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Abstract

Background: Cell-to-cell variability in mRNA and proteins has been observed in many biological systems, including
the human innate immune response to viral infection. Most of these studies have focused on variability that arises
from (a) intrinsic stochastic fluctuations in gene expression and (b) extrinsic sources (e.g. fluctuations in transcription
factors). The main focus of our study is the effect of extracellular signaling on enhancing intrinsic stochastic
fluctuations. As a new source of noise, the communication between cells with fluctuating numbers of components
has received little attention. We use agent-based modeling to study this contribution to noise in a system of
human dendritic cells responding to viral infection.

Results: Our results, validated by single-cell experiments, show that in the transient state cell-to-cell variability in an
interferon-stimulated gene (DDX58) arises from the interplay between the spatial randomness of the cellular sources
of the interferon and the temporal stochasticity of its own production. The numerical simulations give insight into
the time scales on which autocrine and paracrine signaling act in a heterogeneous population of dendritic cells
upon viral infection. We study the effect of different factors that influence the magnitude of the cell-to-cell-variability of
the induced gene, including the cell density, multiplicity of infection, and the time scale over which the cellular sources
begin producing the cytokine.

Conclusions: We propose a mechanism of noise propagation through extracellular communication and establish
conditions under which the mechanism is operative. The cellular stochasticity of gene induction, which we
investigate, is not limited to the specific interferon-induced gene we have studied; a broad distribution of copy
numbers across cells is to be expected for other interferon-stimulated genes. This can lead to functional
consequences for the system-level response to a viral challenge.
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Background
Cell-to-cell variability in the expression levels of mRNA
and proteins has been studied extensively [1-8]. This
variability has been shown to arise (a) from the intrinsic
stochastic fluctuations in biochemical reactions such as
those that regulate the expression of genes [2] as well as
(b) from extrinsic sources such as cell-to-cell fluctua-
tions of the number of limiting transcription factors or
(c) from extracellular, environmental diversity. A variety
of functional roles have been suggested for cellular noise
[9]: the heterogeneity in expression levels can determine
phenotypic behavior of the cell [6] or affect the timing
of events and responses to stimuli. It has been suggested
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reproduction in any medium, provided the or
that the noisiness of human dendritic cells’ interferon
response to infection may help avoid a cytokine storm [10].
Also, heterogeneity in the numbers of Tat proteins has been
suggested as an explanation for the latency of HIV [11].
In the field of gene expression noise, both in experimen-

tal investigations and theoretical analyses, most of the
attention has been restricted to intracellular noise in sim-
ple systems, such as genetic circuits [12,13] or a connected
set of cellular reactions [14]. Noise has been studied experi-
mentally in a variety of cells, ranging from bacteria [3,15] to
mammalian cells [10,16]. A significant contribution [17]
was the distinction between two sources of noise, intrinsic
(due to stochasticity of the underlying biochemical process)
and extrinsic (due to variability in cellular components
that affect gene expression), which could be separately mea-
sured. In contrast, in many situations, cells communicate
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with each other through extracellular signaling and do
not act independently. In this theoretical study, we study
spatially-distributed sources of induced gene noise arising
from extracellular communication through paracrine and
autocrine signaling. The focus is therefore not on single
cells evolving independently, but on a collection of cells
that interact with each other to create cell-to-cell variability
in the expression levels of induced genes. Our investigation
is motivated by our previous experimental work on the
innate immune response of dendritic cells (DCs) to viral in-
fection, which showed large cell-to-cell variability of IFN-β
mRNA [10] as well as of DDX58 [18], a gene induced as a
result of interferon secretion and cognate receptor binding.
The question arises whether the broad, non-Poisson experi-
mental distribution of DDX58 is related to the temporally
sporadic IFN-β production. At first glance this seems un-
likely, because in the extracellular medium, homogenization
of secreted cytokines is expected to occur. This is indeed
the case, but can happen many hours after viral infection.
Our work shows that there is a period of approximately
10 hours where the spatial heterogeneity of infection (only
a fraction of cells is infected) and the temporal stochasticity
of interferon induction create an environment where genes
induced by interferon signaling are very noisy as well.
For our simulations, we use a recently developed

multi-scale, stochastic simulation method [18,19] coupling
extracellular diffusion with intracellular reactions for many
cells. We use a simplified model to account for the various
intracellular processes and to demonstrate the possibility of
robust early activation of a subset of cells in agreement
with experimental results. In this earlier agent-based
model, the excluded elements were: the noise due to
the enhanceosome assembly in interferon induction
and the impact of transcriptional noise in the induced gene
(due to bursting) on cell-to-cell variability. This is incorpo-
rated explicitly in a more detailed model that focuses on
the way intra-cellular noise in cytokine production is trans-
mitted and re-shaped by a cascade of processes, including
spatial diffusion and noisy downstream intracellular reac-
tions. Our quantitative description allows us to identify the
time scales over which different aspects of cell-to-cell vari-
ability occur. Furthermore, the mechanistic understanding
of the different processes makes it possible to predict the
effect of changing experimental conditions such as the
density of cells, the level of infection, or the varying rates of
biochemical reactions for different viruses. Our proposed
mechanism leads to the prediction that under the condi-
tions posited in the simulation, similar broad distributions
should occur for other stimulated genes in infectious and
similar biological situations.

Results
We describe the results of our simulation of the effect of
extracellular signaling on noise with reference to the
experimental measurements in Newcastle disease virus
(NDV) infected DCs [18,20]. Comparison with experiment
helps in setting model parameter values and the time scales
over which cell-to-cell variability develops. There is sub-
stantial evidence that cell-to-cell heterogeneity is cellular in
origin [18,21-23]. It is the stochastic production of the IFN-
βmRNA, observed experimentally and reproduced in silico,
that drives the proposed extracellular mechanism and is
the source of the broad distribution of interferon-induced
genes (such as DDX58) through autocrine and paracrine
signaling. We demonstrate the spatially-induced character
of the observed noise, demonstrate its dependence on
cellular rate constants, and present results for how
cell-to-cell variability progresses from initial intracellular
noise through extracellular fluctuations to intracellular
noise induced by the latter.

Spatial heterogeneity of extracellular cytokine density
decreases as time evolves
The initial response to viral infection leads to population-
wide interferon induction that is spatially and temporally
heterogeneous. The subsequent export of the cytokine gives
rise to a spatially heterogeneous cytokine density profile.
Interferon induction in infected cells is stochastic and
shows considerable temporal and spatial heterogeneity, as
demonstrated in Figures 1 and 2 respectively.
Only infected calls can express IFN-β and at any given

time only a fraction of the infected cells have a fully as-
sembled enhanceosome required for IFN-β induction.
We determine the fraction of infected cells with nonzero
IFN-β mRNA number. Figure 1 shows the fraction of
infected cells that contain IFN-β mRNA. It takes 3 to
4 hours before some infected cells produce IFN-β mRNA.
Thereafter, the fraction of infected cells expressing
interferon rises, with a doubling of percentage from 6 to
9 hours, reaching 50% by 11 hours. The slow increase
demonstrates a controlled response of the cell population
to viral infection. The numbers are illustrative and depend
on the rate constants of the model; they are consistent
with the low fractions of infected murine fibroblast cells
expressing IFNB1 [22]. The time scales of our simulations
differ since our rate constants were chosen to fit the data
for human monocyte-derived DCs.
The stochastic assembly of the IFN-β enhanceosome

and the bursting production [24,25] lead to temporal
fluctuations in IFN-β mRNA number and spatial hetero-
geneity at all simulation times. As an example we show
in Figure 2 the spatial distribution of cells at 11 hours
(labeled in color to represent their number of IFN-β
transcripts). As described in the figure caption, the
copy numbers range from small (black squares) to large
(red squares), through intermediate values (green and
orange squares). The colored square distribution is quite
heterogeneous, though at 11 hours it is less so than at
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Figure 1 The percent of infected cells (only infected cells can
express the IFNB1 gene) with IFN-β mRNA vs. hours post-infection.
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earlier times where fewer cells contain IFN-β mRNA
(see Figure 1). While the IFN-β mRNA distribution is
spatially heterogeneous at all simulation times, the IFN-β
protein distribution conversely becomes spatially homoge-
neous at later times (approximately 11 hours post-infection),
as described below.
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Figure 2 Spatial distribution of IFN-β mRNA copy numbers in
infected cells at 11 hours. The numbers are color-coded with
black denoting an IFN-β mRNA number less than 375, green a
number between 375 and 750, orange between 750 and 1125, and
red denoting numbers larger than 1125. The X- and Y-axes are in
units of single cell length (~30 μm).
The spatially heterogeneous export of IFN-β protein
from different infected cells with the IFNB1 gene activated
at different times leads to a diffusion problem with sources
that are distributed non-uniformly in space and turned on
over a range of times. The secreted cytokine diffuses in the
extracellular medium; this is a relatively fast process with a
diffusion constant of 10 μm2 s-1 (see Methods) and it takes
less than one minute for a secreted cytokine to diffuse to a
nearby cell on the average. We study the time evolution of
the spatial cytokine density profile. The inhomogeneous
sources lead to an initially spatially inhomogeneous distri-
bution of the cytokine that becomes more homogeneous as
time progresses. This is displayed in Figure 3. Each square
shows the location of a DC; we have color-coded the num-
ber of unbound IFN-β protein in its vicinity (only IFN-β
within a square box containing a cell can bind to a free
Interferon-α/β receptor (IFNAR) on the cell membrane).
More than 80% of cells have a small number of cytokines
(black squares, Figure 3A) in the same box at 6 hours post-
infection because the IFNB1 gene has not been turned on in
most infected cells; this number declines to zero by 9 hours
(Figure 3B). By 11 hours 97% of the boxes contain many cy-
tokines (red squares, Figure 3C). Following the initial secre-
tion of IFN-β it takes 3 to 5 hours for the homogenization
of the cytokine density. The homogenization of the cytokine
density on the scale of a few hours allows the system to de-
velop a more coherent response to viral infection, despite
the large stochasticity in the induction of the key sentinel
molecule IFN-β [10,22].

Effect of autocrine and paracrine signaling on the
spatio-temporal distribution of bound interferon receptors
A broad spatial distribution of the fraction of bound
IFNAR arises due to the spatio-temporal distribution of
secreted IFN-β, and is enhanced by early autocrine effects.
We present results for the distribution of the number of
bound IFNAR across the cells as a function of time; we div-
ide the cells into an activated group consisting of infected
cells with nonzero IFN-β expression and another group
consisting of both uninfected cells and infected cells with
zero IFN-β expression. In the former group, the bound
receptors arise from a combination of autocrine and para-
crine signaling while for the latter group, only paracrine
signaling is present. We are able to evaluate the relative
importance of autocrine and paracrine signaling.
In Figure 4 we display a histogram of a fraction of cells

that correspond to a specified range of bound IFNAR
numbers. Figures 4(A) and (B) correspond respectively
to the distributions at 6 hours for cells with and without
IFN-β mRNA. While the number of activated cells is
much smaller at early times, a large fraction shows bound
receptor numbers above 200. In contrast, very few cells
without IFN-β mRNA have as many bound receptors.
This clearly demonstrates the significant effect of autocrine
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Figure 3 Spatial distribution of the number of IFN-β surrounding dendritic cells. Displayed are the distributions at (A) 6 hours (B) 9 hours
and (C) 11 hours post-infection. The colors indicate the range of the number of cytokines in each box surrounding a DC: black denotes an IFN-β
protein number less than 133, green a number between 133 and 400, orange a number between 400 and 1200, and red a number greater than
1200. More than 80% have fewer than 133 at 6 hours while 97% have more than 1200 cytokines at 11 hours showing the emergence of spatial
homogenization. The X- and Y-axes are in units of single cell length (~30 μm) as in Figure 2.
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signaling at early times (4 – 6 hours post-infection). By
11 hours (see Figures 4(C) and (D)) both the activated
and inactivated cells distributions are essentially the
same, showing the increasing influence of paracrine
signaling as more infected cells are activated, an effect
that underlies homogenization.
We quantify the greater importance of autocrine sig-

naling at times immediately after interferon induction
and illustrate this in Additional file 1: Figure S1. At
around 4 hours post-infection (which is approximately
the first time interferon induction begins in a small
fraction of the infected cells) we find that the positive
feedback from autocrine signaling increases the IFN-β
production in those cells, thus magnifying the hetero-
geneity. The early autocrine signaling enhances the pro-
duction of the interferon cytokine in early responders
(the cells that produce IFN-β earliest) causing a decrease
in the probability for attachment of the IFN-β protein to
IFNAR receptors on the early responders, which leads to
increased paracrine signaling. At approximately 6 hours
post-infection the paracrine loop begins to prime the
uninfected cells (the fraction of bound receptors on
them increases sufficiently to robustly activate internal
signaling cascades). For times greater than around 8 hours
post-infection, paracrine signaling dominates and the sys-
tem starts to respond coherently to the viral infection.
The bound IFNAR on both infected and uninfected cells

activate the JAK/STAT pathway, leading to the induction of
interferon-induced genes [26-28]. We choose rate constants
such that the DDX58 production rate reaches half max-
imum when the number of bound receptors is 475 out of a
total 1000. We study the spatial distribution of bound
IFANR as a function of time in our in silico experiments. In
Additional file 1: Figure S2 the distribution is shown as a
spatial heat plot at different times. This follows the behavior
of the homogenization of the IFN-β cytokine profile. These
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Figure 4 Distribution of bound interferon receptors (IFNAR) in cells with and without IFN-β mRNA. (A) For cells containing IFN-β mRNA
and (B) for cells with no IFN-β mRNA plotted at 6 hours. The larger fraction above 200 in (A) indicates the importance of autocrine signaling at
early times. The distribution of bound IFNAR at 11 hours post-infection is displayed in (C) for cells with and in (D) for cells without IFN-β mRNA.
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results demonstrate the importance of autocrine signaling
at early times (4 – 6 hours post-infection, which enhances
the spatial heterogeneity of bound receptors) and the
importance of paracrine signaling in quenching the spatial
heterogeneity at later times (> 8 hours post-infection).

Large cell-to-cell variability of interferon-induced gene
IFNAR bound by IFN-β phosphorylate the STAT pro-
teins that associate with IRF9 to form the pleiotropic
transcription factor ISGF3. ISGF3 binds to the interferon-
stimulated response element (ISRE) of many inducible
genes. We choose to model DDX58 that codes for RIG-I as
an example of an interferon-induced gene since it has been
studied experimentally [18] and shows a very broad distri-
bution of mRNA number at 11 hours. We incorporate into
our simulation the induction of the DDX58 gene with a
simple, coarse-grained model. The gene has two states, one
with a basal production level in the absence of ISGF3, and
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one with an activated production rate with the transition
between the gene states occurring at a rate proportional
to (B/475)2 where B is the number of bound receptors
(the value 475 corresponds to the threshold value of bound
receptors). The cell-to-cell variability in DDX58 number
arises from the promoter switching between states with
basal and enhanced transcription rates. The rate of
switching depends indirectly on the number of bound
receptors and is itself time-dependent.
This stochastic switching between a low (basal) and en-

hanced (promoted by ISGF3) production rate of DDX58
leads to bursts of high and low mRNA production and thus
to a broad distribution of DDX58 mRNA, in agreement
with experimental results. This behavior is also reflected in
the distribution of the protein RIG-I that it encodes, which
is displayed in Additional file 1: Figure S3. A simple quanti-
fication of the mRNA distribution is obtained by calculating
the Fano factor (= Variance/Mean) averaged over all cells as
a function of time. Our results are shown in Figure 5. In
the absence of infection, the steady-state number of
DDX58 follows a Poisson distribution with a Fano factor
of 1. After infection, once the cytokines are released, the
DDX58 gene can make a transition to the state with the
higher induction rate. The Fano factor of the DDX58
mRNA distribution increases rapidly from unity in the basal
state to values larger than 50. Interferon induction starts
around 4 hours post-infection, as can be seen in Figure 1.
The signaling is slightly biased towards paracrine signaling
by seven hours post-infection (roughly three hours after
interferon induction starts), as is evident from Additional
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Figure 5 Time evolution of the DDX58 Fano factor averaged
across the cell population. The Fano factor increases rapidly in a
span of less than two hours and after reaching a plateau it
decreases much more gradually.
file 1: Figure S1; by this time the Fano factor exceeds 50.
After reaching a plateau, the Fano factor declines gradually,
as most of the cells have activated JAK/STAT pathways,
and the DDX58 gene approaches a steady state, toggling
between the two states of induction. The experimentally-
observed Fano factor at 11 hours is around 100, in
agreement with our in silico study. As to the 6-hour
experimental data, given the small number of cells, the
statistics are insufficient to make a precise comparison.
The Fano factor increases in Figure 5 in a time interval

when the majority of cells have the number of bound re-
ceptors in a range around the threshold value. The effect
of the bound receptors on the average rate of DDX58 in-
duction is shown in Additional file 1: Figure S4A. The
effect of spatial inhomogeneity in bound IFNAR mani-
fests itself most strongly when the majority of DCs have
bound receptors in a range (200 to 600) around the
threshold value of 475. In Additional file 1: Figure S4B
we plot the fraction of DCs with bound IFNAR in the
specified range, showing that it has a broad distribution.
This corresponds to the range of time in Figure 5 over
which the Fano factor for DDX58 is increasing.
In addition to the Fano factor, which is a single num-

ber characterizing the non-Poisson nature of the DDX58
distribution across cells, we study the full distribution.
Experimentally, a surprisingly broad DDX58 distribution
across the cell population is found at 11 hours post-
infection [18]. We compare the DDX58 distribution
obtained in our model with the published experimental
results. We re-plot the data in Figure 4B of [18] as a
histogram in Figure 6A at 11 hours. The simulation results
at 11 hours are plotted in Figure 6B. The agreement is
good considering the fact that there are only 200 cells in
the experiment, and provides support to our hypothesis
that cell-to-cell variability in IFN-β gene induction leads
to large cell-to-cell variability in DDX58. This validates
our proposed mechanism of intracellular stochasticity
leading (via extracellular signaling) to noise in induced
gene expression.
To sharpen the point concerning the role of spatial

heterogeneity and stochasticity of secreted cytokines,
we complete a simple simulation in which we take all
the cells to be uninfected and at 6 hours a uniform
density of cytokines (1200 per cell) is introduced. This
is the analog of pre-treatment in experiments except
there is no subsequent viral infection. The Fano factor
as a function of time is shown in Figure 7 and it shows
a substantially smaller value of the Fano factor compared
to Figure 5. At large times the Fano factor settles to the
steady-state value for a bursting model that toggles
between the enhanced and basal production rates. This
provides a quantitative measure of the influence of the
spatial heterogeneity of the cytokine sources due to
viral infection and stochastic induction.
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Figure 6 Comparison of the experimentally measured DDX58 copy number distribution with simulations. The experimental distribution
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Noise due to spatial heterogeneity depends on cell
density and multiplicity of infection
Experimentally, the spatial heterogeneity of the cytokine
sources depends on the density and the multiplicity of
infection. When these increase from the values used in
our simulations, we expect the behavior of the Fano factor
(used as a measure of the broadness of the distribution) to
be closer to the result for the homogeneous excitation by
cytokine stimulus only. When the density of cells is high,
spatial homogenization occurs more rapidly and the noise
may be difficult to observe. The variation of the Fano
factor with time for different densities is displayed in
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Figure 7 DDX58 Fano factor as a function of time for cells with
no viral infection but treated with of a uniform distribution of
1200 IFN-β proteins in each box. The Fano factor is substantially
lower than when spatially-induced noise occurs as in Figure 5.
Figure 8A. With a density reduced by a factor of four
(green circles) from that used in the reported results, the
induced noise is considerably enhanced and the Fano factor
maximum occurs roughly two to three hours later. When
the density is increased by a factor of four (red circles),
the maximum in the Fano factor occurs slightly earlier
and decays more rapidly.
We illustrate the effects of varying MOI (multiplicity

of infection) in Figure 8B. Increasing MOI from 0.5 to
2.0 increases the fraction of infected cells that can express
the IFN-β gene from 40% to 86%. This substantially reduces
the initial spatial heterogeneity and attenuates the noise
and the duration over which the induction is noisy, as
seen in Figure 8B. This simulation is performed with a
much lower value of the threshold fraction of bound
IFNAR (10%) for both MOIs in comparison with the bulk
of the simulations. These results establish the significant
role played by cell density and MOI value in influencing
the role of spatial heterogeneity and show how they affect
the time scales and width of the noise distribution of
interferon-induced genes.

Induced intracellular noise depends on the threshold
fraction of bound receptors and temporal fluctuations in
cytokine secretion
Under what conditions is the propagation of noise via
extracellular signaling significant? The results of our model
simulations in Figure 9 show how the mechanism we have
proposed for spatial heterogeneity-induced noise depends
on some important cell rate constants.
One of the key cell parameters that determine the effects

under discussion is the value of the threshold fraction of
bound receptors at which the enhancement of the induced
gene DDX58’s production rate reaches half its maximum
value. If the threshold value is low, the secreted cytokine
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Figure 8 The effect of the density of cells and multiplicity of infection on the extent and evolution of spatially heterogeneous noise as
measured by the Fano Factor of the DDX58 distribution. The effect of varying density is shown in (A). We show results from a simulation
with a quarter of the density used in the main text (green circles) and four times the density used in the text (red circles). The black circles
denote a simulation without modification from the main text. In (B) the effect of varying the multiplicity of viral infection is shown. The green
and red circles denote simulation with an MOI of .5 and 2.0 respectively. This simulation was carried out with the threshold for bound IFNAR to
reach half-maximum production of DDX58 set to 10% of the number of bound receptors.
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density reaches a value sufficient to activate the JAK/STAT
pathway in most cells rapidly attenuating cell-to-cell
variability in induced gene expression. This is shown in
Figure 9A where we use a threshold fraction of 5% and
10% in comparison to the 47.5% used elsewhere in our
simulations. These changes not only decrease the magni-
tude of the Fano factor but also affect the time scales, the
duration and the time of occurrence of noisy induction.
Thus as the threshold fraction of bound receptors in-
creases, the amount of noise increases; however, if the
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Figure 9 The effect of different factors on the extent and evolution o
of the DDX58 distribution. In both plots the black circles are for results o
threshold number of bound receptors at which the induced gene has half
threshold is set at 5% (blue circles) and 10% (green circles) of the total num
secreted IFN-β is removed by doing a simulation with all the infected cells
circles. The Fano factor remains large due to spatial heterogeneity.
threshold fraction of bound receptors gets close to unity,
noise in the induced genes can again be suppressed
(by the time the cytokine density is large enough to bind
enough receptors, it can become spatially homogeneous).
Suppressing temporal fluctuations in the production of

cytokines reduces the noise in downstream genes but does
not eliminate it, confirming the importance of the spatial
source of the heterogeneity. There is remnant noise in the
induced gene expression due to initial spatial fluctuations.
The initial spatial inhomogeneity arises from the fact we
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use an MOI=0.5, as in the experiment, leading to about
40% of the cells being infected at random spatial locations.
In addition to the initial spatial fluctuations, there is a
contribution from the intrinsic noise in DDX58 induction.
The result for the Fano factor when the IFN-β proteins
are secreted simultaneously contrasts in Figure 9B with the
result of the main simulations where temporal stochasticity
in IFN-β secretion plays an important role. The time scale
over which the system becomes homogeneous is clearly
considerably shortened and the maximum amplitude of the
Fano factor decreases by a factor close to 3. Nevertheless,
the induced gene expression level is still noisy because of
the spatial heterogeneity. These results delineate how the
threshold fraction of bound receptors and temporal fluctua-
tions in cytokine secretion affect induced noise behavior.

Discussion
We propose and investigate using numerical simulations
a mechanism of the transmission of noise to cytokine-
induced genes that arises due to spatial and temporal
heterogeneity of the sources of cytokine production. The
secreted cytokines diffuse and bind to the cellular receptors
where signaling pathways are activated. The initial spatial
heterogeneity of the cytokine induces downstream intra-
cellular noise through extracellular signaling. We compare
and validate our results with experimental single cell data
for a population of dendritic cells infected by a virus.
Our model is a spatially-extended agent-based model

of dendritic cells in two dimensions with intracellular
processes representing the following: IFN-β induction,
IFN-β export, extracellular diffusion of the cytokines, and
binding of the cytokines to IFNAR. We include as an illus-
trative example a coarse-grained model of induced gene
expression with DDX58. The spatial inhomogeneity of the
cytokine leads to a broad distribution of bound receptors
on the membranes of infected and uninfected cells. When
this distribution spans the fraction of bound receptors
needed for significant activation of the JAK/STAT pathway,
considerable cell-to-cell variability occurs in the copy num-
bers of interferon-induced genes. This leads us to propose a
general mechanism whereby temporal noise in cytokine
production can cascade through extracellular diffusion to
downstream-induced genes.
Another example of an interferon-induced gene (that is

activated by means of the JAK/STAT pathway like DDX58)
is MxA, which has been shown to exhibit anti-viral activity
such as inhibiting viral multiplication of pandemic viruses
like the 1918 flu [29-31]. Under the conditions stated,
our mechanism would suggest that the MxA distribution
should also be broad, which translates to a broad range of
anti-viral activity across the cell population. This result is
derived from a theoretical study of experimental results that
depend on both the virus and cell type used. Zhao et al.
[23] draw attention to the fact that even the percentage
of activated cells depends on the cell line used. The
work of Rand et al. [22] was done by infecting murine
fibroblasts (transfected with plasmids) with NDV and the
experiments of Zhao et al. used the Sendai virus as the
infecting agent. On the other hand, our experiments were
done on human DCs infected by NDV. The time scales
involved in our measurements differ from those of Rand
et al. Our experimental results are on times up to 10 hours
post-infection, whereas the bulk of the changes on murine
fibroblasts [22] occur between 12 and 20 hours. As to
the interferon-induced gene expression, Rand et al. show
(in their Supplementary Section) that after the addition
of IFNβ to the cells the distribution of IRF-7 has a broad
expression pattern with bimodality. In our experiments,
however, the cells themselves secrete IFN-β as a result of
viral infection. All these differences render difficult a direct
comparison of our results with those of Zhao et al. and
Rand et al. We note in passing that it is possible to obtain
bimodal distributions for the interferon stimulated genes
(Figure 6A hints at such a possibility) in this model; we
check this by varying the rate constants for the transition
rates between two possible states of the DDX58 gene. This
is consistent with the exact results obtained by us earlier
for a simple bursting model [24].
In our simulations the source of the noise is the broad

distribution of the times at which IFN-β induction com-
mences in infected cells. We model this noise as resulting
from the stochastic assembly of the enhanceosome and in-
duction of IFNB1 as observed in measurements of intrinsic
noise [32]. Other sources of noise linked to cellular variabil-
ity of the number of signaling molecules or other extrinsic
noise emphasized by [23] would also lead to fluctuations in
IFNB1 induction times. The specific mechanism that leads
to the initial fluctuations is not important; it is the tem-
porally sporadic, spatially random cytokine secretion that
drives downstream noise. Bi-allelic production of the IFN-
β mRNA [21,32], which is not included in our model, will
also increase the stochasticity since the two alleles can
turn on at different times.
The distribution of DDX58 obtained from the simulations

is in good agreement with experimental data. The broad
distribution of DDX58 leads to a broad distribution of the
product RIG-I protein (See Additional file 1: Figure S3).
RIG-I is the key cellular sensor that initiates the anti-viral
response of DCs and so the feedback loop through
paracrine signaling primes other DCs over a broad time
period and can include those DCs in which viral entry
may occur late [33-36]. On the other hand we have
shown that autocrine signaling dominates at early times
(4 – 6 hours post-infection), which enhances the impact
of those cells that respond early to viral intrusion.
We demonstrated that at early times (4 – 6 hours post-

infection) autocrine signaling is dominant and enhances the
cell-to-cell variability in IFN-β due to stochastic induction.
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At intermediate times (6 – 8 hours post-infection) the
paracrine signaling produces large variability across the
cell population in the interferon-stimulated genes. At
later times (> 8 hours post-infection) paracrine signaling
dominates and begins to quench the cell-to-cell variability
of the interferon-stimulated genes.
We have identified, motivated by our measurements,

how noise can be amplified by diffusive signaling in the
transient state following viral infection of human dendritic
cells and investigated the conditions under which it can
occur. Though there has been work on modeling intercellu-
lar communication, none of these studies focus on the
effects of noise in the transient state and how intracellular,
intrinsic, stochasticity leads to further cell-to-cell variability,
via intercellular communication. In the context of quorum
sensing, coupled stochastic differential equations have been
used [37,38] to investigate in the steady state the effect of
noise on gene expression in bacteria. Results of multiscale,
stochastic modeling of various phenomena in immunology
have been reported, for example, in host-pathogen in-
teractions [39], the modeling of lymph nodes [40], and
the resolution of inflammation by leukocytes [41]. In a
recent study, the influence of cytokines following tuber-
culosis infection on the granuloma environment of lung
tissue has been studied with agent-based modeling [42].
Importantly, all of these studies involve different time
or length scales from the scales presented here.

Conclusions
In this paper we propose a general mechanism by which
intracellular noise in protein numbers can be transmitted
in the transient state via extracellular communication to
induced downstream genes in other cells. The specific
process by which the temporal noise in the proteins is
produced is not important. We illustrated our general
mechanism in the context of the experimentally studied
system of dendritic cells exposed to a viral antagonist.
We have identified external factors that can significantly

affect the level of noise and relevant time scales - in
particular, the density of cells (an important element in
interpreting experiments) and the level of infection as
measured by the fraction of infected cells. Among the
intrinsic factors that impact the propagation of noise
and response of a cell population, an important one is
the threshold number of bound receptors. This number
can, therefore, affect the overall noise in the anti-viral
response of the cell population.
The mechanism of cellular stochasticity of gene induc-

tion, which we have investigated by means of an ABM with
a systems biology approach, is not limited to the particular
interferon-stimulated gene we studied; a broad distribution
across cells of copy number is to be expected for other
interferon-stimulated genes. This can lead to functional
consequences for cell-to-cell variability in the range of
anti-viral states of a population of cells and is a subject
for future study.

Methods
All the intracellular interactions used in the simulations
and the corresponding rate constants are included in
Additional file 1: Tables S1, S2, S3, S4, and S5.
We simulated the stochastic intracellular processes of

both infected and uninfected DCs using the standard
Gillespie algorithm [43]. The method used to simulate
the extracellular diffusion of IFN-β is described in detail in
[19]. The code was written in C++ and the computations
were performed on a PC.
We modeled the system in silico on a two dimensional

lattice of 40 × 40 squares that represents the medium.
The size of the squares is chosen to be slightly larger
than the diameter of a DC thus allowing at most one cell
per square. The system contained 210 DCs uniformly
randomly distributed with 40% of the DCs infected
corresponding to an MOI of 0.5. The average diameter
of a DC is 30 μm. In the simulation we used a density
of roughly 5 × 106 cells mL-1. The simulation volume
can be viewed as a region of space with a thickness chosen
to be the diameter of a DC and a cross-sectional area
of (1200 μm)2.
The parameters for the intercellular modeling were based

on experimental data and previous in silico simulations
[18]. The experimental value for the diffusion coefficient
for the cytokine IFN-β is approximately 10 μm2 s-1. Given
the diffusion coefficient and the dimensionality of a lattice
box we determined the simulation diffusion time step of
11.25 s for the IFN-β to diffuse to an adjacent square with
50% probability (See Additional file 1 for a derivation of the
simulation diffusion time step).
We describe the intracellular part of the simulation

next. The binding and unbinding of IFN-β to the IFNAR
reactions are included in the intracellular part of the
algorithm. This is justified because only the IFN-β proteins
inside a lattice box containing a DC have a non-zero prob-
ability of being bound to a free IFNAR on the cell surface.
The rate constants for the binding and unbinding of IFN-β
to the IFNAR are chosen based on the literature [44].
The induction of IFN-β is described by an extension

of an intracellular model of IFN-β mRNA induction devel-
oped earlier to explain experimentally observed power-law
behavior in IFN-β mRNA enhanceosome [32]. It has been
shown experimentally [45,46] that the assembly of the
enhanceosome is promoted by HMGI, an architectural
protein; NFκB is detected initially at the promoter with
an IRF and ATF-2 recruited, later followed by the arrival
of IRF-3 or IRF-7. We model the enhanceosome with
the sequential cooperative binding of four proteins. As in
the earlier model, the cascade of steps required for the
assembly of the pre-initiation complex is represented by
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a single step that takes the assembled enhanceosome to a
transcribing state. This gives rise to bursting-type kinetics
[9,24,25,47] that leads to good agreement with the ex-
perimentally observed power-law distributions of the IFN-β
mRNA copy number [32].
We do not explicitly model the stochastic activation

of RIG-I and the transcription factors involved in the
enhanceosome assembly to keep the model tractable;
however, we modify the forward rates for the assembly
of the enhanceosome to be a function of RIG-I number.
This represents the complex set of reactions that ensue
following viral detection by RIG-I in the cytosol. The
transcription rate of IFN-β mRNA was modified to be a
function of bound IFNAR. This was done to simulate the
increased production of IFN-β mRNA through signal
transduction by means of the exchange of IRF-3 with the
induced IRF-7 [48]. The rate constants for the up regula-
tion of IFN-β mRNA’s transcription rate via the exchange
of IRF-3 with induced IRF-7 were chosen to match the
experimental IFN-β mRNA distribution [18].
The IFN-β secretion was modeled directly as translation

of IFN-β mRNA and export because the transport of the
IFN-β is deemed to be rapid with a rate of secretion chosen
based on the [18] paper. We emphasize that the intracellu-
lar reactions involving IFN-β occur only in infected cells.
We use a more detailed model of DDX58 gene induction

than used previously: the gene is assumed to have two
states, a basal (low) production state in the absence of the
activated JAK/STAT pathway and an enhanced production
state after activation. The transition rate of the DDX58 gene
from a low to a high production state was modeled in a
coarse-grained way as a function of the number of bound
IFNARs; this determines the level of signal transduction of
the JAK/STAT pathway that in turn enhances the produc-
tion of DDX58. The chemical reactions for DDX58 and rate
constants are found in the Additional file 1: Tables S2, S3,
and S4. The rate constant for DDX58 degradation was
chosen to be the same as in earlier work [18]. The produc-
tion rates in the two states of the gene and the transition
rate between them were chosen to match the average num-
ber of DDX58 at six and eleven hours observed experimen-
tally. The RIG-I production was modeled as translation of
DDX58 with the same rate constants as used earlier [18].

Sensitivity analysis
It is computationally infeasible to do a systematic variation
of all the rate constants and parameters in the model. It is,
however, important to understand the effects of changing
specific model ingredients. Since we have a clear mech-
anistic understanding of the proposed mechanism for
explaining the experimentally observed broad distribution
of DDX58 in human DCs with NDV infection, we vary the
rate constants for the key reactions that affect the noise by
roughly an order of magnitude: from 1/3 or 1/4 of the value
used in the reported results to 3 or 4 times the value,
in order to understand the robustness of the results
and identify the rate constants to which the results are
most sensitive. We summarize the results here and provide
the relevant figures in the Additional file 1.
We modify the IFN-β mRNA induction model to include

the two-stage induction process reported in the literature.
It is known [48] that IRF-7 is the master regulator and
is more efficient in promoting IFN-β transcription but
its constitutive production is negligible in m-DCs. It is
induced through the JAK/STAT pathway by the se-
creted IFN-β protein. We have modeled this two-stage
process by using a lower production rate of mRNA ini-
tially in the presence of the constitutively expressed
IRF-3 and a higher rate after a fraction of the receptors
(IFNAR) are bound. Choosing rate constants that fit the
observed IFN-β data leaves all of our main results for the
induced gene unaffected.
In the model we vary the rate at which the enhanceosome

(once it is formed) is activated and deactivated; this changes
the power-law distribution observed experimentally [32]
and eliminates it entirely in one case. The activation
rate constant for the IFN-β gene controls the location
of the DDX58 Fano factor peak: the peak time occurs
later by as much as 90 minutes as the activation rate is
decreased (see Additional file 1: Figure S5). The activation
rate constant for the IFN-β gene after the enhanceosome
is formed also controls how rapidly the infected DCs
become active. A three-fold increase or decrease varies
the percent of activated infected DCs by up to approxi-
mately 30% while the noise in the interferon-induced
genes remains significant.
Another important parameter is the binding rate of IFN-

β protein to IFNAR. A four-fold increase in the binding rate
decreases the time of occurrence of the Fano factor peak by
about an hour, while a four-fold decrease delays the peak
position by more than 2 hours. The effect on the ratio of
autocrine to paracrine signaling is not large, although auto-
crine signaling is somewhat enhanced as the binding rate
increases (see Additional file 1: Figure S6).
We check that our results are insensitive to the initial

conditions, for example, the precise spatial distribution
of infected cells. We test the importance of statistical
fluctuations (the number of cells is 210 in the experi-
ments and for the results reported here) by simulating
1050 cells, keeping the same density of cells. Within the
expected level of fluctuations the results remain the
same. Changing the size of the boxes by a few percent
(still keeping at most one DC per box) left the results
substantially unaltered. In summary, when the spatio-
temporal production of the cytokine is heterogeneous,
the mRNA distribution of the induced genes across
cells can be broad and we have studied the effect of dif-
ferent factors on this phenomenon.
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