
in eukaryotes 0.0084 Purine metabolism 0.0021 Oxidative phosphorylation 3.13 × 10−14

Oxidative phosphorylation 0.0084 Fructose and mannose
metabolism 0.0047 Galactose metabolism 1.60 × 10−11
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Table 3. Cont.

Transcriptomics Metabolomics Integration

Enriched Pathways Adjusted
p-Value Enriched Pathways Combined

p-Value Enriched Pathways Adjusted
p-Value

Amino sugar and nucleotide
sugar metabolism 0.0079 ABC transporters 1.31 × 10−8

Galactose metabolism 0.0079 Glycolysis or
Gluconeogenesis 8.02 × 10−5

Glutathione metabolism 0.0155 Fructose and mannose
metabolism 8.18 × 10−5

Tyrosine metabolism 0.0224 Starch and sucrose
metabolism 8.18 × 10−5

Arginine biosynthesis 0.0234 Arginine biosynthesis 0.0012
Biotin metabolism 0.0252 Pentose phosphate pathway 0.0012
Aminoacyl-tRNA
biosynthesis 0.0360 Purine metabolism 0.0017

Starch and sucrose
metabolism 0.0396 Amino sugar and nucleotide

sugar metabolism 0.0073

Phosphatidylinositol
signaling system 0.0424 beta-Alanine metabolism 0.0119

Alanine, aspartate and
glutamate metabolism 0.0139

Cysteine and
methionine metabolism 0.0149

Citrate cycle (TCA cycle) 0.0221

Table 4. Single- and multi-omics integration results for ras2∆. First block shows GSEA for transcrip-
tomics with adjusted p-value < 0.05, arranged in ascending order; second block shows MetaboAn-
alystR pathway enrichment analysis for metabolomics with combined p-value < 0.05, arranged
in ascending order; third block shows MetaboAnalystR joint pathway analysis with adjusted
p-value < 0.05, arranged in ascending order, as detailed in Methods.

Transcriptomics Metabolomics Integration

Enriched Pathways Adjusted
p-Value Enriched Pathways Combined

p-Value Enriched Pathways Adjusted
p-Value

Starch and sucrose metabolism 0.0065 Lysine biosynthesis 1.00 × 10−5 Galactose metabolism 1.24 × 10−15

Oxidative phosphorylation 0.0065 Glyoxylate and dicarboxylate
metabolism 0.0005 Starch and sucrose metabolism 1.68 × 10−11

Ribosome biogenesis in eukaryotes 0.0065 Glycine, serine and
threonine metabolism 0.0009 Glycolysis or Gluconeogenesis 6.26 × 10−8

Ribosome 0.0065 Arginine biosynthesis 0.0017 Glycine, serine and
threonine metabolism 4.30 × 10−6

RNA polymerase 0.0092 Cysteine and
methionine metabolism 0.0028 ABC transporters 1.03 × 10−5

Galactose metabolism 0.0169 Taurine and
hypotaurine metabolism 0.0043 Pentose phosphate pathway 2.27 × 10−5

Autophagy 0.0169 Amino sugar and nucleotide
sugar metabolism 0.0043 Cysteine and

methionine metabolism 2.27 × 10−5

Meiosis 0.0332 Galactose metabolism 0.0043 Fructose and mannose metabolism 0.0002

Spliceosome 0.0458 Butanoate metabolism 0.0095 Amino sugar and nucleotide
sugar metabolism 0.0002

Lysine degradation 0.0098 Arginine biosynthesis 0.0003
Aminoacyl-tRNA biosynthesis 0.0098 Purine metabolism 0.0005

Starch and sucrose metabolism 0.0204 Glyoxylate and dicarboxylate
metabolism 0.0009

Alanine, aspartate and
glutamate metabolism 0.0372 Peroxisome 0.0014

Fructose and mannose metabolism 0.0384 Methane metabolism 0.0057

Nitrogen metabolism 0.0392 Alanine, aspartate and
glutamate metabolism 0.0057

Phosphatidylinositol
signaling system 0.0429 Lysine biosynthesis 0.0213

Nitrogen metabolism 0.0255
Citrate cycle (TCA cycle) 0.0338
Vitamin B6 metabolism 0.0385
Inositol phosphate metabolism 0.0390
Monobactam biosynthesis 0.0392
Tryptophan metabolism 0.0464
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Figure 5. Comparing differentially expressed genes (DEGs) of gpa2∆ and ras2∆. (a) Venn diagram of
subsets of DEGs, for gpa2∆ vs. wildtype and ras2∆ vs. wildtype, after glucose addition to 2%. Upper
semicircle shows up-regulated DEGs and lower semicircle shows down-regulated DEGs. Numbers
in the overlapping region are shared DEGs regulated in the same direction. Numbers in parenthesis
are shared DEGs regulated in the opposite direction, and are placed in the area corresponding to
the direction of regulation. DEGs used for ORA analysis that are (b) shared and change in the same
direction; (c) unique to ras2∆; (d) unique to gpa2∆. Listed are all pathways and their functional
categories with adjusted p-value < 0.05.

Metabolomics Analysis. To better understand the relationship of large and small G
proteins, we next conducted untargeted metabolomics on the corresponding mutants after
glucose addition. Again, we used MetaboAnalystR for pathway enrichment analysis. In
agreement with our transcriptomics data, we found that gpa2∆ and ras2∆ affected several
common pathways related to carbohydrate and amino acid metabolism; however, ras2∆
impacted a wider variety of amino acid species (Tables 3 and 4, Tables S7 and S8). Based on
the Venn diagram and ORA analysis, gpa2∆ and ras2∆ had a large number of shared SPMs
that changed in the same direction, most of which were related to carbohydrate metabolism
(Figure 6 and Table S10). In summary, two minutes after sugar addition the gpa2∆ and
ras2∆ strains exhibited a similar metabolic profile (Figure 6). However, after ten minutes,
gpa2∆ and ras2∆ exhibited a different transcriptional profile (Figure 5): while gpa2∆ mainly
affected transcripts related to carbohydrates and lipids, ras2∆ impacted transcripts related
to all major categories of metabolic processes. By any measure, the ras1∆ mutant yielded
no significant differences, at least under the experimental conditions used in this analysis.
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integration of the metabolomics and transcriptomics analysis. The ras2Δ strain was unique 
in regulating additional amino acids, as well as lipid and vitamin metabolism (Tables 4 
and S8). The gpa2Δ strain was unique in regulating oxidative phosphorylation and β-ala-
nine metabolism (Tables 3 and S7). The results obtained using MetaboAnalystR were re-
flected in the high confidence annotations obtained using our in-house library.  

To visualize the functional relationship of Ras2 and Gpa2, we projected the inputs of 
our integration analysis onto the pertinent yeast metabolic pathways in KEGG. From this 
visualization, it is evident that the effects of Gpa2 are centered on carbohydrate and en-
ergy metabolism, which is shared by Ras2 (Figures 7a and S4). In addition, Ras2 also af-
fects a substantial number of different metabolic species (Figures 7b and S5).  

Figure 6. Comparing significantly perturbed metabolites (SPMs) of gpa2∆ and ras2∆. (a) Venn
diagram of subsets of SPMs, for gpa2∆ and ras2∆ vs. wildtype, after glucose addition. Upper
semicircle shows up-regulated SPMs and lower semicircle shows down-regulated SPMs. Numbers in
the overlapping region are shared SPMs regulated in the same direction. Numbers in parenthesis
are shared SPMs regulated in the opposite direction, and are placed in the area corresponding to
the direction of regulation. SPMs used for ORA analysis that are (b) shared and change in the same
direction. Listed are all pathways and their functional categories with adjusted p-value < 0.05.

Integration analysis. We then conducted integration analysis using the joint pathway
analysis module in MetaboAnalystR. By this method we found that Ras2, like Gpa2, reg-
ulated pathways related to carbohydrate, purine and certain amino acids metabolism
(Tables 3 and 4, Tables S7 and S8). The extent of overlap was particularly evident through
integration of the metabolomics and transcriptomics analysis. The ras2∆ strain was
unique in regulating additional amino acids, as well as lipid and vitamin metabolism
(Tables 4 and S8). The gpa2∆ strain was unique in regulating oxidative phosphorylation
and β-alanine metabolism (Tables 3 and S7). The results obtained using MetaboAnalystR
were reflected in the high confidence annotations obtained using our in-house library.

To visualize the functional relationship of Ras2 and Gpa2, we projected the inputs of
our integration analysis onto the pertinent yeast metabolic pathways in KEGG. From this
visualization, it is evident that the effects of Gpa2 are centered on carbohydrate and energy
metabolism, which is shared by Ras2 (Figures 7a and S4). In addition, Ras2 also affects
a substantial number of different metabolic species (Figures 7b and S5).

To summarize, we observed three major differences when comparing gpr1∆ vs. snf3∆
rgt2∆ and gpa2∆ vs. ras2∆. First, the large and small G proteins (Gpa2 and Ras2) had
concordant effects on genes and metabolites while the effects of the GPCR (Gpr1) and the
transceptors (Snf3 and Rgt2) were largely opposing. Second, Ras2 had considerable effects
on carbohydrate metabolism while Snf3 and Rgt2 had little effect on these processes. Third,
Ras2, like Snf3 and Rgt2, affected non-carbohydrate-related pathways. However, Ras2
affected far fewer genes and metabolites, as compared to Snf3 and Rgt2. These findings
highlight the functional interrelationship of the two receptor systems as well as that of the
large and small G proteins.
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Figure 7. KEGG pathways regulated by GPA2 or RAS2. The relevant part of a specific KEGG pathway
is shown with genes displayed as rectangles and metabolites displayed as circles. KEGG compound
name for each metabolite is labeled beside the circle. Standard gene names are labeled inside the
rectangle. For enzyme complexes, the gene name for the major component is shown followed with
an ellipsis. The directions of irreversible enzymatic reactions are shown by the arrows. Reversible
reactions are connected by straight lines. DEGs and SPMs are highlighted in orange (gpa2∆) and
purple (ras2∆). Shared DEGs and SPMs are colored half orange and half purple. (a) both gpa2∆ and
ras2∆ affected components in glycolysis/gluconeogenesis (functional category: carbohydrate); (b) as
compared with gpa2∆, ras2∆ affected more components in glycine, serine and threonine metabolism
(functional category: amino acid).

3.5. Ras2 Integrates Signals from Gpr1 and Snf3/Rgt2

Above we show that Gpr1 is dedicated to carbohydrate metabolism while Snf3 and
Rgt2 primarily control the metabolism of non-carbohydrate species. The downstream G
proteins, Gpa2 and Ras2, have concordant effects on carbohydrate metabolism. However,
Ras2 affects additional major species that are also affected by Snf3 and Rgt2. Based on these
results, we postulated that Snf3 and Rgt2 signal through Ras2. Just as Ras2 acts in synchrony
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with Gpr1 and Gpa2 to regulate carbohydrate metabolism, we considered if Ras2 also works
together with Snf3 and Rgt2 to regulate non-carbohydrate species. Upon examination of
the integration analysis presented above, we determined that processes regulated by both
Ras2 and Gpa2 are primarily related to carbohydrates (7 pathways shared), and to a lesser
extent amino acids (3 pathways shared), as well as purine metabolism (Tables 3 and 4,
Tables S7 and S8). In comparison, processes regulated by both Ras2 and Snf3/Rgt2 are
related to amino acids (4 pathways shared), carbohydrates (4 pathways shared), peroxisome
and purines (Tables 2 and 4, Tables S3 and S8).

We then quantified DEGs and SPMs regulated by Ras2 as well as by Snf3 and Rgt2.
These data are presented as Venn diagrams in Figures 8a and 9a (Tables S11 and S12). In
accordance with our hypothesis, ORA revealed that Ras2 and the transceptors had concor-
dant effects on DEGs related to amino acids, energy, cofactors and vitamins (Figure 8b).
While snf3∆ rgt2∆ uniquely affected some DEGs related to purines (Figure 8c), they shared
with ras2∆ the ability to regulate SPMs related to the same process (Figure 9b). Furthermore,
the effect of ras2∆ on carbohydrates is not shared by snf3∆ rgt2∆ (Figure 8d). We then per-
formed qPCR to quantify the expression level of genes in wildtype, ras2∆ and snf3∆ rgt2∆
before and 10 min after glucose addition. As shown in Figure 10, ras2∆ and snf3∆ rgt2∆ have
concordant effects on INO1, which encodes an Inositol-3-phosphate synthase, and AGX1,
the product of which catalyzes the synthesis of glycine from glyoxylate; neither enzyme is
directly related to carbohydrate metabolism. Thus, multiple lines of evidence indicate that
Ras2 and the transceptors share the ability to regulate non-carbohydrate metabolism.

Biomolecules 2022, 12, x FOR PEER REVIEW 20 of 28 
 

 
Figure 8. Comparing differentially expressed genes (DEGs) of snf3Δ rgt2Δ and ras2Δ. (a) Venn dia-
gram of subsets of DEGs, for snf3Δ rgt2Δ vs. wildtype and ras2Δ vs. wildtype, after glucose addition 
to 2%. Upper semicircle shows up-regulated DEGs and lower semicircle shows down-regulated 
DEGs. Numbers in the overlapping region are shared DEGs regulated in the same direction. Num-
bers in parenthesis are shared DEGs regulated in the opposite direction, and are placed in the area 
corresponding to the direction of regulation. DEGs used for ORA analysis that are (b) shared and 
change in the same direction; (c) unique to snf3Δ rgt2Δ; (d) unique to ras2Δ. Listed are all pathways 
and their functional categories with adjusted p-value < 0.05. 

 
Figure 9. Comparing significantly perturbed metabolites (SPMs) of snf3Δ rgt2Δ and ras2Δ. (a) Venn 
diagram of subsets of SPMs, for snf3Δ rgt2Δ vs. wildtype and ras2Δ vs. wildtype, after glucose ad-
dition. The upper semicircle shows up-regulated SPMs and lower semicircle shows down-regulated 
SPMs. Numbers in parenthesis are shared SPMs regulated in the opposite direction, and are placed 
in the area corresponding to the direction of regulation. Numbers in parenthesis are shared SPMs 
regulated in the opposite direction, and are placed in the area corresponding to the direction of 
regulation. SPMs used for ORA analysis that are (b) shared and change in the same direction; (c) 

Figure 8. Comparing differentially expressed genes (DEGs) of snf3∆ rgt2∆ and ras2∆. (a) Venn
diagram of subsets of DEGs, for snf3∆ rgt2∆ vs. wildtype and ras2∆ vs. wildtype, after glucose
addition to 2%. Upper semicircle shows up-regulated DEGs and lower semicircle shows down-
regulated DEGs. Numbers in the overlapping region are shared DEGs regulated in the same direction.
Numbers in parenthesis are shared DEGs regulated in the opposite direction, and are placed in the
area corresponding to the direction of regulation. DEGs used for ORA analysis that are (b) shared and
change in the same direction; (c) unique to snf3∆ rgt2∆; (d) unique to ras2∆. Listed are all pathways
and their functional categories with adjusted p-value < 0.05.
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Figure 9. Comparing significantly perturbed metabolites (SPMs) of snf3∆ rgt2∆ and ras2∆. (a) Venn
diagram of subsets of SPMs, for snf3∆ rgt2∆ vs. wildtype and ras2∆ vs. wildtype, after glucose
addition. The upper semicircle shows up-regulated SPMs and lower semicircle shows down-regulated
SPMs. Numbers in parenthesis are shared SPMs regulated in the opposite direction, and are placed
in the area corresponding to the direction of regulation. Numbers in parenthesis are shared SPMs
regulated in the opposite direction, and are placed in the area corresponding to the direction of
regulation. SPMs used for ORA analysis that are (b) shared and change in the same direction;
(c) shared and change in the opposite direction. Listed are all pathways and their functional categories
with adjusted p-value < 0.05.
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Figure 10. qPCR analysis. Bar plots of qPCR data for INO1, AGX1, TKL2, and ALD6 for ras2∆
(purple) and snf3∆ rgt2∆ (blue). The X-axis shows target genes; Y-axis shows log2 fold induction
relative to wildtype. Error bars represent standard error of mean and significance marks are as
follows: p < 0.01(**), p < 0.05(*) as determined via Mann–Whitney U test and adjusted for multiple
comparisons with the Benjamini–Hochberg procedure (see Methods).

As noted above, Ras2 and the transceptors had opposing effects on SPMs related to
the carbohydrate metabolism (Figure 9c). This unexpected effect is further supported by
qPCR analysis. As shown in Figure 10, ras2∆ and snf3∆ rgt2∆ had significant yet opposing
impact on TKL2, which encodes an enzyme in the pentose phosphate pathway, and ALD6,
which produces an aldehyde dehydrogenase involved in pyruvate metabolism. Both
enzymes participate directly in carbohydrate metabolism. Therefore, the impact of Snf3 and
Rgt2 on carbohydrate metabolism is more limited and antagonistic to that of Ras2. These
relationships can be viewed using the KEGG Metabolic Pathways Maps (Figures S2–S5).
Thus, Gpr1 and Ras2 regulate carbohydrate metabolism while Snf3/Rgt2 and Ras2 regulate
non-carbohydrate metabolism. We further conclude that Ras2 coordinates and integrates
signaling by both receptor systems.
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4. Discussion

Integrated approaches have been used previously to compare commercially important
strains of S. cerevisiae, by correlating production of metabolites favored in wine fermen-
tation (e.g., ethyl and acetate esters) with differences in gene expression [80], or genomic
features such as SNPs and microsatellites [81]. Correspondingly, loss of genes involved
in glucose signaling influences the production of fermentation products such as glycerol,
acetic acid and pyruvate [82]. Our approach has been to use integrated methods to com-
pare signaling by key components within a common laboratory yeast strain, S288C. Most
recently, we compared the function of the G-protein Gα and Gβ subunits, Gpa1 and Asc1
respectively [13]. Using global metabolomics and transcriptomics we showed that Gpa2
is primarily involved in the metabolism of sugars while Asc1 contributes to production
of amino acids necessary for protein synthesis and cell division. Further, the two proteins
displayed antagonistic effects on the purine metabolic pathway, mirroring their opposing
effects on adenylyl cyclase activity [8,12]. In this way, we established the existence of
unique and complementary functions of the two G = protein subunits.

Our present goal was to compare the function of two glucose receptors, one com-
prised of a G-protein coupled receptor and the other a transceptor dimer. Through a
systematic analysis of individual gene deletion mutants, we showed how each system
contributes—in both shared and unique ways—to transcription and metabolism. By in-
tegrating transcriptomic and metabolomic measurements, we have taken a major step by
identifying new and unexpected functions of Ras2 in the transceptor signaling pathway. In
addition, our integration analysis allowed us to confirm and consolidate changes seen at
the metabolic or transcriptional level. Whereas the G-protein-coupled receptor directs early
events in glucose utilization, the transceptors regulate subsequent processes ancillary to
glucose metabolism.

While the effects of Ras2 align with those of the G-protein-coupled receptor, they also
align with those of the transceptors. Based on these results, we conclude that Ras2 integrates
responses from both receptor systems. Given the previous known links between Gpa2 and
Ras2, we expected that mutants in those genes might have similar effects; indeed many
shared effects were observed, particularly in processes related to carbohydrate metabolism.
However, our global analysis suggests that a broader group of metabolic processes is
affected by ras2∆ than by gpa2∆. Further analysis is needed to understand why loss of
RAS2 has such broad impacts and what other genes are mediating that response. In the
cases where gpa2∆ and ras2∆ have similar responses there may be other shared changes
in activity or expression of key enzymes in the pathway. Current studies are aimed at
conducting targeted metabolomics and establishing the mechanistic basis for the changes
in metabolism and transcription reported here.

Less expected was the functional link between the transceptors and Ras2. Recent
findings indicate that fructose-1,6-bisphosphate is an activator of the Ras proteins through
the guanine nucleotide exchange factors [83]. Given that the Hxt glucose carriers have an
important role in controlling glycolytic flux, and given the well-known role of Snf3 and
Rgt2 in Hxt expression [47,53–62], glycolytic activation of Ras may provide an alternative
link between the two glucose-sensing systems. While we do observe differences in HXT1,
HXT2 and HXT5 in cells lacking SNF3/RGT2 (Table S11), it should be noted that our glucose
treatment was substantially shorter than that of previous studies of transcription regula-
tion. Thus, we are likely to be missing longer term changes in hexose carrier expression.
Moreover, whereas older studies relied on microarrays to quantify new gene expression,
that method has largely been supplanted by RNASeq, which provides substantially greater
accuracy and dynamic range of measurement. In addition, microarray data can be difficult
to interpret when comparing paralogous genes since high nucleotide sequence identity
can sometimes produce cross-hybridization artifacts [84,85]. Our approach is distinct from
that of prior work on signaling by GPCRs and other cell surface receptors. First, protein
components of cell signaling pathways have traditionally been characterized one at a time,
often using different readouts for different genes or proteins. Such a piecemeal approach
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has hindered a comprehensive understanding of the encoded signaling network. Our
approach employed comprehensive genome-scale and metabolome-scale (“omic”) mea-
sures to quantify differences between mutants lacking individual genes and gene products.
Second, our approach was to compare gene deletion mutants in a single-celled organism,
one where it is possible to determine functional consequences in the same genetic and
epigenetic background, and under identical environmental conditions. By working with
yeast, we circumvent challenges associated with more complex biological systems, where
the structure or topology of the systems is not fully known, the inputs are not static but
dynamic (and change over many time scales); such interactions are more likely to be nonlin-
ear and to occur simultaneously at many levels of the biological hierarchy, from molecules
to cells to tissues to organs and even to other organisms.

As part of our analysis, we compared the function of the individual transceptors, Snf3
and Rgt2, as well as two small G proteins, Ras1 and Ras2. This was done in an effort
to determine how these paralogous proteins each contribute to glucose signaling, and
with the expectation that such analysis could provide insights into the evolutionary forces
that have preserved these gene duplications. Paralogs, or duplicated genes, are especially
prevalent in processes related to glucose sensing and utilization in yeast. Apart from
the transceptors and Ras proteins, at least four other components of the glucose-sensing
pathway (Figure 1) and 8 (out of 12) enzymes responsible for glycolysis [86], are comprised
of paralogous gene products. In comparison only 8% of chemical reactions in yeast are
executed by paralogs. Systematic deletion of the glycolytic enzymes revealed no defect with
respect to gene expression (by microarray), the formation of glycolytic products, or growth
rate in a variety of conditions [87]. In keeping with this pattern, our transcriptomics (by
RNAseq) and metabolomics analysis (by mass spectrometry) showed that Snf3 and Rgt2
are functionally redundant; that is, deletion of both genes was needed to detect any changes
in the thousands of chemical entities measured here (see Data Availability Statement). Of
course it is possible that differences in fitness exist but may only be evident under very
specific, non-laboratory, growth conditions [86,88–91].

In the context of previous analysis of gene paralogs, we consider the most significant
outcome of our analysis to be that Ras2 (but not Ras1) is required for glucose signaling, and
that Ras2 is functionally linked to both receptor systems. Whereas the two receptor systems
have distinct roles in signaling, Ras2 appears to integrate the two receptor pathways.
Ras2, like Gpr1, directly regulates carbohydrate metabolism. Ras2, like Snf3 and Rgt2,
also regulates subsequent processes related to amino acid and nitrogen metabolism. Left
unresolved is the role of its paralog Ras1. One possibility is that Ras1 is primarily involved
in other aspects of nutrient sensing, as demonstrated for the nitrogen-sensing pathway
leading to autophagy [92].

In contrast to Ras2 and Ras1, either Snf3 or Rgt2 can sustain the glucose response.
This begs the question, why have both paralogs been retained throughout the course of
evolution? Most discussions of gene paralogs have focused on their potential contributions
to genetic robustness and phenotypic plasticity [93]. Robustness refers to a number of
different mechanisms that stabilize phenotype against genetic or environmental perturba-
tions. An extreme example of robustness is where one of the genes is inactivated and the
remaining copy provides enough of the original function to compensate for the loss and
ensure survival. In support of this model, several studies in yeast have found that about a
third of paralogous gene pairs exhibit negative epistasis [91,94–96], meaning that deleting
both copies produces a significantly larger defect than that of the individual deletions.
Robustness could be important when the activity of a duplicated gene product is temporar-
ily disabled in response to changing environmental circumstances, for example through
substrate inhibition or feedback phosphorylation. In that case the remaining paralog might
compensate for the loss of its sibling by modifying its function through transcriptional
reprograming [97,98], changes in protein stability and abundance [99,100], or redistribution
within the cell [93,101,102]. In this way, the overall system may exhibit robustness even
while the underlying components exhibit functional plasticity.
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Looking forward, we plan to investigate metabolic changes over longer time peri-
ods and to use complementary approaches such as 13C flux analysis. There is reason to
think that such approaches will provide distinct and complementary information. In one
implementation, 13C flux analysis and metabolomics showed that different strains have
different metabolic profiles that do not correlate with metabolic flux [103]. Rather, intra-
cellular flux distributions fell into two different modes, one for yeast strains that exhibit
respirofermentative metabolism (high glucose uptake and fermentation to ethanol) and
another for those with obligate-aerobic or respiratory metabolism (low glucose uptake
rates without fermentation). Recently-described methods have also used time course data
from unlabeled metabolomics measurements to provide quantitative flux estimates [104].
Collectively, these approaches will aid in the interpretation of metabolomics data in highly
dynamic metabolic systems.

Finally, our approach in yeast could guide investigations of functional redundancies
in other signaling systems and in other organisms. For example, in humans there are three
subtypes of Gαi, which assemble with four (out of five) subtypes of Gβ and 12 subtypes
of Gγ. Investigators have struggled to find any functional differences among various
Gβγ subunit combinations. Another example is the three isoforms of RAS in humans.
These proteins were long thought to be functionally interchangeable, since all three share
substantial sequence identity in domains responsible for nucleotide binding, GTPase
activity, and most effector interactions. However, more recent investigations have shown
that HRAS, NRAS and KRAS, when mutated, are each associated with a distinct group
of cancer types [105]. An unresolved question is the physiological consequences of these
differences with respect to metabolic programming. Moving forward, we believe that
the comprehensive, multi-faceted approach taken here could help to provide mechanistic
insights to differences among various G-proteins in humans.
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