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ABSTRACT Sophisticated inferential tools coupled with the coalescent model have recently emerged for estimating past population sizes from
genomic data. Recent methods that model recombination require small sample sizes, make constraining assumptions about population size
changes, and do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based Bayesian nonparametric
method coupled with a sequentially Markov coalescent model that allows accurate inference of population sizes over time from a set of
genealogies. In contrast to current methods, our approach considers a broad class of recombination events, including those that do not change
local genealogies. We show that our method outperforms recent likelihood-based methods that rely on discretization of the parameter space.
We illustrate the application of our method to multiple demographic histories, including population bottlenecks and exponential growth. In
simulation, our Bayesian approach produces point estimates four times more accurate than maximum-likelihood estimation (based on the sum
of absolute differences between the truth and the estimated values). Further, our method’s credible intervals for population size as a function
of time cover 90% of true values across multiple demographic scenarios, enabling formal hypothesis testing about population size differences
over time. Using genealogies estimated with ARGweaver, we apply our method to European and Yoruban samples from the 1000 Genomes
Project and confirm key known aspects of population size history over the past 150,000 years.
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FOR a single nonrecombining locus, neutral coalescent
theory predicts the set of timed ancestral relationships

among sampled individuals, known as a gene genealogy
(Kingman 1982; Hudson 1983, 1990; Tajima 1983). In the
coalescent model with variable population size, the rate at
which two lineages have a common ancestor (or coalesce) is
a function of the population size in the past. Here we denote
the population size trajectory by NðtÞ; where t is time in the
past, and use the term local genealogy to describe ancestral
relationships at one nonrecombining locus. When analyzing
multilocus sequences, a single local genealogy will not repre-
sent the full history of the sample. Instead, the set of ancestral

relationships and recombination events among a sample of
multilocus sequences can be represented by a graph, known
as the ancestral recombination graph (ARG), which depicts
the complex structure of neighboring local genealogies and
results in a computationally expensive model for inferring
NðtÞ (Griffiths and Marjoram 1997; Wiuf and Hein 1999).

Recent studies have leveraged approximations for the co-
alescent with recombination—the sequentially Markov coa-
lescent (SMC) (McVean and Cardin 2005) and its variant
SMC9 (Marjoram and Wall 2006; Chen et al. 2009)—both
of which model local genealogies as a continuous-time Mar-
kov process along sequences (Figure 1). The difference be-
tween the SMC and the SMC9 is that the SMCmodels only the
class of recombination events that alter local genealogies of
the sample; in general, the SMC9 is a better approximation to
the ARG than the SMC (Chen et al. 2009; Wilton et al. 2015).
Because of these features, in this work we rely on the SMC9 to
model local genealogies with recombination.

Under the coalescent and SMC9 models, population
size trajectories and sequence data are separated by two
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stochastic processes: (i) a state process that describes the re-
lationship between the population size trajectory and the set
of local genealogies and (ii) an observation process that
describes how the hidden local genealogies are observed
through patterns of nucleotide diversity in the sequence
data. The observation process includes mutation and geno-
typing error while the state process models coalescence.
Population size trajectories are then inferred from sequence
data, using these coalescent-based hiddenMarkovmodels. In
this study, we restrict attention to the state process and present
a novel Bayesian approach for inferring population size trajec-
tories from local genealogies. We solve a number of key mod-
eling and inference problems and thus provide a basis for
developing efficient algorithms to infer population parameters
from sequence data directly.

Whole-genome inference of population size trajectories
has been hampered by the enormous state space of local
genealogies for large sample sizes. The pioneering pairwise
sequentially Markov coalescent (PSMC) method of Li and
Durbin (2011) employed the SMC to inferNðtÞ from a sample
of size 2 (n ¼ 2). In this method, time is discretized and the
population size trajectory is piecewise constant. Subsequent
methods for samples larger than 2 similarly rely on the dis-
cretization of time. The natural extension of the PSMC to
n. 2 is the multiple sequentially Markovian coalescent
(MSMC) (Schiffels and Durbin 2014). However, the MSMC
models only the most recent coalescent event of the sample;
thus MSMC’s estimation of population sizes is limited to very
recent times. Other recent methods propose efficient ways of
exploring the state space of hidden genealogies for n. 2
(Sheehan et al. 2013; Rasmussen et al. 2014), yet also rely
on discretizing the state space of local genealogies and as-
sume a piecewise constant trajectory of population sizes.

Gaussian process-based Bayesian inference of population
size trajectories has proved to be a powerful and flexible non-
parametric approach when applied to a single local genealogy
(Palacios and Minin 2013; Lan et al. 2015). The two main
advantages of the Gaussian process (GP)-based approach are
(i) it does not require a specific functional form of the popu-

lation size trajectory (such as constant or exponential growth)
and (ii) it does not require an arbitrary specification of change
points in a piecewise constant or linear framework.

In this article, we overcome the limitations of existing
methods—discretizing time, assuming a piecewise con-
stant trajectory, and reporting only point estimates for past
population sizes—by introducing a Bayesian nonparamet-
ric approach with a GP to model the population size tra-
jectory as a continuous function of time. More specifically,
we model the logarithm of the population size trajectory
a priori as a Gaussian process (the log ensures our esti-
mates are positive). As mentioned above, we assume that
local gene genealogies are known. For our Bayesian ap-
proach, we develop a Markov chain Monte Carlo (MCMC)
method to sample from the posterior distribution of pop-
ulation sizes over time. Our MCMC algorithm uses the
recently developed algorithm, split Hamiltonian Monte
Carlo (splitHMC) (Shahbaba et al. 2014; Lan et al.
2015). To compare our Bayesian GP-based estimation of
population size trajectories with a piecewise constant
maximum-likelihood-based estimation (e.g., Li and Durbin
2011; Sheehan et al. 2013; Schiffels and Durbin 2014), we
implement the expectation-maximization (EM) algorithm
within our framework and compute the observed Fisher in-
formation to obtain confidence intervals of the maximum-
likelihood estimates.

Finally, we address a key problem for inference of popula-
tion size trajectories under sequentially Markov coalescent
models: the efficient computation of transition densities
needed in the calculation of likelihoods. Here, we express
the transition densities of local genealogies in terms of local
ranked tree shapes (Tajima 1983) and coalescent times and
show that these quantities are statistically sufficient for in-
ferring population size trajectories either from sequence data
directly or from the set of local genealogies. The use of
ranked tree shapes allows us to exploit the state process of
local genealogies efficiently since the space of ranked tree
shapes has a smaller cardinality than the space of labeled
topologies (Sainudiin et al. 2014).

Figure 1 SMC9 hidden Markov model for inferring
population size trajectories, drawn according to
Rasmussen et al. (2014) to highlight notation specific
to our study. (A) Observed sequence data in a segment
of length L from five individuals. Three loci are shown
delimited by recombination breakpoints b1 and b2:
Only the derived mutations at polymorphic sites are
shown. (B) Corresponding local genealogies gi for each
locus i. The five sampled individuals are depicted as
solid black circles. Local genealogies have a Markovian
degree-1 dependency. Each intercoalescent time (the
time interval between coalescent events denoted as
open circles) provides information about past popula-
tion size (number of solid gray circles at a given time
point). Moving from left to right after recombination
breakpoint b1; the pruning location p1 is selected from
genealogy g0 and the pruned branch is regrafted back

on the genealogy (solid blue circle). The coalescent event of g0 depicted as a solid red circle in g1 is deleted. This creates the next genealogy g1: The
process continues until L. At L, the population size trajectory NðtÞ (depicted as a black curve superimposed on g2) can be inferred.
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Methods: SMC9 Calculations

Followingnotationsimilartothat inRasmussenetal.(2014)(Table
1), a realization of the embedded SMC9 chain consists of a set ofm
local genealogies ðg0; g1; . . . ; gm21Þ; m2 1 recombination break-
points at chromosomal locations ðb1; b2; . . . ; bm21Þ; and m2 1
pruning locations ðp1; p2; . . . ; pm21Þ; where pi ¼ ðui;wiÞ indi-
cates the time of the recombination event ui and the branch wi

where recombination happened in genealogy gi21 (Figure 1). Ge-
nealogy g0 corresponds to the genealogy of n sequences that con-
tains the set of timed ancestral relationships among the n
individuals for the chromosomal segment ð0; b1�: Genealogy gi
corresponds to the genealogy of the same n sequences for the
chromosomal segment ðbi; biþ1� for i ¼ 1; 2; . . . ;m2 2: Finally,
tij denotes the timewhen twoof j lineages coalesce in genealogy gi;
measured in units of generations before present.

Using uppercase letters to denote random variables, the
evolution of the SMC9 process along chromosomal segments
is governed by a point process B ¼ fBigi2ℕ that represents
the random locations of recombination breakpoints. We use
Si ¼ Bi 2Bi21; for i ¼ 1; 2; . . . ;m; to denote the segment
lengths for each local genealogy, with S0 ¼ B0 ¼ 0: Let
G ¼ fGigi2ℕ be the chain that records the local genealogies,
and let P ¼ ðU;WÞ ¼ fðUi;WiÞgi2ℕ represent the chain that
records the pruning locations (time and branch) on G. The se-
quence ðGi; Pi ¼ fUi;Wig;BiÞ has the following conditional in-
dependence relation:

Pr
h
Gi ¼ gi;Ui # ui;Wi ¼ wi; Si# s

����gj; bj�i21
j¼0 ;

�
uj;wj

�i21
j¼1

i
¼ Pr½Si # sijgi21� (1)

3 Pr½Ui # ui;Wi ¼ wijgi21� (2)

3 Pr½Gi ¼ gijUi# ui;Wi ¼ wi; gi21�: (3)

Thus, given a chain of local genealogies, pruning locations,
and recombination breakpoints, the joint transition probabil-
ity to a new genealogy, pruning location, and locus length can
be expressed as the product of the locus-length probability
conditioned on the current genealogy (Expression 1, above),
the pruning location probability conditioned on the current
genealogy (Expression 2, above), and the transition proba-
bility of the new genealogy conditioned on the current gene-
alogy and pruning location (Expression 3, above).

Complete data transition densities

Consider the chain of local genealogies g ¼ ðg0; g1; . . . ; gm21Þ
with recombination breakpoints at b ¼ ð0; b1; . . . ; bm21Þ:
According to the SMC9 process, the first local genealogy g0
follows the standard coalescent density

Pr
�
G0 ¼ g0jNðtÞ

�
¼
Yn
j¼2

1
N
�
t0j
� exp(2 Z t0j

t0jþ1

A0ðtÞ�A0ðtÞ2 1
�
dt

2NðtÞ

)
; (4)

where t0nþ1 ¼ 0 and t0n , . . . , t02 are the set of coalescent
times in local genealogy g0: The piecewise constant function
AiðtÞ denotes the number of ancestral lineages present at time
t in genealogy gi; that is, AiðtÞ ¼Pn

j¼1j1t2ðtijþ1;t
i
jÞ;with ti1 ¼ N:

Given a current local genealogy gi21; the distribution of the
length Si ¼ Bi 2 bi21 of the current locus depends on the
current state of the SMC9 chain through the local genealogy’s
total tree length li21 (the sum of all branch lengths in gi21)
and the recombination rate per site per generation r:

f ðsijgi21; rÞ ¼ rli21expf2rli21sig: (5)

At recombination breakpoint bi; a new local genealogy gi is
generated that depends on the previous local genealogy gi21

and the population size trajectoryNðtÞ (Figure 1). To generate
gi we first randomly choose a pruning location pi (consisting of
a pruning time ui and a lineage wi) uniformly along gi21: At
pruning location pi; we add a new lineage w9i and coalesce it
further in the past at time tinew with some lineage, ci (Figure 2).
We then delete the wi lineage’s segment from ui to tidel (the
coalescent time of lineage wi). The transition density to a new
genealogy at recombination breakpoint bi is then

Pr
�
pi ¼ ðui;wiÞ; tinew; cijgi21;NðtÞ

�
¼ Pr

�
pi ¼ ðui;wiÞjgi21

�
Pr
�
tinew; cijui; gi21;NðtÞ

�
¼
	

1
li21



1

N
�
tinew

� exp(2 Z tinew

ui

Ai21ðtÞdt
NðtÞ

)
; (6)

where li21 denotes the total tree length of gi21:

Thisgenerativeprocessforlocalgenealogiescanresultinavisible
transition, where a genealogy gi is different from gi21 (Figure 2A),
or an invisible transition, where gi is identical to gi21 (Figure 2B).

An invisible transition (gi ¼ gi21) occurs when ci ¼ wi:

Given the pruning location pi ¼ ðui;wiÞ; an invisible transi-
tion occurs when Ti

new 2 ðui; tidelÞ and Ci; the random variable
indicating the lineage that coalesces with lineagew9i; takes the
value wi: The probability of an invisible transition is given by

Pr
�
Gi ¼ gi21jpi ¼ ðui;wiÞ; gi21;NðtÞ

�
¼ Pr

h
ui #Ti

new# tidel;Ci ¼ wijpi ¼ ðui;wiÞ; gi21;NðtÞ
i

¼
Z tidel

ui

1
NðtÞ exp

(
2

Z t

ui

Ai21ðuÞdu
NðuÞ

)
dt:

Thus, the joint transition probability to an invisible event with
pruning location ðui;wiÞ; given gi21; is

Pr½Gi ¼ gi21; pi ¼ ðui;wiÞjgi21;NðtÞ�

¼ 1
li21

Pr½Gi ¼ gi21jpi ¼ ðui;wiÞ; gi21;NðtÞ�:
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Transition densities averaged over unknown
pruning locations

Even though we assume that local genealogies are
known, to build inferential frameworks for sequence
data in the future, we do not wish to make the same as-
sumption about pruning locations. Thus, we average
over pruning locations to obtain marginal transition den-
sities between genealogies for both visible and invisible
transitions.

Visible transitions: To compute the marginal visible
transition density to a new genealogy gi ¼
fgi21∖ftidelg [ ftinew; ðw9i; ciÞgg; we need to average over all
possible pruning locations pi ¼ ðui;wiÞ along gi21: By
comparing the two genealogies gi21 and gi in Figure 2A,
we know that pi corresponds to the lineage wi some time
along ð0; ti21

4 Þ or, equivalently, along ð0; tidelÞ: In general,
comparison of gi21 and gi may not provide complete in-
formation to identify the lineage that was pruned. When
the children of the node corresponding to tdel and the
children of the node corresponding to tnew are the same,
pruning different branches can lead to the same transi-
tion. We enumerate all cases of incomplete information
for visible transitions in Supporting Information, File S1,
and File S2.

We introduce a function Ii21ðtÞ; equal to the number of
possible lineages at time t where the pruning location
along gi21 would produce a visible transition to gi: Ii21ðtÞ
is a piecewise constant function that takes the values in
f0; 1; 2g depending on whether the pruning location pi
can happen in 0; 1; or 2 branches at time t. In the example
in Figure 2A,

Ii21ðtÞ ¼
�
1; if   t 2 �0; ti21

4
�
;

0; if   t 2 �t i21
4 ;N

�
:

(7)

For a general piecewise constant function Ii21ðtÞ; the mar-
ginal visible transition density to a new genealogy is

Pr
�
Gi ¼ gijgi21;NðtÞ

�
¼ 1

li21

Z N

0
Ii21ðuÞ Pr

h
tinew; ciju;wi

i
du

¼ 1
li21

Z N

0
Ii21ðuÞ 1

N
�
tinew

�exp(2 Z tinew

u

Ai21ðtÞdt
NðtÞ

)
du:

(8)

Invisible transitions: To compute the marginal transition
probabilities for invisible events, we must average over all
possible pruning locations pi: Consider the example in Figure
2B and choosing a pruning time (ui) along gi21: To have an

Table 1 Notation for the SMC9 model used in this work

Symbol Description

Parameters
r Recombination rate per site per generation
NðtÞ Effective population size trajectory with time measured in units of N0 generations
t Hyperparameter that controls the smoothness of the log-Gaussian process prior on NðtÞ

Notation specific to SMC9 chain
L Length of observed sequences
bi Chromosomal location of the ith recombination breakpoint
m No. local genealogies corresponding to m21 recombination events
siþ1 ¼ biþ1 2bi Segment length for local genealogy i
gi Local genealogy for the segment ðbi21;bi �

Notation specific to local genealogy
n Sample size or no. sequences
li Total tree length of local genealogy gi
AiðtÞ Piecewise constant function of the number of ancestral lineages at time t in local genealogy gi
tij Coalescent time in genealogy gi when two of j lineages coalesce. Aiðtij 2 Þ ¼ j; AiðtijþÞ ¼ j2 1:
ti ¼ ðtin; tin21; . . . ; t

i
2Þ Vector of coalescent times of genealogy gi

pi ¼ ðui ;wiÞ Pruning location along local genealogy gi
ui Time when the recombination event happened along the height of the genealogy gi
wi Lineage on genealogy gi21 where the recombination event happened
w9i New lineage added on genealogy gi where the recombination event happened
tinew Coalescent time in genealogy gi when the lineage wi coalesces
tidel Coalescent time in genealogy gi21 that no longer exists in genealogy gi
ci Lineage on genealogy gi that coalesces with lineage w9i
F ij;k No. free lineages in local genealogy gi that do not coalesce in the time interval ðtijþ1;t

i
kÞ

IiðtÞ Piecewise constant function that takes values in f0;  1;  2g indicating no. ancestral lineages
at time t in genealogy gi where the pruning event would produce a visible transition to giþ1

Discretization
d No. change points at which NðtÞ is estimated
x ¼ ðx1; . . . ; xdÞ Times at which NðtÞ is estimated
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invisible transition, the coalescing branch Ci must be the
same pruning branch Wi: In Figure 2B the new coalescent
time Ti

new can happen along five lineages in the interval
ð0; ti21

5 Þ; three lineages in the interval ðti21
5 ; ti21

4 Þ; and two
lineages in the interval ðti21

4 ; ti21
3 Þ: To generalize this calcu-

lation, we introduce the quantity Fij;k with n$ j$ k$ 2;
which denotes the number of lineages in gi that are free (do
not coalesce), in the time segment ðtijþ1; t

i
kÞ; with tinþ1 ¼ 0:

The time interval ðtijþ1; t
i
kÞ includes the interval of pruning

ðtijþ1; t
i
jÞ up to the interval of self-coalescence ðtikþ1; t

i
kÞ: Thus,

if the pruning time happens at time Ui 2 ðtijþ1; t
i
jÞ; an invisible

transition with new coalescent time Ti
new 2 ðtikþ1; t

i
kÞ can hap-

pen along Fij;k free lineages.
In Figure 2B, ui happened in the time interval ð0; ti21

5 Þ: If
the new coalescent time Ti

new happens in the interval ðui; ti21
5 Þ

along the same (unknown) pruning branch, then this invisi-
ble transition has probability

Pr
h
Gi ¼ gi21;Ti

new 2 �ti21
6 ; ti21

5
���ui; gi21;NðtÞ

i
¼ Fi21

5;5

Z ti21
5

ui

1
NðtÞ exp

(
2

Z t

ui

Ai21ðuÞdu
NðuÞ

)
dt;

with F5;5 ¼ 5:
Now consider the same example of Figure 2B but with an

unknown pruning time ui: The joint event where recombina-
tion occurs at pruning time Ui 2 ðti21

6 ; ti21
5 Þ and coalescent

time Ti
new occurs in the interval ðti21

6 ; ti21
5 Þ and this results

in an invisible transition has probability

Pr
h
Gi ¼ gi21;Ui 2

�
ti21
6 ; ti21

5
�
;Ti

new 2 �ti21
6 ; ti21

5
���gi21;NðtÞ

i

¼
Fi21
5;5
R ti21

5

ti21
6

R ti21
5

ui
ð1=NðtÞÞexp

n
2
R t
ui

�
Ai21ðuÞdu�NðuÞ�odtdui

li21

(9)

¼ Fi21
5;5 Pi21

5;5

li21
; (10)

where Pi21
5;5 denotes the double integral expression in Equa-

tion 9 for ease of notation.
An invisible transition would also result if Ui 2 ðti21

6 ; ti21
5 Þ

and Ti
new 2 ðti21

5 ; ti21
4 Þ along the same (unknown) pruning

branch; in Figure 2B, this can happen along three lineages,
so Fi21

5;4 ¼ 3 and this event has probability

Pr
h
Gi ¼ gi21;Ui 2

�
ti21
6 ; ti21

5
�
;Ti

new 2 �ti21
5 ; ti21

4
���gi21;NðtÞ

i

¼
Fi21
5;4
R ti21

5

ti21
6

exp
�
2
R ti21

5
ui

�
Ai21ðuÞdu�NðuÞ�


li21

3

Z ti21
4

ti21
5

1
NðtÞ exp

(
2

Z t

ti21
5

Ai21ðuÞdu
NðuÞ

)
dtdui

¼ Fi21
5;4 Pi21

5;4

li21
:

If we continue considering the cases where Ui 2 ðti21
6 ; ti21

5 Þ
and Ti

new 2 ðti21
4 ; ti21

3 Þ or Ti
new 2 ðti21

3 ; ti21
2 Þ;we have Fi21

5;3 ¼ 2

Figure 2 Schematic representation of SMC9 transi-
tions given a recombination breakpoint at location bi
(indicated as an arrow in each panel). (A) Visible tran-
sition. We uniformly sample the pruning location pi
from gi21 at time ui along some branch wi ; and we
add a new branch w9i at ui and regraft it (dashed black
line). The new branchw9i coalesces with some branch ci
at time tinew: We then delete branch wi and the co-
alescent time tidel to generate genealogy gi : Any prun-
ing time along the branch wi (shown in green) would
have produced the same visible transition from gi21 to
gi : (B) Invisible transition. We uniformly sample the
pruning location pi ¼ ðui ;wiÞ; add a new branch w9i
at ui ; and regraft it. The new branch w9i coalesces with
itself (dashed black line), that is, Ci ¼ wi ; and then the
segment ðui ; tidelÞ of wi is deleted. If Ci ¼ wi ; any prun-
ing location along the green branches would have pro-
duced the same invisible transition.
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and Fi21
5;2 ¼ 0: Then, the joint probability of an invisible event

and Ui 2 ðti21
6 ; ti21

5 Þ is

Pr
h
Gi ¼ gi21;Ui 2

�
ti6; t

i
5
���gi21;NðtÞ

i
¼
P5

k¼2F
i21
j;k Pi21

j;k

li21
:

For the cases when Ui 2 ðti21
jþ1 ; t

i21
j Þ and the new coalescent

time Ti
new falls in another coalescent interval ðti21

kþ1; t
i21
k Þ; we

need to compute the following: the joint probability of
Ui 2 ðti21

jþ1 ; t
i21
j Þ and no coalescence in the interval ðui; ti21

j Þ;

1
li21

Qi21
j ¼ 1

li21

Z ti21
j

ti21
jþ1

exp

(
2

Z ti21
j

ui

Ai21ðuÞdu
NðuÞ

)
dui;

the probability of no coalescence in any of the intermediate
coalescent intervals ðti21

lþ1 ; t
i21
l Þ;

qi21
l ¼ exp

(
2

Z ti21
l

ti21
lþ1

Ai21ðuÞdu
NðuÞ

)
;

and the probability of coalescing at Ti
new 2 ðti21

kþ1; t
i21
k Þ;

12 qi21
k :

Then,

1
li21

Pi21
j;k ¼ 1

li21
Qi21
j qi21

j21q
i21
j22 . . . q

i21
kþ1

�
12 qi21

k

�
represents the probability that the pruning location is wi at
time Ui 2 ðti21

jþ1 ; t
i21
j Þ and the new lineage w9i coalesces at time

Ti
new 2 ðti21

kþ1; t
i21
k Þ with lineage ci ¼ wi: Overall, the marginal

transition probability to an invisible event is

Pr½Gi ¼ gi21jgi21;NðtÞ�

¼
Z ti21

2

0
Pr
�
Gi ¼ gi21; uijgi21;NðtÞ

�
dui

¼
Xn
j¼2

Pr
h
Gi ¼ gi21;Ui 2

�
ti21
jþ1 ; t

i21
j

����gi21;NðtÞ
i

¼ 1
li21

Xn
j¼2

Xj
k¼2

Fi21
j;k Pi21

j;k : (11)

The likelihood of the embedded SMC9 chain

Insteadofhavinga complete realizationof theembeddedSMC9
chain of m local genealogies g0; . . . ; gm21 and pruning loca-
tions p1; . . . ; pm21 at recombination breakpoints b1; . . . ; bm21;

we assume that our data (unless otherwise noted) consist only
of m local genealogies at recombination breakpoints from
a chromosomal segment of length L (including visible and in-
visible events). Note that our observed data are not sequence
data. More specifically, our observed data are

Y ¼ �ðg0; 0Þ; ðg1; b1Þ . . . ; ðgm21; bm21Þ; sm ¼ L2 bm21
�
:

(12)

Then, the observed data likelihood is

LobsðY;NðtÞ; rÞ ¼ Pr
h
g0jNðtÞ

i" Ym22

i¼0

Pr
h
giþ1jgi;NðtÞ

i#zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{factors  that  depend  on  NðtÞ

3 hðL2 bm21jgm21; rÞ
" Ym22

i¼0

f ½siþ1jgi; r�
#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
factors  that  depend  on  r

;

(13)

where hðL2 bm21jgm21; rÞ is the survival function in state
gm21: Equation 13 is factored into terms that depend on
NðtÞ alone and ones that depend on r alone. The terms that
depend on r, given by Equation 5, depend on the data only
through total tree lengths l0; . . . ; lm21 and locus lengths
s1; . . . ; sm21; L2 bm21: By the factorization theorem for suffi-
cient statistics, local tree lengths l0; . . . ; lm21 and locus
lengths s1; . . . ; sm21; L2 bm21 are sufficient for inferring r.
Moreover, recombination locations b0; b1; . . . ; bm21 do not
provide information about NðtÞ:

Methods: Inference

Current coalescent-based methods that infer a population
size trajectory NðtÞ from whole-genome data assume NðtÞ
is a piecewise constant function with change points
x1 ¼ 0, x2 , . . . , xd (Li and Durbin 2011; Sheehan et al.
2013; Rasmussen et al. 2014; Schiffels and Durbin 2014).
That is,

NðtÞ ¼
Xd
i¼1

Ni1t2ðxi21;xi�: (14)

Equation14presents twochallenges.Thefirst challenge lies in
thespecificationof the changepoints: thenarroweran interval
is, thehigher theprobability thatwedonot observe coalescent
times in that interval; further, the fewer observed coalescent
times in an interval, the greater the uncertainty is of the
estimate bNi (if the estimate even exists). The second chal-
lenge lies in the specification of the time window ð0; xdÞ : if
xd is set too far in the past, we might not have enough data to
accurately estimate NðtÞ for xd # t,N:

To solve the first challenge, Li and Durbin (2011) and
Rasmussen et al. (2014) distribute the d change points evenly
on a logarithmic scale,

xj ¼ 1
k

(
exp
�
j
d
logð1þ kxdÞ

�
2 1

)
; (15)

where k is specified by the user. Schiffels and Durbin (2014)
propose discretizing time according to the quantiles of the
exponential distribution, xj ¼ ð21=lÞlog½12 j=d�; where l is
the rate of an exponential distribution. Schiffels and Durbin
(2014) model the time to the most recent coalescent event
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and set l ¼
� n
2

�
However, this equation is not directly ap-

plicable here because we use all coalescent events for
inference.

In the following sections, we first present our Bayesian
nonparametric method and then develop a maximum-
likelihood method under a piecewise constant trajectory
so we can directly compare an EM-based method to our
Bayesian nonparametric method.

Gaussian-process-based Bayesian nonparametric
estimation of N(t)

For our Bayesian methodology, we assume the log-Gaussian
process prior on the population size trajectory,

NðtÞ ¼ exp
�
f ðtÞ�; f ðtÞ � GPð0;CðtÞÞ; (16)

where GPð0;CðtÞÞ denotes a Gaussian process with mean
function 0 and inverse covariance function C21ðtÞ ¼ tC21

with precision parameter t. For computational convenience,
we use Brownian motion as our prior for fðtÞ since its inverse
covariance matrix is sparse. We place a Gamma prior on the
precision parameter t, t � Gða;bÞ: Assuming that recombi-
nation rate r is known, the posterior distribution of model
parameters (Figure 3) is then

Pr½NðtÞ; tjg0; . . . ; gm21�} Pr½g0jNðtÞ�
3

� Ym22

i¼0

Pr
�
giþ1jgi;NðtÞ

�

Pr½NðtÞjt�PrðtÞ: (17)

Thefirst two factors on the right sideof Equation17, detailed
in Equations 8 and 11, involve integration over NðtÞ; an
infinite-dimensional random function (Equation 16). We
approximate the integralZ b

a

dt
NðtÞ ¼

Z b

a
exp½2f ðtÞ�dt;

by the Riemann sum over a partition of the integration in-
terval. That is,Z b

a
exp
h
2fðtÞ

i
dt �

Xk
j¼i

exp
h
2f*j

i
Dj; (18)

for xi , a, xiþ1 , . . . , xk21 , b, xk; Di ¼ xiþ1 2 a;
Dk ¼ b2 xk21; and Dj ¼ xjþ1 2 xj for i, j, k21: f *j is a rep-
resentative value of f ðtÞ in the interval ðxj; xjþ1Þ; in our imple-
mentation, we set f *j ¼ f ðx*j Þ with x*j ¼ ðxj þ xjþ1Þ=2: This
way, we discretize our time window in d evenly spaced seg-
ments x1 ¼ 0, x2 , . . . , xd; with xd ¼ maxðt01; . . . ; tm21

1 Þ;
the maximum time to the most common ancestor observed
in the sequence of local genealogies, and approximateNðtÞ by
a piecewise linear function evaluated at ðx*1; x*2; . . . ; x*dÞ:

Wecondition on the set ofm local genealogies g0; . . . ; gm21

(assuming pruning locations are not known) to generate pos-
terior samples for the vector f* ¼ ½logNðx*1Þ; . . . ; logNðx*dÞ�
and t and use these posterior samples to infer NðtÞ at

t 2 ðx*1; . . . ; x*dÞ; where x*i ¼ ðxi þ xiþ1Þ=2: Updating the vec-
tor f and t separately is not recommended because of their
strong dependency (Lan et al. 2015). Therefore, we update
(f; tÞ jointly in an MCMC sampling algorithm, using
splitHMC (Shahbaba et al. 2014; Lan et al. 2015). splitHMC
updates all model parameters jointly and it can be extended
to a full inferential framework that is directly applicable to
sequence data. The splitHMC method relies on Hamiltonian
dynamics to propose a new state of the model parameters
jointly with a higher acceptance rate than simple methods
such as random-walk Metropolis (Neal 2009). splitHMC
relies on our ability to calculate the log-likelihood of the
observed data and the gradient vector of the log-likelihood
(i.e., the score function). The log-likelihoods of the observed
data are approximated via sums of the form in Equation 18.
We approximate the score function =LobsðY; f*Þ with respect
to f* by applying Fisher’s identity,

=LobsðY; f*Þ ¼ Ef*½=LcðYc; f*ÞjY�;

where, at each iteration in the MCMC, expectation is calcu-
lated using the current value of f* (see Appendix).

Alternatively, one can updateNðtÞ in theMCMCalgorithm,
using the elliptical slice sampler (Murray et al. 2010) with
a fixed value of t (perhaps estimated from previous studies or
from a preliminary run from the split Hamiltonian Monte
Carlo algorithm). The advantage of using the elliptical slice
sampler over the split Hamiltonian Monte Carlo is purely
computational (the elliptical slice sampler does not require
calculation of the score function).

Maximum-likelihood estimation of N(t) with measures
of uncertainty

We assume that the population size trajectory NðtÞ is defined
as in Equation 14. The standard coalescent density (Equation

Figure 3 Structure of our Bayesian model for inferring population size
trajectories from a realization of the SMC9 process at recombination
breakpoints. Hyperparameter t controls the smoothness of the log-
Gaussian process prior on NðtÞ: Local genealogies depend on NðtÞ and
form a Markov chain of degree 1. Given the current local genealogy gi21;

we sample the location of the new recombination breakpoint bi and
a pruning location pi on genealogy gi21: The new genealogy gi depends
on NðtÞ; pi ; and gi21:
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4) and the transition densities defined in Equations 8 and 11
are tractable, so calculation of the likelihood (Equation 13) is
tractable. However, maximization of the likelihood function
cannot be performed analytically because pruning locations
are missing. We implement an EM algorithm (Dempster
et al. 1977) to find the maximum-likelihood estimator of
N ¼ ðN1; . . . ;NdÞ: The complete data Yc for inferring NðtÞ
are then the set of local genealogies g0; . . . ; gm21 and the
set of pruning locations p1 . . . ; pm21: For the invisible transi-
tions, we also need to know the new coalescent times
ftinewgi2I   ; where I ⊂ f1; 2; . . . ;m2 1g denotes the set of in-
dexes of invisible transitions.

The complete data log-likelihood is then

LcðYc;NÞ :¼ logPr½g0jNðtÞ� (19)

þ
Xm21
i¼1

log  Pr
�
pi ¼ ðui;wiÞ; tinew; cijgi21;NðtÞ

�
:

The EM algorithm starts by initializing the population size
trajectory to a piecewise constant functionwith change points
x1; . . . ; xd with arbitrarily chosen vector N0: At the kth itera-
tion of the algorithm we set

Nk ¼ arg max
N

ENk21 ½LcðYc;NÞjY�: (20)

The conditional expectation in Equation 20 is conditional on the
observed data Y defined in Equation 12. Let xi ¼ fxi1;
xi2; . . . ; x

i
dþn21g be the ordered set of time points corresponding

to the change points x1; . . . ; xd and the coalescent time points ti

of local genealogy i. If the transition from gi to giþ1 is visible,
we replace the jth time point xij by tiþ1

new; where j corresponds
to the index such that xij21 , tiþ1

new # xij : For ease of notation, we
denote the number of time intervals jxij by D ¼ dþ n2 2: Let

a0j ¼
�
1; if   x0jþ1 ¼ t0k ; for  k ¼ 2; . . . ; n;
0; otherwise;

be an indicator function that takes the value of 1 when the jth
interval contains a coalescent time of the first genealogy g0:
Then, the log density of the first genealogy is

log Pr ½g0jNðtÞ� ¼ 2
XD
j¼1

n
a0j log N

�
x0jþ1

�o

2
XD
j¼1

A0
�
x0jþ1

�h
A0
�
x0jþ1

�
21
i�

x0jþ1 2 x0j
�
exp
h
2logN

�
x0jþ1

�i
2

8><>:
9>=>;:

(21)

Let

zij ¼
�
1; if   xij , tiþ1

new # xijþ1;

0; otherwise;

be an indicator function that takes the value of 1 when the
new coalescent time of genealogy i happens in the corre-

sponding time interval ðxij ; xijþ1Þ; and let the adjusted inter-
val length be

Di
j ¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

xijþ1 2 xij ; if   uiþ1 , xij ; and  xijþ1 , tiþ1
new

ðafter  pruning  and  before  coalescenceÞ;
xijþ1 2 uiþ1; if   xij ,uiþ1 , xijþ1 # tiþ1

new
ðbefore  coalescence with  pruning  adjustmentÞ;

tiþ1
new 2 uiþ1; if   xij ,uiþ1 , tiþ1

new , xjþ1

ðadjustment  for  pruning  and  coalescenceÞ;
tiþ1
new 2 xij ; if   uiþ1 , xij , tiþ1

new , xijþ1
ðafter  pruning with  coalescence  adjustmentÞ;

0; otherwise:

Then, the augmented transition density can be expressed as

log Pr
�
pi ¼ ðui;wiÞ; tinew; cijgi21;NðtÞ

�
¼ log Pr

h
pi ¼ ðui;wiÞ; tinew; ci; zi;Dijgi21;NðtÞ

i
¼ 2 log li21 2

PD
j¼1

�
zi21
j logN

�
xi21
jþ1

��
2
PD
j¼1

n
Ai21

�
xi21
jþ1

�
Di21
j exp

�
2logN

�
xi21
jþ1

��o
; (22)

where zi and Di are the vectors with zij and Di
j elements. For

the EM algorithm we need to compute the conditional
expected vectors E½zij

��Y� and E½Di
j

��Y�: The details of these
calculations are in the Appendix.

We use the Fisher information matrix to compute approx-
imate standard errors of logN̂ and use these standard errors
together with asymptotic normality of maximum-likelihood
estimators to produce confidence intervals for log population
size piecewise trajectories. We compute the observed Fisher
information matrix following Louis (1982),

ÎY
�
N̂
� ¼ EN̂

�
2ĤLc

�
Yc; N̂

���Y�
2EN̂

h
=Lc

�
Yc; N̂

�
=Lc

�
Yc; N̂

�
9
���Yi;

where =LcðYc; N̂Þ is the gradient and HLcðYc; N̂Þ is the Hes-
sian of the complete-data log-likelihood with respect to logN:
This requires the calculation of conditional cross-product
means and conditional second moments described in File S7.

Data availability

The R code for all simulation studies and analysis of se-
quence data conducted in this article are publicly available
at http://ramachandran-data.brown.edu/.

Results

We simulated 1000 local genealogies of 2, 20, and 100
individuals from each of the three different demographic
models described in Table 2, using MaCS (Chen et al.
2009); see File S3 for details of these simulations. We as-
sumed that all individuals were sampled at time t ¼ 0:
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We compared our point estimates with the truth for each
demographic model, using the sum of relative errors (SRE),

SRE ¼
XK
i¼1

��N̂ðxiÞ2NðxiÞ
��

NðxiÞ ; (23)

where N̂ðxiÞ is the estimated population size trajectory at
time xi: We compute SRE at equally spaced time points
x1; . . . ; xK : Second, we compute the mean relative width
(MRW) as

MRW ¼
XK
i¼1

��N̂upðxiÞ2 N̂lowðxiÞ
��

KNðxiÞ ; (24)

where N̂upðxiÞ corresponds to the 97:5% upper limit and
N̂lowðxiÞ corresponds to the 2:5% lower limit of N̂ðxiÞ: For
EM estimates, ½N̂lowðxiÞ; N̂upðxiÞ� corresponds to the 95%
confidence interval estimated using the observed Fisher in-
formation; for Bayesian GP estimates, ½N̂lowðxiÞ; N̂upðxiÞ� cor-
responds to the 95% Bayesian credible interval (BCI) of
N̂ðxiÞ: To measure how well these intervals cover the truth,
we compute the envelope measure (ENV) in the following
way:

ENV ¼
PK

i¼1I
�
N̂upðxiÞ#NðxiÞ# N̂lowðxiÞ

�
K

: (25)

We compute SRE, MRW, and ENV for K ¼ 150 at equally
spaced time points.

For our Bayesian GP estimates, we estimate NðxiÞ at
d ¼ 100 time points, unless stated otherwise.

The parameters of the Gamma prior on the GP precision
parameter t were set to a ¼ b ¼ 0:001; reflecting our lack of
prior information about the smoothness of the population
size trajectory.

For our EM estimates, we used different discretizations
based on Equation 15 and varying the number of change
points d and k over the fixed interval ð0; xdÞ with xd set to
be the maximum observed coalescent time. For the cases
where we consider only one genealogy (m ¼ 1), the EM ap-
proach becomes standard maximum-likelihood estimation.

We summarize our posterior inference and compare our
Bayesian GP method to the EM method in Figure 5, Figure 6,
and Figure 7. The population size trajectory is log-transformed

for ease of visualization and for direct comparison with other
methods (Minin et al. 2008; Palacios and Minin 2013).

Sensitivity of EM estimates of N(t) to discretization

In Figure 4, we show our Bayesian GP and EM estimates of
a constant population size trajectory from a single genealogy
of 100 individuals with different discretizations. We find that
our Bayesian GP point estimates depicted in Figure 4A re-
cover the truth (dashed line) almost perfectly with less un-
certainty than the EM (Figure 4, B and C). Comparing our
Bayesian GP estimates with different discretizations [50, 100,
and 200 equally spaced time points (Figure 4A)], we find that
increasing the number of time points improves inference
(Table 3) but that the differences between estimates among
the three discretizations are marginal (Figure 4A). In con-
trast, we show that different grid definitions alter the EM
estimates (Figure 4B). It is not clear how to define a good
strategy for the definition of the grid for the EMmethod, even
for the simple model of constant population size. For exam-
ple, increasing k from 100 to 500 with 5 change points (Fig-
ure 4B) does not improve estimation. Increasing the number
of change points does not necessarily improve the estimates
either, for example, increasing the number of change points
from 5 to 10 for k ¼ 10 (Figure 4, B and C). EM grid sensi-
tivity is persistent even when the number of genealogies
increases; Figure S2 in File S4 shows that the best definition
of change points when our data consist of 1000 local geneal-
ogies of 100 individuals is 10 evenly distributed change
points.

Comparing methods for estimating N(t)

Figure 5 shows the estimated population size trajectories
when the number of samples is two for the three different
demographic scenarios and varying the number of local
genealogies (100, 500, and 1000 local genealogies). For
constant and exponential growth, our EM method assumes
a piecewise constant trajectory of 10 change points (d ¼ 10)
and k ¼ 1; using Equation 15 (similar to Li and Durbin
2011 and Rasmussen et al. 2014). For the bottleneck sce-
nario, some of the intervals did not have coalescent events;
hence, for this case we assumed a piecewise constant trajec-
tory of 5 change points (d ¼ 5) and k ¼ 1 for constructing
our EM estimates. We show the boxplots of the time to the
most recent common ancestor (TMRCA) at the bottom of

Table 2 Simulated demographic scenarios

Demographic model N(t)

Constant population size NðtÞ ¼ 1

Exponential growth followed by constant size NðtÞ ¼
�
1; for t 2 ð0;0:1Þ;
exp½210ðt2 0:1Þ�; for t 2 ð0:1;NÞ:

Population bottleneck NðtÞ ¼
8<:1; for t 2 ð0;0:3Þ;

0:1; for t 2 ð0:3; 0:5Þ;
1; for t 2 ð0:5;NÞ:

The argument t denotes time measured in units of N0 generations.
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each plot in Figure 5, which indicate the uncertainty
expected in our estimates.

Both approaches, EM and Bayesian GP, show narrower
confidence and credible intervals at the center of the distri-
bution of the TMRCA, particularly during the bottleneck in
Figure 5C.

For the constant population size model in Figure 5A, our
Bayesian GP considerably outperforms our EM estimates.
This is not surprising since a priori logNðtÞ has mean 0 in
our Bayesian approach (Equation 16). Moreover, EM confi-
dence intervals cover the truth only �30% of the time, while
the GP method covers 100% of the truth (Table 4A). Despite
placing a mean-0 prior on logNðtÞ; the Bayesian GP method
accurately recovers sudden changes as shown in the bottle-
neck scenario. Although our Bayesian GP prior on logNðtÞ is
Brownian motion (which is not differentiable at any point),
our Bayesian GP recovers smooth curves (Figure 5B).

Table 4A shows the performance statistics for the esti-
mates of NðtÞ in Figure 5. In general, our Bayesian GP has
wider credible intervals than the EM confidence intervals but
these credible intervals cover the true trajectory better than
the EM confidence intervals in all cases (MRW and ENV in
Table 4). Our Bayesian GP estimates also generally have
smaller sums of relative errors (SRE in Table 4). Under the

bottleneck scenario, our Bayesian GP produces greater sums
of relative errors than does the EM, but our Bayesian GP
estimates recover the truth more accurately than the EM
during the bottleneck.

Figure 6 and Figure 7 show our estimates when n ¼ 20
and n ¼ 100 (Table 4, B and C, gives performance statistics).
In general, our GP-based estimates have smaller SRE and
larger ENV than the EM-based estimates and hence, the
MRW is usually wider in the GP-based estimates, accurately
reflecting the uncertainty of the estimates. As expected, in-
creasing the number of loci (m) generally decreases the
width of the confidence and credible intervals of our esti-
mates (MRW). Although this is generally true for EM esti-
mates as well, EM estimates have very low coverage of the
truth (MRE in Table 4) when the number of loci increases.

Sampling more individuals vs. sequencing more loci

Figure 5, Figure 6, and Figure 7 show our estimates for
n ¼ 2;  20; and 100 sampled individuals across varying num-
bers of loci. Performance of EM estimates depends strongly
on the definition of the grid, so we focus here on the Bayesian
GP estimates. We find that increasing the number of loci
decreases uncertainty of our estimates and allows us to infer
NðtÞ farther back in time. Increasing the number of samples

Figure 4 Sensitivity to parameter discre-
tization. Population size trajectories esti-
mated from one simulated genealogy
(m ¼ 1) of 100 individuals with a con-
stant population size are compared. We
show true trajectories as dashed lines.
(A) Bayesian GP estimates at d ¼
50;  100; and 200 equally spaced time
points. (B) EM estimates of a piecewise
constant trajectory with d ¼ 5 change
points and k ¼ 1;  10; and 100 (Equa-
tion 15). (C) EM estimates of a piecewise
constant trajectory with d ¼ 10 change
points and k ¼ 10;  100; and 500 (Equa-
tion 15). Point estimates are shown as
solid black lines. 95% percent credible
intervals and 95% confidence intervals
are shown by gray areas.
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does not necessarily increase the performance of our GP esti-
mates (File S6). For example, under the bottleneck scenario,
we are able to detect the bottleneck fairly accurately even for
two samples with m ¼ 1000 local genealogies. This is be-
cause most TMRCAs observed under the bottleneck scenario
occur during the bottleneck (Figure 5, Figure 6, and Figure
7), regardless of the sample size. In contrast, in our exponen-
tial growth scenario, increasing the number of samples from
n ¼ 2 to n ¼ 100 improves accuracy: point estimates are

closer to the truth (SRE in Table 4, A–C) and credible inter-
vals cover the truth completely (ENV of 100%).

Sequential Tajima’s genealogies are sufficient statistics
under the SMC9

Under the SMC9, marginally at each locus along the chro-
mosome, a local genealogy is a realization of Kingman’s
n-coalescent (Kingman 1982), a continuous-time Markov
chain taking its values in the setKn of sequences of partitions
of the label set f1; 2; . . . ; ng A local genealogy g of n individ-
uals includes labeled topology Kn and coalescent times
t ¼ ðtn; . . . ; t2Þ: The state space of a local genealogy is then
G ¼ Kn5ℝþn21; and the cardinality of the set Kn is
n!ðn2 1Þ!=2n21: However, only the set of ordered coalescent
times carries information about NðtÞ: For a single locus, the
set of coalescent times provides sufficient statistics for infer-
ring NðtÞ (see Proof in the Appendix). A natural question that
follows is whether the coalescent times corresponding to the
set of local genealogies are sufficient statistics for inferring
NðtÞ under the SMC9 model. We find that the sufficient sta-
tistics for inferring NðtÞ under the SMC9 model are the co-
alescent times, when taken together with local ranked tree
shapes (tree with no labels but ranked coalescent events). For
a single locus, the set of coalescent times together with the
ranked tree shape corresponds to a realization of Tajima’s

Table 3 Summary statistics for simulation results depicted in
Figure 4

Simulation of a single
genealogy with n ¼ 100 SRE MRW ENV (%)

MLE d ¼ 5; k ¼ 1 41.80 14.76 100.0
MLE d ¼ 5; k ¼ 10 41.05 2.98 100.0
MLE d ¼ 5; k ¼ 100 57.12 1.72 100.0
MLE d ¼ 10; k ¼ 10 47.93 16.08 100.0
MLE d ¼ 10; k ¼ 100 61.77 3.91 100.0
MLE d ¼ 10; k ¼ 500 31.52 3.60 100.0
Bayesian GP d ¼ 50 6.98 1.88 100.0
Bayesian GP d ¼ 100 5.52 2.15 100.0
Bayesian GP d ¼ 200 4.96 1.70 100.0

SRE is the sum of relative errors (Equation 23), MRW is the mean relative width of
the 95% BCI (Equation 24), and ENV is the envelope measure (Equation 25). Values
in boldface type indicate best performance.

Figure 5 Inference of population size trajectories NðtÞ
for a pair of individuals (n ¼ 2). Simulated data under
constant population size (A), exponential and constant
trajectory (B), and a bottleneck (C). We show estimates
from m ¼ 100; m ¼ 500; and m ¼ 1000 local geneal-
ogies. Dashed lines show the true trajectories, blue
lines and light blue areas represent EM point estimates
and 95% confidence areas, and red lines and pink
areas represent Bayesian GP posterior medians and
95% BCIs. Boxplots of the TMRCA are shown at the
bottom of each plot.
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n-coalescent. Tajima’s n-coalescent (Tajima 1983) is a contin-
uous-time Markov chain taking its values in the set Hn of
ranked tree shapes [also called histories, evolutionary rela-
tionships, or vintaged and sized coalescent (Sainudiin et al.
2014)]. The state space of Tajima’s local genealogy is then
GT ¼ Hn5ℝþn21; and the cardinality of the set Hn corre-
sponds to the sequence of Euler zigzag numbers whose first
10 elements are 1;  1;  1;  2;  5;  16;  61;  272;  1385;  7936
(Disanto andWiehe 2013). The probability of getting a particu-
lar type of ranked tree shape Hn of n samples (Tajima 1983) is
given by

PðHnÞ ¼ 2n2c21

ðn2 1Þ!; (26)

where c is the number of cherries, defined as branching events
that lead to exactly two leaves.

We defined transition densities in terms of coalescent times
and Fi; j quantities (see Methods: SMC9 calculations). The set of
all Fi; j quantities from a local genealogy forms a triangular ma-
trix: an F matrix. We show that (i) F matrices are in bijection

with ranked tree shapes and (ii) the set of local Tajima’s gene-
alogies has sufficient statistics for inferringNðtÞ under the SMC9
model (see Appendix). These observations are crucial for infer-
ring NðtÞ from sequence data directly. Coalescent-based infer-
ence from sequence data relies on marginalization over the
hidden state space of genealogies. In the Appendix, we show
that the state space needed is the space of local Tajima’s gene-
alogies, as opposed to the space of local Kingman’s genealogies.
For n ¼ 10 sequences, there are 2; 571; 912; 000 possible la-
beled topologies while only 7936 possible ranked tree shapes.

Application to human data

We applied our method to a 2-Mb region on chromosome 1
(187,500,000–189,500,000) with no genes from five Yorubans
from Ibadan, Nigeria (YRI) and five Utah residents of central
European descent (CEU) from the 1000 Genomes pilot project
(1000 Genomes Project Consortium 2012) and previously ana-
lyzed for the same purpose (Sheehan et al. 2013). We used
ARGweaver (Rasmussen et al. 2014) to obtain a sample path
of local genealogies for the two populations (YRI and CEU). The

Table 4 Summary of simulation results depicted in Figure 5

A. Simulations with n = 2

SRE MRW ENV

Simulation and
method m = 100 m = 500 m = 1000 m = 100 m = 500 m = 1000 m = 100 (%) m = 500 (%) m = 1000 (%)

Const. EM 39.80 41.78 38.60 0.98 0.26 0.08 31.3 28.0 19.3
Const. GP 30.60 4.25 3.04 0.49 0.33 0.22 100.0 100.0 100.0
Exp. EM 64.68 25.70 33.70 0.91 0.16 0.12 42.0 26.0 6.6
Exp. GP 28.38 32.70 26.76 2.04 0.45 0.33 100.0 56.0 50.6
Bottle. EM 48.48 46.51 127.70 0.43 0.45 1.37 40.6 30.0 34.0
Bottle. GP 33.76 45.14 223.58 3.44 6.84 17.13 98.0 94.6 94.6

B. Simulations with n = 20

SRE MRW ENV

m = 1 m = 100 m = 1000 m = 1 m = 100 m = 1000 m = 1 (%) m = 100 (%) m = 1000 (%)

Const. EM 60.87 121.30 25.60 2.28 2.16 0.23 100.0 37.7 39.3
Const. GP 31.74 3.94 13.22 1.06 0.70 0.36 100.0 100.0 100.0
Exp. EM 40.97 40.66 40.22 3.11 0.37 0.19 100.0 38.6 19.3
Exp. GP 25.35 27.03 65.61 3.53 1.56 0.42 100.0 100.0 39.3
Bottle. EM 147.93 78.40 78.20 6.98 0.81 68.4 66.0 78.6 49.33
Bottle. GP 68.93 78.2 50.92 2.74 2.47 1.47 92.0 79.3 78.6

C. Simulations with n = 100

SRE MRW ENV

m = 1 m = 100 m = 1000 m = 1 m = 100 m = 1000 m = 1 (%) m = 100 (%) m = 1000 (%)

Const. EM 41.05 220.85 43.41 2.98 4.93 0.99 100.0 35.3 48.0
Const. GP 5.52 34.78 12.17 2.15 1.49 0.47 100.0 100.0 89.3
Exp. EM 76.86 40.22 27.63 3.23 0.81 0.13 87.3 42.0 14.0
Exp. GP 114.53 25.82 26.42 3.57 1.55 0.83 100.0 100.0 100.0
Bottle. EM 194.77 59.54 127.68 3.95 1.08 0.85 84.0 51.3 45.3
Bottle. GP 90.27 44.14 42.68 6.98 2.62 1.74 100.0 94.7 96.0

SRE is the sum of relative errors calculated as in (23), MRW is the mean relative width of the 95% BCI as Const: Constant population simulation scenario. Exp: Exponential
growth followed by constant population size simulation scenario and Bottle: Population bottleneck. defined in (24), and ENV is the envelope measure calculated as in (25).
Values in boldface type indicate best performance for each demographic model and sample size.
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parameters used were 200 change points, a mutation rate of
m ¼ 1:263 1028; and a recombination rate of r ¼ 1:63 1028

(Rasmussen et al. 2014) (File S5). We note that ARGweaver
assumes the SMC process and our method assumes the SMC9
process. Moreover, our inference is based on a single sample of
the SMCprocesswith knownpruning times.OurARGweaver set
of local genealogies is discretized at 200 time points and ourGP-
based inference is influenced by this discretization. In Figure 8
we show our estimates of past Yoruban (in blue) and European
population sizes (in green). The two population size trajectories
experience a series of bottlenecks and overlap until �100 KYA,
assuming a diploid reference population size of N0 = 10,000
and a generation time of 25 years. In Figure 8we recover an out-
of-Africa bottleneck that starts�100 KYA and ends�30 KYA in
the European population. These results are consistent with pre-
viously published results (Gronau et al. 2011; Li and Durbin
2011; Rasmussen et al. 2011; Sheehan et al. 2013; Schiffels
and Durbin 2014). In File S5, Figure S4A, we show the esti-
mates of logNðtÞ instead of NðtÞ and time measured in units of
N0 generations (as in Figure 5, Figure 6, and Figure 7).We note
that this two-step procedure of inferring local genealogies with

ARGweaver and then using our method introduces biases and
ignores genealogical uncertainty. In File S5, we correct for some
of the bias caused by using this two-step procedure and show
that our inferred population size trajectory remains valid for the
recent past.

Assessing the effect of using genealogies inferred
with ARGweaver

We simulated sequence data, used ARGweaver for inferring
a set of local genealogies, and used our method on those
genealogies to obtain estimates of logNðtÞ: To this end, we
took the sequences of the first 1000 local genealogies of
n ¼ 20 individuals simulated with MaCS as described in sec-
tion 3 of File S5. We then generated the sequence lengths
(si; for the locus corresponding to gi21) as in Equation 5,

si � Exponentialðr3 li21 3N0Þ;

where li21 is the tree length of gi21 in units of N0 generations
and N0 is the current population size. In our simulations, we
set N0 ¼ 20; 000; r ¼ 1:83 1028: To simulate sequence data

Figure 6 Inference of population size
trajectories NðtÞ for n ¼ 20: Simulated
data under constant population size
(A), exponential and constant trajectory
(B), and a bottleneck (C). We show esti-
mates from m ¼ 1 genealogy, m ¼ 100
local genealogies, and m ¼ 1000 local
genealogies. Dashed lines show the true
trajectories, blue lines and light blue
areas represent EM point estimates and
95% confidence areas, and red lines
and pink areas represent Bayesian GP
posterior medians and 95% BCIs. Box-
plots of the TMRCA are shown at the
bottom of each plot.
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of length si over genealogy gi21; we used Seq-Gen (Rambaut
and Grassly 1997) implemented in the R package phyclust
(Chen 2011) from the Jukes–Cantor mutation model (Jukes
and Cantor 1969) with mutation rate m ¼ 23 1:83 1028:

We then used ARGweaver to infer a sample of local genealogies
with the same corresponding parameters and with 200 change
points for discretization of time. Figure 9 shows three estima-
tions of effective population size trajectories for our three sim-
ulation scenarios. Figure 9, A–C, left, shows our GP-based
estimates from 1000 simulated genealogies from MaCS; Figure
9, A–C, center, shows our GP-based estimates from a realization
of local genealogies obtained from ARGweaver; and Figure 9,
A–C, right, shows our GP-based estimates correcting the num-
ber of lineages used in our calculations, replacing AiðtÞ by
AiðtÞ21 in our likelihood calculations. We find that our esti-
mates are not only noisier using this approach but also biased.

Discussion

In this article, we propose a Gaussian-process-based Bayesian
nonparametric method for estimating effective population

size trajectories NðtÞ from a sequence of local genealogies,
accounting for recombination. Under a variety of simulated
demographic scenarios and sampling designs, our method
recovers the truth with better precision and accuracy than
a maximum-likelihood approach (Figure 5, Figure 6, and Fig-
ure 7). We apply our method to genealogies estimated using
ARGweaver (Rasmussen et al. 2014) for European and Afri-
can samples in the 1000 Genomes; this application to real
data recovers the known features of the out-of-Africa bottle-
neck (Figure 8).

Several recent approaches have emerged for inferring
population size trajectories from multiple whole-genome
sequences using the SMC (Li and Durbin 2011; Sheehan
et al. 2013; Schiffels and Durbin 2014). However, current
SMC-based methods rely on maximum-likelihood inference
(EM) of both a discretized parameter space and a discretized
state space to gain computational tractability, and incur the
costs of reduced accuracy and biased estimates. Although in
principle the EM approach and the Bayesian nonparametric
approach approximate NðtÞ similarly—by either a piecewise
constant or a piecewise linear function—the Bayesian

Figure 7 Inference of population size
trajectories NðtÞ for n ¼ 100: Simulated
data under constant population size (A),
exponential and constant trajectory (B),
and bottleneck (C). We show estimates
from m ¼ 1 genealogy, m ¼ 100 local
genealogies, and m ¼ 1000 local gene-
alogies. Dashed lines show the true tra-
jectories, blue lines and light blue areas
represent EM point estimates and 95%
confidence areas, and red lines and pink
areas represent Bayesian GP posterior
medians and 95% BCIs. Boxplots of
the TMRCA are shown at the bottom
of each plot.
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nonparametric approach is not affected by increasing the
number of parameters (or change points) in the estimation
of NðtÞ: For comparison with existing methods, we imple-
mented an EM approach to infer population size trajectories
from a sequence of local genealogies and we note that in-
creasing the number of loci may actually increase the bias
of the EM estimates (Figure 5, Figure 6, and Figure 7). For
example, in simulation, our EM approach incorrectly detects
the initial period of the simulated bottleneck (�   0:8N0 in-
stead of 0:5N0 generations ago) with narrow confidence
intervals (Figure 7C).

Using BayesianGP for inferring population size trajectories
offers many advantages over the EM approach. Similar to
Palacios andMinin’s (2013) approach to inference from a sin-
gle genealogy, we a priori assume that NðtÞ follows a log
Brownian motion process. This allows us to model NðtÞ as
a continuous positive function. The main advantage of using
a Brownianmotion process is that its inverse covariance func-
tion is a sparsematrix that allows for fast computations. Since
the likelihood function involves integration over NðtÞ; this
integral is approximated by the Riemann sum over a regular
grid of points. The finer the grid is, the better the approxima-
tion.We find that ourmethod performswell for inferringNðtÞ
at 100 change points in all our examples and, more impor-
tantly, results are not sensitive to the number of change
points used in the analysis (Figure 4). Our Bayesian approach
relies on MCMC for inference from the posterior distribution
of model parameters. Because population sizes at different
grid points are correlated, we adapt the recently developed
MCMC technique splitHMC for jointly sampling all model
parameters (Shahbaba et al. 2014; Lan et al. 2015). splitHMC
is a Metropolis sampling algorithm that efficiently proposes

states that are distant from current states with high accep-
tance rates. It has been shown to bemore efficient in inferring
NðtÞ from a single genealogy than elliptical slice sampling or
regular Hamiltonian Monte Carlo sampling (Lan et al. 2015).
However, splitHMC relies on calculating the score function at
every single iteration. Because the pruning time in each local
genealogy is unknown, we calculate the score function via
Fisher’s formula.

In simulations, we find that our algorithm scales well with
hundreds of individuals; our computational bottleneck is in
the number of local genealogies. We envision that extending
the current methodology to inference from sequence data
directly will require a strategy for sampling shorter genomic
segments. This would be a probabilistic alternative to ar-
bitrarily choosing segment lengths (Sheehan et al. 2013;
Rasmussen et al. 2014).

Under the SMC model, every recombination event along
the genome translates to a new coalescent event for the
sample under study, so increasing the number of loci results
in more realizations of the coalescent process. The longer the
segments are and the larger the number of samples taken, the
greater the chance of observing variation due to recombina-
tion. This fact makes it hard to define a sampling strategy:
Longer genomes or larger sample sizes? We show that in-
creasing thenumberof localgenealogies improvesprecisionof
our Bayesian GP estimates (Figure 5, Figure 6, and Figure 7).
However, resolution into the past from contemporaneous
sequences highly depends on the actual population size tra-
jectory NðtÞ:

We used ARGweaver (Rasmussen et al. 2014) to generate
two samples of contiguous local genealogies corresponding
to a 2-Mb region of chromosome 1 for five Europeans (CEU)
and five Africans (YRI) from the 1000 Genomes Project; this
genomic region is free of genes and was also analyzed in
Sheehan et al. (2013). Taking these two samples of local
genealogies as our data (4186 local genealogies for CEU
and 6247 local genealogies for YRI), we were able to use
our Bayesian GP method to infer Yoruban and European ef-
fective population size trajectories (Figure 8).We find an out-
of-Africa bottleneck that began �100 KYA and ended �30
KYA in the European population, consistent with Li and
Durbin (2011); Rasmussen et al. (2011); Gronau et al. (2011);
Sheehan et al. (2013), and Schiffels and Durbin (2014). We
note that our estimates are based on a single sample of local
genealogies and thus ignore genealogical uncertainty. More-
over, we generated our data from the posterior distribution of
local genealogies, using ARGweaver at 200 time intervals, so
our GP-based approach cannot fully detect sudden changes
that may occur between the discretized times. In addition,
ARGweaver assumes an SMC prior model on local genealo-
gies and our GP-based method assumes the SMC9 process;
the lack of invisible recombination events in ARGweaver’s
genealogies will bias inference (as shown in simulated data
in Figure 9).

Thenaturalnextextension forourmethodpresented in this
study is to inferNðtÞ from sequence data directly and not from

Figure 8 Inference of human population size trajectories NðtÞ for n ¼ 10:
Green solid line and green areas represent the posterior median and 95%
BCI for the European population (CEU) and blue solid line and blue areas
represent the posterior median and 95% BCI for the Yoruban population
(YRI). Time is measured in years in the past, assuming a generation length
of 25 years and a reference diploid population of 10,000 individuals. The
x-axis is log transformed.
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the set of local genealogies. OurMCMC approach allows us to
extend the current methodology in a Bayesian hierarchical
framework where the SMC9 process would be used as a prior
distribution over local genealogies. Theworkwe present here
suggests a combination of ARGweaver accommodating SMC9
and GP priors would result in an efficient method for infer-
ring population size trajectories from sequence data directly.
In addition, our model can be easily modified to model a vari-
able recombination rate along chromosomal segments and to
jointly infer variable recombination rates and NðtÞ:

Finally, we show that, under the SMC9model, local ranked
tree shapes and coalescent times correspond to a set of local
Tajima’s genealogies; these Tajima’s genealogies are sufficient
statistics for inferring NðtÞ: Under the SMC9 model, the state
space needed for inferring population size trajectories from
sequence data is that of a sequence of local Tajima’s genealo-
gies. This lumping, or reduction of the original SMC9 process,
will allowmore efficient inference from sequence data directly.

Current methods for inferring population size trajectories
make trade-offs to analyze whole genomes that limit both

biological understanding of sudden population size changes
and the ability to test hypotheses regarding population size
changes. This work represents a critical set of theoretical
results that lay the groundwork for efficient estimation of
detailed histories from sequence data with measures of
uncertainty.
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Appendix

Discretization

For both our Bayesian method and our EMmethod, we assume that NðtÞ is a piecewise linear (or piecewise constant) function
with d change points. Let xi ¼ fxi1; xi2; . . . ; xidþn21g be the ordered set of time points corresponding to the change points
x1; . . . ; xd and the coalescent time points ti of local genealogy i. Then, we calculate all the factors needed for the observed
data likelihood (Equation 13) and the complete data likelihood (Equation 19).

Let ~F
i
k; j denote the discretized version of Fi that represents the number of branches in gi that do not coalesce with any other

branch in the time interval ðxik; xijþ1Þ: Note that the indexes here are in increasing order, k# j: Similarly, let ð1=liÞ~Pik; j denote the
probability that Ui (the pruning time along genealogy i) occurs in ðxik; xikþ1Þ and the self-coalescing event occurs at time tinew in
ðxij ; xijþ1Þ: That is,
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is the joint probability of pruning time Ui 2 ðxik; xikþ1Þ and not coalescing back to the same branch in the time interval ðxik; xikþ1Þ;
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Expectation-Maximization Algorithm

E step

Equations 21 and 22 show that for the E-step, the only expectations we need are E½zij
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and for i 2 I c; let

yij ¼
�
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0; otherwise:
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�
xikþ1

�
~Q
i
k
QD

l¼kþ1
�
q̂il
�yil

264
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�
exp 2

�
xijþ12 u
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N
�
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�( )
du

Ii
�
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�QD
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h
q̂il
iyil
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k¼1Ii

�
xikþ1

�
~Q
i
k
QD
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h
q̂il
iyil

2664
3775:

M step

Now, for the kth iteration of the algorithm and maximizing the complete data log-likelihood (Equation 19), we have

Nk
l ¼

PD
j¼10:5A

0
�
x0jþ1

��
A0
�
x0jþ1

�
2 1
��
x0jþ1 2 x0j

�
10l; j þ

Pm22
i¼0
PD

j¼1A
i�xijþ1

�
ENk21

h
Di
jjY
i
1il; jPD

j¼1a
0
j 1

0
l; j þ

Pm22
i¼0
PD

j¼1ENk21

�
zij
�
1il; j

;

where

1il; j ¼
�
1; if   xl , xijþ1 # xlþ1;

0; otherwise

is an indicator function that takes the value of 1 when ðxl; xlþ1Þ covers the interval ðxij ; xijþ1Þ:

Observed Score Function for Split Hamiltonian Monte Carlo

Our Bayesian approach relies on splitHMC sampling from the posterior distribution of model parameters. This method requires
the calculation of the observed score function. We use Fisher’s identity and calculate the observed score function as the
conditional expected complete score function. The lth element of =Lobs is

ð=LobsÞl ¼ 2
XD21
j¼1

a0j 1
0
l; j þ

1
2

XD21
j¼1

A0�x0jþ1
��
A0�x0jþ1

�
2 1
��
x0jþ1 2 x0j

�
10l; jexp½2logNl�

2 
Xm22

i¼0

XD21

j¼1

E
�
zijjY

�
10l; j þ

Xm22

i¼0

XD21

j¼1

Ai�xijþ1

�
E
h
Di
jjY
i
1il; j exp½2logNl�:

(A4)

Sufficient Statistics Under SMC9

Here, we first formally show that under the standard coalescent and for a single locus, the set of coalescent times has sufficient
statistics for inferring NðtÞ; that is, information about the topology is irrelevant for inference of NðtÞ: We then investigate
the properties of our F quantities (see Methods: SMC9 Calculations) needed for the calculation of the transition densities

BNP Inference from Sequential Genealogies 299



(Equation 11) and show through a series of propositions that the F quantities and coalescent times are the sufficient statistics
for inferring NðtÞ under the SMC9 process.

Proposition 1. For a single locus, the set of coalescent times are sufficient statistics for inferring NðtÞ:
Proof. This can be proved using the factorization theorem. The marginal density of a local genealogy (Equation 3) has

a unique factor that depends on NðtÞ and g only through tn; . . . ; t2: The values of AðtÞ are induced by the natural order of the
coalescent times.

n

Let F denote a lower triangular matrix of size n3 nwith the Fi;j entry the number of lineages that do not coalesce in the time
interval ðtiþ1; tjÞ; as defined in Methods: SMC9 Calculations and with the following properties:

1. Fi;1 ¼ 0 for all i ¼ 1; . . . ; n (The first column contains 0’s for completion).
2. Fi; j ¼ 0 for all j. i (lower triangular matrix).
3. Fi;i ¼ i for all i$ 2 (the diagonal corresponds to the number of lineages at each intercoalescent interval).
4. Fi;i21 ¼ i2 2 for all i$ 2 (at each intercoalescent interval, we lose two free lineages, so the second diagonal correspond to

the number of lineages minus two).
5. For j, n2 1; the last row of F is defined according to

Fn; j21 ¼

Fn; j2 2; with  probability   p ¼

 
Fn; j

2

!
 

j

2

! ;

Fn; j2 1; with  probability   p ¼ Fn; j
�
j2 Fn; j

� 
j

2

! ;

Fn; j; with  probability   p ¼

 
j2 Fn; j

2

!
 

j

2

! :

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
6. Let c denote the number of cherries; then

c ¼
Xn
j¼2

1fFn; j2Fn; j21¼2g:

7. For i, n and j, i2 1; if Fn; j21 ¼ Fn; j 2 2; then Fi; j21 ¼ Fi; j 2 2:
8. Let vi denote the set of lineages in the intercoalescent interval ðti; ti21Þwith direct descendant internal nodes. The lineage labels

correspond to the label of the coalescent time,when the direct descendant internal nodewas created. That is, the lineage created
at tn has label n: vn ¼ fng; the lineage created at ti has label i. Let jvij denote the size of the set vi: Note that 1# jvij# c and

jvij ¼
Xn
j¼i

1fFn; j2Fn; j21¼2g2
Xn
j¼i

1fFn; j2Fn; j21¼0g:

9. For i, n and j, i2 1; if Fn; j21 ¼ Fn; j 21; then at time tj; there is a coalescence between a singleton and a lineage in the set
vj: Let aj be the lineage selected uniformly at random from vj; then

Fi; j21 ¼
�
Fi; j2 1 if   i. aj
Fi; j2 2 if   j, i# aj:

10. For i, n and j, i2 1; if Fn; j21 ¼ Fn; j; then at time tj; there is a coalescence between two lineages a1j and a2j from the set vj:
Let a1j denote the minimum and a2j the maximum of the two lineages selected; then
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Fi; j21 ¼
8<:

Fi; j if   i. a2j
Fi; j2 1 if   a1j , i# a2j
Fi; j2 2 if   j, i# a1j :

Weshow the correspondence between a ranked tree shape and the Fmatrix in the example of FigureA1. Thefirst rowand the
first column are set to 0, and the first two diagonals are known with probability 1: Fi;i ¼ i and Fi;i21 ¼ Fi;i 2 2 for i. 1: In our
example, n ¼ 5 and so the first diagonal corresponds to ð0;  2;  3;  4;  5Þ and the second diagonal corresponds to
ð0;  1;  2;  3Þ: The last row, F5; contains 0, followed by the number of branches that do not coalesce in the time intervals
ðt6; t2Þ; ðt6; t3Þ; ðt6; t4Þ; and ðt6; t5Þ corresponding to ð0;  0;  2;  3;  5Þ:

Proposition 2. There is a bijection between the set of ranked tree shapes Hn and F ; the set of F matrices.
Proof. The probability of the Fmatrix can be expressed as the product of the conditional probabilities of the columns of the

F matrix; that is,

PrðFÞ ¼ Pr
�
F�;n
�Yn21
j¼1

Pr
�
F�;n2j

��F�;n2jþ1
�

¼
Yn22
j¼2

Pr
�
F�;n2j

��F�;n2jþ1
�
;

since the first and last column of F are known with probability 1. Note F�; j represents the jth column vector of the F matrix.
Let di ¼ Fn;i 2 Fn;i21 for i ¼ 3; . . . ; n and d2 ¼ Fn;2; then

Pr
�
F�;n2j

��F�;n2jþ1
� ¼ Pr

�
dn2jjF�;n2jþ1

�
Pr
�
Fn2j:n21;n2j

��dn2j; F�;n2jþ1
�
: (A5)

That is, the conditional probability of the ðn2 jÞth column of F given the ðn2 jþ 1Þth column of F is the product of the
conditional probability of the last element of the ðn2 jÞth column and the conditional probability of the rest of the ðn2 jÞth
column.When dn2j ¼ 2; the rest of the column is knownwith probability 1 (property 7 of the Fmatrix).When dn2j ¼ 1; the rest
of the n2 jth column has probability 1=jvn2jþ1j (property 9 of the Fmatrix) and when dn2j ¼ 2; the rest of the n2 jth column

has probability 1
�	 jvn2jþ1j

2



(property 10 of the F matrix). Then rewriting Equation A5, we have

Pr
�
F�;n2j

��F�;n2jþ1
� ¼ Pr

�
dn2jþ1jF�;n2jþ1

� 1
jvn2jþ1j

!1fdn2j¼1g
1	 jvn2jþ1j
2



0BB@

1CCA
1fdn2j¼0g

; (A6)

since jvn2jj ¼
Pn

k¼n2jð1fdk¼2g 2 1fdk¼0gÞ and Fn;k ¼ n2
Pn

j¼kþ1dj; then

Pr
�
dn2jþ1jF�;n2jþ1

� ¼ Pr
�
dn2jþ1jFn;n2jþ1

� ¼ Pr

 
dn2jþ1

���� Xn
k¼n2jþ2

dk

!
;

and

Figure A1 Ranked tree shape for n ¼ 5:
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PrðFÞ ¼
Yn22

j¼1

Pr

 
dn2jj

Xn
k¼n2jþ1

dk

! 
1

jvn2jþ1j

!1fdn2j¼1g 
2

jvn2jþ1jðjvn2jþ1j21Þ

!1fdn2j¼0g

¼
Yn22

j¼1
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n2
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��
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3  

�
n2
Xn
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��Xn
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0B@
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3  

�Xn
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��Xn
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dk2j21

�
jvn2jþ1jðjvn2jþ1j21Þ

0B@
1CA

1fdn2j¼0g

1	
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¼ 2n22212c

ðn2 1Þ!ðn22Þ!
Yn21
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n2
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! 
n2
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k¼jþ1

dk21

!!1fdj¼2g

3  

  
n2

Xn
k¼jþ1
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j2nþ
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1
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jvjþ1j21


1fdj¼0g
:

Since dn ¼ 2 and jvnj ¼ 1; for j ¼ n2 1; then dn21 is either 1 or 2; then

PrðFÞ ¼ 2n2c21

ðn2 1Þ!ðn2 2Þ! ðn2 2Þðn23Þ1fdn21¼2g
Yn22

j¼2

  
n2

Xn
k¼jþ1

dk

! 
n2

Xn
k¼jþ1

dk21

!!1fdj¼2g
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n2

Xn
k¼jþ1
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Xn
k¼jþ1
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Xn
k¼jþ1
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! 
j2nþ

Xn
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!!1fdj¼0g
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1

jvjþ1j

!1fdj¼0gþ1fdj¼1g	
1

jvjþ1j21


1fdj¼0g
:

If we continue expanding the expressions, we get

PrðFÞ ¼ 2n2c21

ðn21Þ!ðn2 2Þ! ðn2 2Þðn2 3Þðn24Þ1fdn22¼2gþ1fdn22¼1g1fdn21¼2gðn25Þ1fdn22¼2g1fdn21¼2g

3  
Yn23

j¼2

  
n2

Xn
k¼jþ1

dk

! 
n2

Xn
k¼jþ1

dk21

!!1fdj¼2g

3  

  
n2

Xn
k¼jþ1
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! 
j2nþ

Xn
k¼jþ1
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!!1fdj¼1g  
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Xn
k¼jþ1
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! 
j2nþ

Xn
k¼jþ1

dk21

!!1fdj¼0g

3  

	
1

jvjþ1jj

1fdj¼0gþ1fdj¼1g	 1

jvjþ1j21


1fdj¼0g

¼ ⋯

¼ 2n2c21

ðn2 1Þ!:

n
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Note that the entries of the F matrix correspond to the same quantities needed to express the transition density of an
invisible event (Equation 11). We claim that the sequence of coalescent times sets t0; t1; . . . ; tm21 and F0; F1; . . . ; Fm21 matrices
corresponding to the ranked tree shapes of local genealogies g0; g1; . . . ; gm21 are sufficient statistics to infer NðtÞ under the SMC9
process. We prove this through Propositions 3–6.

Proposition 3. The probability density of Tajima’s genealogy is proportional, up to a combinatorial factor, to the probability
density of Kingman’s genealogy.

Proof.

Pr
�
GT ¼ fF; tn; tn21; . . . ; t2gjNðtÞ

� ¼ Pr½tn; tn21; . . . ; t2jNðtÞ�Pr½Fjtn; tn21; . . . ; t2�

¼ n!ðn2 1Þ!
2n21 Pr½G ¼ fKn; tn; . . . ; t2gjNðtÞ� 2

n2c21

ðn21Þ!

¼ n!
2c
Yn
j¼2

1
N
�
t0j
� exp(2 Z t0j

t0jþ1

A0ðtÞ�A0ðtÞ21
�
dt

2NðtÞ

)
: (A7)

n

Proposition 4. The marginal visible transition density from a local Kingman’s genealogy gi21 to Gi is proportional to the
marginal visible transition density from the corresponding local Tajima’s genealogy gTi21 to GT

i :

Proof. When the labeled topology of gi21 is the same as the labeled topology of gi; then a transition from gi21 to gi contains
the same information about pruning location as a transition from gTi21 to g

T
i (Figure S1A in File S1 and Figure S2D in File S4). In

fact, the Ii21ðtÞ function defined in the Visible transitions subsection (Equation 8) can be defined in terms of the Fi matrix and
the coalescent times ti21 and ti: In this case, for some j 2 f2; . . . ; ng; ti21

j ¼ tidel and tij ¼ tinew: Then

Ii21ðtÞ ¼
(
0; if   t.min

�
tinew; t

i
del

�
;

Fi21
l; j 2 Fi21

l; j21; if   t 2
�
ti21
lþ1 ; t

i21
l

�
for l ¼ j; jþ 1; . . . ; n:

Hence, if Ki21 ¼ Ki; the labeled topologies of gi21 and gi; then

Pr
�
Gi ¼

�
Ki21; ti

�jgi21 ¼ �Ki21; ti21�;NðtÞ� ¼ Pr
�
GT
i ¼ �Fi21; ti

���gTi21 ¼ �Fi21; ti21�;NðtÞ�:
When the labeled topologies of gi21 and gi are different, but the children of tidel and the children of tinew are the same, we cannot
exactly identify the pruning branch and the new coalescing branch (Figure S1B in File S1) and then a transition from gi21 to gi
contains the same information about pruning location as a transition from gTi21 to gTi : Let t

i21
j ¼ tidel and tik ¼ tinew; since the

children of ti21
j and tik are the same, it is enough to consider Fi21: Then

Ii21ðtÞ ¼
(
0; if   t.min

�
tinew; t

i
del

�
;

Fi21
l; j 2 Fi21

l; j21; if   t 2
�
ti21
lþ1 ; t

i21
l

�
for l ¼ j; jþ 1; . . . ; n

and

Pr
�
Gi ¼

�
Ki; ti

�jgi21 ¼ �Ki21; ti21�;NðtÞ� ¼ Pr
�
GT
i ¼ �Fi21; ti

���gTi21 ¼ �Fi21; ti21�;NðtÞ�:
When the deleted node corresponding to tdel is a cherry and the new node corresponding to tnew is also a cherry, there are four
possible topologies Ki that lead to the same ranked tree shape Fi; then

Pr½Gi ¼ gijgi21;NðtÞ� ¼
	
1
2


1fti21
j

¼ti
delg1fFi21

n; j ¼Fi21
n; jþ122g

3

	
1
2


1fti
j
¼tinewg1

n
Fi
n; j

¼Fi
n; jþ1

22
o

3   Pr
�
GT
i ¼ gTi

��gTi21;NðtÞ
�
:

n

Proposition 5. The marginal invisible transition density from a local Kingman’s genealogy gi21 to Gi is equal to the marginal
invisible transition density from the corresponding local Tajima’s genealogy gTi21 to GT

i :

Proof.
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Pr
�
Gi ¼ gi1

��gi21;NðtÞ
� ¼ Pr

�
Gi ¼ gi21jgTi21;NðtÞ

�
;

since all that is needed to compute the transitionprobability are the coalescent times and theFi21 matrix. Since the topologydoes
not change, the proof follows.

n

Proposition 6. The likelihood of partially observed embedded SMC 9 chain of local Kingman’s genealogies is proportional, up to
a combinatorial factor, to the likelihood of partially observed embedded SMC 9 chain of the corresponding local Tajima’s genealogies.

Proof. The proof follows from Propositions 3–5 needed to express the likelihood of partially observed embedded SMC9 chain
(Equation 13).

n
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Supporting Information

File S1: Visible Transitions

Figure SA shows an example of a visible transition when the coalescent topology remains the
same and Figure SB shows an example of a visible transition when the coalescent topology
changes (coalescence between the (a,(b,c)) branch and the (d,e) branch happens after coales-
cence of (f) and (g) on the left tree and before coalescence of (f) and (g) on the right tree.)
Green lines mark the possible pruning locations that could have lead to the same visible
transition; the red circle indicates the deleted node at coalescent time tdel and the blue circle
indicates the new node created at coalescent time tnew.

tdel tnew Pruning location 

a b c d e a b c d e

a b c d e f g a b c d e f g

A.

B.

Figure S1: Examples of visible transitions when the pruning branch is uncertain. Red circle
indicates deleted node at coalescent time tdel, blue circle indicates new node at coalescent
time tnew. Green lines indicates possible pruning locations that could have resulted in such
a visible transition. A. The topology remains the same. B. The topology changes.
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File S2: Visible transitions between Tajima’s genealogies

A Tajima’s genealogy gT corresponds to the pair of coalescent times and a ranked tree shape
with n tips (i.e. with no labels but ranked coalescent events). In Figure S, we show four
possible visible transitions. In the first case (Figure SA), when we compare the number of
children of the blue circle node on the right tree at time t with the children of the red circle
node on the left tree, we can conclude that only the green branch could have been selected for
pruning. In Figure SB, comparing the children of the blue circle node on the right genealogy
to the children of the red circle in the left genealogy, we conclude that the two children of
the red circle are possible pruning locations. In Figures SC-D, tnew < tdel. This implies that
the possible pruning locations will necessarily have heights up to tnew. Again, by comparing
the children of the blue circle node on the right to the children of the red circle node on the
left, we can asses the possible pruning locations.

A. B.

C. D.

tdel tnew Pruning location 

Figure S2: Examples of visible transitions between local Tajima’s genealogies. Red circle
indicates deleted node at coalescent time tdel, blue circle indicates new node at coalescent
time tnew. Green lines indicates possible pruning locations that could have resulted in such
a visible transition.

2



J.A. Palacios, J. Wakeley, S. Ramachandran

File S3: Simulations with MaCS

We use MaCS (Chen et al., 2009) for all our simulations with the following code lines:
Constant population size:
./macs2 300000 -t 1.0 -T -r .005 -h 1 (SEED: 1420480396)
./macs20 3000000 -t 1.0 -T -r .0002 -h 1 (SEED: 1399175725)
./macs100 3000000 -t 1.0 -T -r .0002 -h 1 (SEED: 1400528079)

Exponential growth and constant:
./macs2 300000 -t 1.0 -eG .1 10 -T -r .02 -h 1 (SEED: 1419985269)
./macs20 300000 -t 4.0 -eG .1 10 -T -r .002 -h 1 (SEED: 1420040333)
./macs100 300000 -t 1.0 -eG .1 10 -T -r .0002 -h 1 (SEED: 1401855826)

Bottleneck:
./macs2 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .01 -h 1 (SEED: 1420824821)
./macs20 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .002 -h 1 (SEED: 1420826310)
./macs100 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .001 -h 1 (SEED: 1420826409)
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File S4: EM sensitivity to parameter discretization

In Figure S3, we show EM estimates of a constant population size from 1000 local genealogies
of 100 individuals. We show that different discretizations result in different estimates. We
note that confidence intervals perform poorly in terms of coverage. The performance statistics
corresponding to the three estimations displayed in Figure S3 are shown in Table S1.

1.0 0.8 0.6 0.4 0.2 0.0

d=10, κ=1

Time (N0 generations)

lo
g 

N
(t

)

−
1

0
1

1.0 0.8 0.6 0.4 0.2 0.0

d=30, κ=10

Time (N0 generations)

−
1

0
1

1.0 0.8 0.6 0.4 0.2 0.0

d=30, κ=10

Time (N0 generations)

−
1

0
1

Figure S3: EM sensitivity to parameter discretization. Comparison of population size
trajectories estimated from 1000 simulated genealogies (m = 1000) of 100 individuals with a
constant population size. EM inference with different discretizations varying the parameters
in Equation 15.

Table S1: Summary of simulation results depicted in Figure S3. SRE is the sum of relative
errors (Equation 24), MRW is the mean relative width of the 95% BCI (Equation 25), and
ENV (Equation 26).

SRE MRW ENV
EM d = 10, κ = 10 43.41 0.99 48.6%
EM d = 30, κ = 10 34.25 0.76 42.6%
EM d = 30, κ = 100 43.96 0.99 46.0%
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File S5: Analysis of Human data

We use ARGweaver (Rasmussen et al., 2014) with the following code lines:

European population:

arg-sample -s data1000/CEU_10.sites

-N 11534 -r 1.6e-8 -m 1.26e-8

--ntimes 200 --maxtime 200e3 -c 1 -n 10

-o data1000/CEU.sample/out

Yoruban population:

arg-sample -s data1000/YRI_10.sites

-N 11534 -r 1.6e-8 -m 1.26e-8

--ntimes 200 --maxtime 200e3 -c 1 -n 10

-o data1000/YRI.sample/out

ARGweaver time is measured in units of generations, so in order to generate Figure 8, we
multiplied time by 1/(2× 11, 534). To obtain logN(t) displayed in Figure S4, we multiplied
our estimates by 1/(8× 11, 532) and converted them in logarithmic scale.

We note that ARGweaver assumes the SMC and not the SMC′ model so our estimates of
N(t) are biased. One source of such a bias is that the Ai(t) functions that indicate the number
of lineages present at time t in the SMC′ are replaced by Ai(t) − 1 if the pruning branch is
present at time t in the SMC. Another source of bias is the lack of invisible recombination
events in ARGweaver realizations. To approximate the effect of this difference we re-run our
algorithm replacing Ai(t) by Ai(t) − 1. Figure S4 shows that the main conclusions about
inferred recent past population sizes remain valid; in our analysis of human data (Figure 8)
we only focus on the recent past.
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Figure S4: Inference of human population size trajectories N(t) for n = 10. Green
solid line and green shaded areas represent the posterior median and 95% BCI for European
population (CEU) and blue solid line and blue shaded areas represent the posterior median
and 95% BCI for Yoruban population. (A) Without correction. We ignore the fact that
our genealogies were generated assuming the SMC process instead of SMC′. (B) With
correction. We corrected the function of the number of lineages to approximate the SMC
likelihood. Figures on the right show the same results as in the left side for the recent past
(0,0.1N0).
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File S6: Sampling more individuals on simulations

In Figure S5 we re-arrange our results on simulations shown in Figures 5−7 to compare our
estimations when increasing the number of samples. We find that increasing n does not
necessarily improve estimation from 1000 local genealogies.
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Figure S5: Comparison of population size trajectories N(t) inferred varying the
number of samples from 1000 simulated local genealogies (A) Simulated data under
constant population size, (B) exponential and constant trajectory, and (C) a bottleneck. We
rearrange the plots displayed in Figures 5−7 corresponding to 1000 simulated genealogies.
Red curves are pink areas correspond to our Bayesian GP estimates and blue curves and
areas correspond to the EM estimates.
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File S7: Fisher Information Calculation

The calculation of the Fisher information needed to estimate confidence intervals of a piece-
wise constant trajectory of population sizes, requires the following expected values:
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