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Abstract

We describe an alternate approach to protein structure determination that relies on experimental 

NMR chemical shifts, plus sparse NOEs if available. The newly introduced alignment method, 

POMONA, directly exploits the powerful bioinformatics algorithms previously developed for 

sequence-based homology modeling, but does not require significant sequence similarity. Protein 

templates, generated by POMONA, are subsequently used as input for chemical shift based 

Rosetta comparative modeling (CS-RosettaCM) to generate reliable full atom models.

High-resolution protein structures, obtained by either X-ray crystallography or NMR 

spectroscopy, are available for only a small fraction of all known proteins and computational 

methods are commonly used to model structures for the remainder. Current protein structure 

prediction methods can be broadly separated into two classes: comparative modeling and de 

novo methods. Comparative modeling methods rely on detectable similarity between the 

query sequence and at least one protein of known structure, and can be used to generate 

models for all proteins in its family using a single representative structure as the starting 

point1,2. De novo methods, which use no structural template but only the amino acid 

sequence, rely on an effective conformation searching algorithm and good energy functions, 

and can be used to build structural models from scratch. However, due to bottlenecks in 

sampling of a conformational space that exponentially increases with the number of 

residues, this method remains restricted to small proteins3.

NMR chemical shifts of proteins encode important structural information, and are obtained 

at the early stage of any NMR structural study, even for quite large proteins4. It has long 

been recognized that integration of these data or other very limited, “sparse” restraints into 

structural modeling can be highly beneficial5. These ideas led to development of the 

powerful and popular de novo protein structure prediction programs, including 

CHESHIRE6, CS-Rosetta7 and CS23D8, which can generate good quality, all-atom models 

for proteins of up to ca 125 residues and a variety of folds. Supplementing the input 
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chemical shift data with backbone residual dipolar couplings (RDCs), sparse 1HN-1HN 

nuclear Overhauser effect (NOE) data9, or distance restraints extracted from remote 

homology models10, can extend the size limit of the de novo structure generation approach, 

but the steeply increasing computational cost with protein size poses serious challenges.

Here, we introduce a more direct approach to integrate chemical shift and sparse NOE data 

into existing, very powerful comparative modeling algorithms. Further refinement of these 

models is achieved by modification of the previously introduced RosettaCM method11,12, to 

take advantage of the NMR data when filling in the missing parts and for energetically 

refining the final structures. Comparative modeling of a protein structure from sequence is 

used very widely and principally consists of two steps: First, finding related templates from 

known structures that have some sequence similarity to the query sequence and optimally 

aligning the query sequence with the sequence of the templates. In a second step, full 3D 

models are generated guided by information from the aligned templates.

Best alignment between two sequences is usually obtained by optimizing an alignment 

scoring function, which consists of two components: a matrix of pairwise substitution scores 

for matching each residue in the database protein to every residue in the query sequence, and 

a gap penalty function. Given an optimized scoring function, efficient dynamic 

programming is used to search for the optimal alignment between any pair of sequences. 

Many excellent comparative modeling methods are available, including the widely used 

MODELLER program13, I-TASSER 14.

Backbone torsion angles are encoded in NMR chemical shifts, and even though strictly local 

in character and often not unique, these chemical shifts contain far more information 

regarding structural homology than sequence alone. Much of the success of the popular 

chemical-shift-Rosetta (CS-Rosetta) method stems from the fact that chemical shifts 

facilitate finding of structurally homologous peptide fragments in the protein structure 

database (PDB) 7,15.

The protocol introduced here relies on a novel chemical-shift-guided protein alignment 

procedure, POMONA (Protein alignments Obtained by Matching Of NMR Assignments), 

followed by adaptation of the Rosetta comparative modeling method, RosettaCM12, to take 

advantage of the available chemical shifts. As a first step in the POMONA-based CS-

RosettaCM structure determination protocol (Fig. 1a), experimental 13Cα, 13Cβ, 13C

′, 15N, 1Hα, and 1HN chemical shifts are analyzed to generate for each residue a ϕ/ψ 

probability map. This map, calculated using the neural network based TALOS-N program16, 

assigns a normalized probability to each 20°×20° voxel of the Ramachandran map. 

POMONA uses these residue-specific Ramachandran probability maps to search the PDB 

for structures that are compatible with these ϕ/ψ-probabilities, while allowing for gaps and 

inserts in the residue sequence. Following an automated clustering and selection procedure, 

the representative homologues identified by POMONA are used as structural templates to a 

modified comparative modeling protocol, based on the RosettaCM program12, to generate 

all atom structures. For details, see Online Methods.
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To evaluate POMONA’s accuracy and coverage, we rely on the widely used MaxSub 

score17, which ranges from 1.0 when two aligned structures have a Cα-RMSD of 0 Å for the 

full length of the query sequence to ~0.0 when sequences lack detectable similarity. 

Typically, a MaxSub score above ~0.3 is indicative of notable structural similarity (Fig. 2a; 

Supplementary Fig. 1).

When evaluating the performance of POMONA in identifying suitable homologous 

structures in the PDB, a key question is “how many suitable structures exist?” This can be 

answered with the program DALI, which is designed to identify structurally similar proteins, 

regardless of residue sequence18. When comparing to the DALI identified alignments for a 

set of 16 test proteins, POMONA-identified structural homologues approach the maximum 

attainable alignment (or MaxSub score) provided by the DALI method (Fig. 2b), performing 

much better than sequence based alignment by, for example, the powerful HHsearch 

method19 (Supplementary Fig. 2).

The quality of POMONA alignments roughly correlates with the alignment score (Fig. 1b, 

Supplementary Fig. 3). However, there also is considerable scatter in this correlation, which 

means that we cannot simply use the top POMONA alignments as starting templates for CS-

RosettaCM. Instead, we find it important to generate a diverse pool of structure templates by 

subjecting the top scoring alignments to a cluster analysis, and only retaining the two top 

scoring alignments in each of the first ten clusters (see Online Methods). For most of our 16 

test proteins the highest MaxSub score observed for this (up to) 20-member subset is 

comparable to that obtained for the top 1,000 positive alignments (Table 1). For all but one 

of the 16 proteins, the best alignment in the selected representative alignments has a 

MaxSub value in the 0.25–0.69 range, making them useful structural templates for structure 

generation. Only for protein Mad2 did POMONA fail to find a suitable template. DALI 

finds three suitable templates in the database, but all contain large gaps (>100 residues), 

preventing their identification by POMONA.

For four representative cases, the database proteins corresponding to the top 1,000 

POMONA-derived alignment scores are plotted against their Cα-RMSD relative to the 

experimental reference structure (Fig. 1b), with database sequences that have <20% 

sequence identity shown as grey dots, or as colored symbols if they are part of the ten top-

scoring clusters. For comparison, POMONA hits for more homologous proteins (≥20% 

sequence identity) are shown as black symbols, but these are not used in our study as they 

typically can be identified by standard homology search programs.

When the two highest-scoring members of each cluster are subjected to the CS-RosettaCM 

protocol, a clear correlation is seen between the lowest total all-atom energy reached for 

each cluster, and the Cα-RMSD (Fig. 1c). Even though for all four proteins the highest 

POMONA alignment scores are comparable between the top clusters, the clusters that had 

the lowest Cα-RMSD relative to the native structure refine to lower total energy during CS-

RosettaCM modeling. Correspondingly, the lowest-energy CS-RosettaCM models provide 

the best match to the query protein. However, because it is by no means guaranteed that a 

correct solution can be found, especially when there are no proteins with a similar fold in the 

database (e.g. Mad2, mentioned above), it is useful to compare the total energy with what 
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can be achieved with the standard CS-Rosetta protocol. CS-Rosetta will typically fail for 

large proteins, and a requirement for accepting a CS-RosettaCM structure therefore is that 

the total energy, including the chemical shift scoring term, falls well below the lowest values 

obtained by CS-Rosetta. A second requirement for acceptance is that the ten lowest-energy 

structures have converged, i.e. cluster within a Cα-RMSD100 of ≤2.5 Å from their average. 

Both requirements are used to inspect all 16 proteins tested in our study (Table 1).

Immediately following backbone resonance assignment it is usually straightforward to 

rapidly assign a limited number of unambiguous backbone 1HN-1HN NOEs. These sparse 

NOEs can be exploited both for guiding POMONA alignment and as restraints during CS-

RosettaCM modeling. To evaluate their utility, two sets of such artificial HN-HN NOE 

distance restraints were generated by randomly selecting N/10 of such distances from the 

total set that are ≤ 5 Å in the experimental structure and at least five residues apart in 

sequence, where N is the total number of residues in the protein. In practice, a somewhat 

larger number of such NOEs is often obtained, in particular when working with 

perdeuterated proteins4. Inclusion of sparse NOEs enables POMONA to find improved 

alignments, resulting in better convergence and lower energies during the subsequent CS-

RosettaCM modeling stage (Fig. 1d, Supplementary Table 1).

Whereas for proteins larger than ca 100 residues, conventional CS-Rosetta approaches its 

convergence limits, CS-RosettaCM remains robust in generating converged results, largely 

because it inherently is a comparative modeling method. Note, however, that the 

POMONA/CS-RosettaCM protocol is not aimed at reaching maximum convergence, but 

that the clustering approach used by POMONA emphasizes diversity in the input templates 

to avoid falsely converging to a wrong solution. As a result, the convergence rate for small 

structures can actually be higher for standard CS-Rosetta than for our new protocol.

Considering that ~90% of the newly deposited structures already have similar structures 

present in the PDB, the POMONA/CS-RosettaCM approach is ready to dramatically reduce 

the workload required for such studies, while extending the size of proteins that easily can 

be studied by NMR. The approach will fail, however, when no adequate structural template 

exists in the PDB, or when the only good potential templates have large alignment gaps.

For proteins larger than ca 20 kD, standard protein NMR structure determination typically 

remains quite labor-intensive, even though chemical shift assignment and collection of 

amide-amide NOEs is relatively straightforward, and the POMONA/CS-RosettaCM 

protocol is an enabling technology for such systems. Finding suitable templates is an 

efficient process which can be completed in a matter of hours, but subsequent CS-

RosettaCM modeling is far more computationally intensive. Nevertheless, due to the use of 

suitable input templates it does not suffer from the combinatorial explosion that restricts 

conventional Rosetta and CS-Rosetta applications. For large, multi-domain proteins, it is 

important to note that the NMR chemical shifts do not contain information on relative 

domain orientation or position, and that this information strictly stems from the PDB 

template used for modeling. However, the measurement of residual dipolar couplings 

(RDCs) is often straightforward for larger systems, and readily can be integrated in the 

modeling procedure to resolve such issues.
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The POMONA software and server are at http://spin.niddk.nih.gov/bax/software/POMONA.

ONLINE METHODS

Measurement of local structure similarity

Finding the optimal alignment between two protein sequences typically is based on a residue 

substitution score for all residue pairs of the two sequences. Such substitution scores, which 

normally are derived from the amino acid similarity scores, are then used for guiding the 

alignment procedure to find a set of aligned residues along two sequences that have an 

optimal overall alignment score. Unlike the sequence based alignment, POMONA aims to 

align residues of a query protein, which has known NMR chemical shifts, to residues of a 

database protein with known structure. Structural information encoded in the NMR chemical 

shifts of the query protein, specifically the ϕ/ψ backbone torsion angles and the secondary 

structure predicted by TALOS-N16, offers much more definitive information than simply the 

amino acid type when searching for structural similarity between the query and database 

proteins. Therefore, these backbone torsion angles and the secondary structure derived from 

chemical shifts are used as the main terms in deriving substitution scores for the alignment 

procedure.

In POMONA, a substitution score S(i,j) between residue i in the query protein and residue j 

in the database protein is defined as:

[1]

S(i, j) contains three terms: (1) The ϕ/ψ-fitness score, which has a weighting factor wtorsion, 

reflects how well the angles of query residue i match to the observed ϕ/ψ angles of database 

residue j. Here, Di,k (k = 1-324) is the TALOS-N predicted density of voxel k in the 324-

voxel ϕ/ψ density map of query residue i, and k(j) is the index number in the 324-voxel 

Ramachandran map that corresponds to the ϕ/ψ angles of residue j of the database protein. 

The ϕ/ψ-fitness score, is calculated from Di,k(j) by first subtracting the average of the 

predicted densities, <Di>, followed by normalization according to the standard deviation, 

σ(Di), of the predicted densities, which then represents the likelihood that the ϕ/ψ torsion 

angles of residues i match those of j. (2) The amino acid similarity score between residue i 

(of amino acid type Ai) and residue j (of type Aj), B(Ai,Aj), which is taken from the 

BLOSUM62 matrix21. (3) The secondary structure similarity score between the TALOS-N 

predicted 3-state secondary structure SSi (H, E and L, respectively) for residue i, and the 

observed secondary structure SSj (as assigned by the program DSSP)22 for residue j:

[2]

where conf(i) is the confidence of the TALOS-N predicted secondary structure SSi.
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Note that terms (2) and (3) are the principal terms used in conventional, sequence based 

homology search procedures. In our search, term (2) has a very low weight factor, and term 

(3) is derived from experimental chemical shifts, which have been shown to considerably 

increase the accuracy of predicted secondary structure16.

As seen in Eq. 1, our local structure similarity score between residues i and j, includes terms 

for its two immediate neighbors, i.e., between residues i-1 and j-1, and between residues i+1 

and j+1. The weights, wtorsion and wSS, of these terms have been optimized empirically, 

together with other parameters used by the POMONA alignment method, such that the 

calculated substitution scores S(i,j) fall in a range of −2.0 to 3.0. The maximum contribution 

to S(i,j) from residue type similarity (term 2 in Eq. 1) is less than ca 10% when chemical 

shifts are available. For query residues that lack chemical shifts, only the sequence similarity 

and secondary structure matching term in Eq. 1, with a comparable weight, are used to 

calculate a S(i,j) score, which is then scaled to the same range of −2.0 to 3.0.

Protein alignment algorithm

The problem of finding the optimal alignment of two amino acid sequences has been 

extensively studied and most commonly is solved by means of a dynamic programming 

algorithm 23,24. POMONA essentially uses the standard Smith-Waterman dynamic 

programming algorithm25 to find the best alignment between a query protein with ϕ/ψ angle 

information derived from chemical shifts and a database protein of known structure. 

Specifically, given a query protein and a database protein of sequence lengths M and N, a 

substitution scoring matrix S of dimensions M × N is first constructed. Each element of this 

scoring matrix, S(i,j) (Eq. 1), is derived from the local structural similarity between residue i 

in the query protein and residue j in the database protein. The aim is to align residues with 

matching local structure in the two proteins while optimizing the overall alignment score, 

which is a sum of the substitution scores of all aligned residue pairs (also referred to as 

equivalent residues) and gap penalties (see Supplementary Note for details) for residues 

lacking an equivalent residue in either sequence. The recursive dynamic programming 

equation used here for the local alignment of the two proteins is:

[3]

with the initial conditions for the recursion defined by H(M+1, j) = 0 and H(i, N+1) = 0, 

where M and N again are the sequence lengths of the query and the database protein, G is the 

VGP gap penalty function (Eq. 1 in the Supplementary Note), and S(i,j) is the residue 

substitution score for residues i and j in the query and the database proteins, respectively 

(Eq. 1). The dynamic programming maximum scoring matrix H is calculated for i = M + 1 

to 1 and j = N + 1 to 1. For each position [i, j] in H, all previously iterated positions [i′,j′], 

with i′ = [i+1:M] and j′ = [j+1:N], are evaluated for a maximum value based on the 

previously calculated H(i′,j′) value for position [i′,j′], while using a gap penalty G(i,j,i′,j′) for 

opening a gap between positions [i,j] and [i′,j′]. After adding its residue substitution score 

S(i,j), this maximum value is then assigned to the current position as score H(i,j). After 

calculating all elements of the H matrix, its largest element, referred to as max(H), 

corresponds to the optimal alignment score. The residue equivalence assignments are 
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obtained by backtracking in matrix H, starting from the element with the max(H) score and 

ending with the first element of zero value24. Equivalent residues in this optimal alignment 

are further evaluated in terms of fitness between their experimental secondary chemical 

shifts (of the query residues) and those predicted by SPARTA+ 26 (for the database 

residues), in terms of a χ2 value:

[4]

where  is the SPARTA+ predicted backbone chemical shift (k = 13Cα, 13Cβ, 13C

′, 15N, 1Hα, and 1HN) for a given database residue j, which is aligned to query residue i with 

experimental chemical shift , and σk,j is the uncertainty of  reported by SPARTA+. 

This , after scaling by a factor c = 1/30, is then added to the optimal alignment score as a 

penalty to derive a final alignment score for any given alignment of:

[5]

Structure alignment with additional NOE data

Some types of NOE data, in particular HN-HN NOEs, often can be obtained relatively easily 

and unambiguously once the backbone amide signals have been assigned, even for large 

perdeuterated proteins. Unfortunately, there is no straightforward method for directly 

integrating such sparse NOE distance information into the Smith-Waterman algorithm. 

However, the typically very sparse NOE data can be useful to aid the above “chemical-shift-

guided” POMONA protein alignment scheme by pre-filtering possible solutions based on 

these distance constraints, and subsequently evaluating these possible matches by the above 

described algorithm to generate optimally aligned sequences. The NOE-guided part 

corresponds to the general problem of finding the optimal alignment of protein structure 

distance matrices (or protein contact maps)18,27,28, as both the NOEs detected for the query 

protein and the actual distances measured for the database protein can be converted to 

contact maps.

Here, we use the method of Wohlers et al.28 to find the optimal overlap between two contact 

maps derived from the query and the database protein. For the query protein with a NOE list 

(NOE), a contact map X of size M × M is constructed:

[6]

where i and i′ = [1, …, M] and M is the size of query protein. For the database protein, an 

analogous contact map Y of size N × N is constructed:

[7]
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where j and j′ = [1, …, N], N is the size of the database protein, and d(j, j′) is the actual HN-

HN distance between residues j and j′ in the database protein. Contacting residues i and i′ 

with X(i, i′) = 1, as well as j and j′ for Y(j, j′) = 1, are stored as lists x and y, respectively. 

Optimal alignment then corresponds to finding a maximum set of matching [ik, jk] pairs (k = 

1 to L, ik ⊂ x and jk ⊂ y, L is the lower of the two numbers of contacting residues, usually 

the size of list x), between the pairs of contacting residues in the query and database 

proteins. The largest set of common contacts is based on the objective function:

[8]

[9]

After finding the optimal match between the query and the database contact maps, the 

second step of the structure alignment, based on chemical shift data, is restricted to the 

regions identified by this optimal contact map. For the query and the database proteins with 

a set of optimally aligned contacting residues [ik, jk], where k = 1 to L, ik ⊂ x and jk ⊂ y, ik < 

ik+1 and jk < jk+1, the query and the database sequences are divided into L-1 fragment pairs, 

each of which has a range from ik to ik+1 and from jk to jk+1, respectively. The above 

described POMONA protein alignment scheme is then applied for each possible pair of 

query fragment (ik, ik+1) and database fragment (jk, jk+1) [k = 1 to L - 1], now using Eq. 1 as 

the scoring term. The final overall alignment is then obtained by combining each of the 

“sub-alignments”, and the final alignment score is taken by summing the POMONA 

alignment scores from each of the “sub-alignments”, augmented by the penalizing, scaled 

chemical shift fitness score  (Eq. 4).

Training and testing of POMONA

Values for the parameters used by POMONA were obtained iteratively by evaluating the 

output results for a set of 16 test proteins of varying size and fold complexity (Table 1). 

POMONA is used to find optimal alignment between the test protein and each of ca 252,000 

protein chains in the PDB. POMONA initially retains the 1,000 PDB protein chains that 

exhibit the highest alignment score. The parameter optimization of POMONA was 

performed iteratively by monitoring the top 1,000 selected proteins in terms of (1) the ratio 

of the real structural homologues, as identified by the DALI structure alignment method18 

with the actual structure of the target protein, and (2) the accuracy of the POMONA 

identified alignment to the target protein, expressed in terms of a coordinate RMSD value 

calculated between the Cα-atoms of the equivalent residues in the target and database 

protein.

Performance evaluation of POMONA structure alignment

We evaluate the accuracy and coverage achieved by POMONA by using the MaxSub 

score17. The MaxSub score for two aligned structures (i.e., the query and database proteins) 
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is calculated by first identifying the maximum substructure for which the distances between 

equivalent residues of two structures after superposition are below a threshold value of 3.5 

Å, then computing a normalized score of Σ[1/(1+(di/3.5)2)]/N, where di are the distances 

between equivalent Cα pairs of two structures in the maximum substructure (after best-fit 

superposition of the Cα pairs in the maximum substructure), and N is the total length of the 

query sequence. The spatial information of the aligned structures outside the maximum 

substructure is not taken into account. The MaxSub score ranges from 1.0, for perfect 

alignment to near zero when sequences lack structural similarity. Two aligned structures 

with a 0 Å Cα-RMSD for half of the query sequence length and two aligned structures with 

a Cα-RMSD of ~3.5 Å for the full length of the query sequence will have the same MaxSub 

value of 0.5, and a score above ~0.3 is usually indicative of meaningful structural similarity 

(Fig. 2a; Supplementary Fig. 1).

When comparing to the theoretical limit set by DALI-identified alignments, for our set of 16 

test proteins POMONA identifies nearly all of the 2,660 homologues with a sequence 

identity of ≥20% to the target proteins, missing only ~50 DALI-identified structural 

homologues. The POMONA-identified homologues show near optimal alignments in terms 

of MaxSub score compared to DALI (Fig. 2b), performing much better than sequence based 

alignment (Supplementary Fig. 2), such as the HHsearch method19, one of the best modern 

sequence-based alignment methods. Structural homologues identified by DALI but missed 

by POMONA all have long alignment gaps (Supplementary Fig. 4), resulting in depressed 

POMONA alignment scores that then fall below the detection threshold. Aligning two 

proteins with long alignment gaps is invariably challenging with a Smith-Waterman based 

algorithm, as too small a gap penalty would open false gaps whereas too large a gap penalty 

prevents the opening of gaps. In our work the implemented gap penalty function is tuned to 

allow the alignment to cross relatively small gaps; the largest lengths for single alignment 

gaps observed in the POMONA identified alignments are in the 20–30 range.

Not surprisingly, POMONA performs well for finding alignment for homologues with 

significant sequence identity (> 20–30%), where many other sequence alignment methods 

also perform well even when solely relying on sequence information. The more important 

question therefore is how well the program functions in finding structural homologues when 

there is very little or no significant sequence identity. When parameterized to detect even 

very weakly homologous structures, HHsearch identifies similarity in a total 10,059 protein 

chains with a sequence identity of <20% to the target protein for our set of 16 test proteins. 

Of these, only 8% are consensus with the DALI identified structural homologues that have a 

sequence identity of <20%, and 85% of the 5,211 DALI-identified structural homologues 

cannot be identified by HHsearch on the basis of sequence alone. Importantly, POMONA 

identifies among its positive alignments a large portion (~46%, 2,414/5,211) of DALI-

identified homologues target proteins when restricting the search to proteins with <20% 

sequence identity (Fig. 2a). Structural homologues missed by POMONA nearly all exhibit 

long alignment gaps (≥ 30) in the DALI identified alignments (Supplementary Fig. 4a). We 

find that POMONA also missed a number of NMR-determined structures, even in the 

absence of large gaps. Inspection of these structures indicates that even though the fold of 
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these proteins is close enough to register a DALI alignment, the local backbone deviates too 

far from ideality to allow their recognition on the basis of chemical shifts.

Clustering and selection of POMONA alignments

Among the top 1,000 alignments identified by POMONA for any given query protein, many 

will be very similar to one another. Before using these proteins as input for the time-

consuming RosettaCM comparative modeling, it therefore is useful to separate this set into a 

much smaller number (typically ten) of distinct clusters, and only the two best-scoring (cf 

Eq. 5) models in each cluster are then used as RosettaCM input. Specifically, a hierarchical 

clustering procedure is used to group the top 1,000 database protein chains, using the 

normalized Cα-RMSD as a metric. The normalized Cα-RMSD between two database protein 

chains is calculated only over residues that are commonly aligned to a residue in the query 

protein, i.e. that do not correspond to inserts or gaps. Subsequently the Cα-RMSD is 

normalized to the RMS100 value29. A single-linkage algorithm is used for generating the 

clusters with a Cα-RMS100 ≤4 Å cutoff, and results are sorted by the highest alignment score 

observed in each cluster. The ten clusters with highest alignment scores are retained and the 

top two alignments (or one, if there is only a single member in the cluster) are selected as 

representatives from each of the first ten clusters. Therefore, up to 20 representatives 

alignments are selected from the first ten clusters and these are used to prepare a pool of 

structural templates for the subsequent RosettaCM modeling procedure.

When applying this selection criterion to the POMONA alignments with a sequence identity 

<20%, for most of our 16 test proteins the highest MaxSub score observed for this (up to) 

20-member subset is comparable to that obtained for the top 1,000 positive alignments 

(Table 1). Evaluating the suitability of a given protein alignment as input for RosettaCM 

comparative modeling is not a straightforward problem, in particular when the protein 

contains gaps and/or inserts. Alignment accuracy, i.e. the RMSD between the coordinates of 

equivalent Cα atoms of corresponding residues in the database and query proteins is an 

important but not the only metric, and coverage can play an equally important role. For 

example, an aligned database protein chain with a 3-Å RMSD to the target protein and 50% 

alignment coverage is not necessarily better for structure modeling than one with a 5-Å 

RMSD but having 90% alignment coverage. An extreme example is seen when comparing 

the alignments between maltose binding protein, or MBP (PDB and chain id: 1dmbA), and 

three chains of the engineered protein RG13 (4dxbA, 4dxbB, 4dxcA) (Fig. 1b), which has a 

high POMONA alignment score but poor alignment accuracy, with a Cα-RMSD value of > 

15 Å. RG13 is derived from MBP by substituting its residues 317 and 318 by a 267-residue 

domain. The MBP domain of RG13 has a sequence identity >99% and a Cα RMSD of only 

1.14 Å relative to MBP (Supplementary Fig. 5a). However, due to the large penalty 

associated with the 267-residue alignment gap, POMONA matches the first 316 residues of 

these two proteins, or 85% of its total length. The C-terminal 15% fraction of the chain, 

consisting of three α-helices, are matched by POMONA to the first three helices of the 

domain inserted in RG13 (Supplementary Fig. 5b), resulting in > 15 Å Cα RMSD. However, 

despite this large RMSD, the final refined structures are fairly close to the MBP X-ray 

reference structure, which can be credited to the power of the CS-RosettaCM procedure 

when provided with the correct secondary structure input.
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Structure generation using CS-RosettaCM

The recent RosettaCM protocol12 offers a powerful comparative modeling module within 

the Rosetta software suite for generating accurate protein models. The inputs to RosettaCM 

comprise (1) sequence alignments between the query protein and database proteins that 

serve as structural templates, and (2) standard Rosetta de novo modeling fragments, needed 

to model the unaligned regions and to explore deviations from the templates in the aligned 

regions. In our protocol, RosettaCM is used to build 3D protein models, starting from the up 

to 20 structural templates identified above by POMONA.

Generation of complete, all atom models involves three steps. First, RosettaCM assembles 

protein backbone topologies by recombining the aligned segments of the query protein and 

the database template in Cartesian space while building the unaligned regions de novo in 

torsion angle space. This process uses long fragments (corresponding to secondary structure 

elements) derived from all template inputs as well as CS-Rosetta de novo fragments (with 

sizes of 3 and 9 residues), respectively. In the standard RosettaCM implementation, these de 

novo fragments are selected on the basis of residue sequence, whereas in our work they are 

picked on the basis of the NMR chemical shifts, using the recently improved chemical shift 

based Rosetta3 fragment picker15, again excluding all proteins with ≥20% sequence identity 

from the library. In the second stage, all broken backbone segments are closed by means of a 

standard loop closure method that combines fragment superposition and structure 

minimization. The probabilistic distance restraints derived from the alignments, used in 

standard RosettaCM30, are removed but experimental NOE distance restraints, if available, 

are included during this stage. Third, the resulting backbone models are optimized using the 

final all-atom refinement step of standard CS-Rosetta7, but using the most recent parameter 

set (talaris2013.wts) for scoring the energy.

Selection of all atom models using energies and chemical shifts

Using the above protocol, for each query protein, CS-RosettaCM is parameterized to 

generate 500 all-atom models from each starting template, for a total of up to 10,000 

models. Those models are further evaluated for their fitness with respect to their 

experimental NMR chemical shifts, using the same method developed for the standard CS-

Rosetta protocol7. Specifically, for each all-atom model, a χ2 value is first calculated 

between the experimental chemical shifts and values predicted by SPARTA+ 26, which is 

then added to the Rosetta all-atom energy. This chemical shift re-scored Rosetta all-atom 

energy is used to evaluate and select the final models.

Criteria for convergence and accepting models

The ten models with lowest Rosetta all-atom, chemical shift re-scored energy are retained 

for inspection of their convergence relative to the lowest energy model, and are accepted as 

the predicted structure only if (1) these models cluster within less than 2.5 Å, in terms of Cα-

RMSD100, from the model with the lowest energy, and (2) the average Rosetta energy of the 

ten lowest energy models is at least two standard deviations lower than the ten lowest energy 

models obtained by standard CS-Rosetta (provided with the same inputs and the same all-

atom energy scoring scheme).
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Performance evaluation of CS-RosettaCM protein structure generation

POMONA-identified alignments offer an accuracy and coverage that approaches the DALI 

limit. After the clustering and selection procedure, these then are used as input for CS-

RosettaCM to generate complete structural models.

For comparison, the standard CS-Rosetta structure generation protocol10 is also performed 

for all 16 test proteins. However, CS-Rosetta is only able to generate converged (and 

correct) structures for the smallest of the proteins tested, and for the two proteins with less 

than 100 residues it actually outperforms the POMONA/CS-RosettaCM method. The latter 

reaches convergence for 15 out of the 16 proteins tested (after having removed all proteins 

with ≥ 20% sequence identity from the database), with all of these being close to the target 

structure (RMSD100 < ~2.5Å; Table 1, Supplementary Fig. 6).

The 16 proteins used to evaluate our method pose different types of challenges. First we 

focus on four proteins selected from structural genomics projects, incl. HR2876B, YR313A, 

OR36 and nsp1, that have very few sequence homologues (Fig. 1b, Supplementary Fig. 3) 

and no good structural homologues in the database (Table 1). Indeed, the best structural 

homologues identified by DALI for database proteins with <20% sequence identity all have 

MaxSub scores ≤0.5 (Table 1). Nevertheless, POMONA is able to identify such alignments, 

and reaches comparable MaxSub scores for the database proteins it selects (Table 1). The 

resulting CS-RosettaCM models for these proteins all converged quite well, with the ten 

lowest energy models for each of these clustering within 3Å relative to the model with the 

lowest Rosetta energy (Table 1, Supplementary Fig. 7). However, within this group of 

relatively small proteins, only for nsp1 is a considerably lower total Rosetta energy obtained 

compared to simply using CS-Rosetta (Fig. 1c, Supplementary Fig. 7). Therefore, nsp1 is 

the only protein in this group for which the CS-RosettaCM model is accepted. For nsp1, the 

only two structural homologues (3zbdA and 3zbdB; sequence identity ~15%) selected by 

POMONA have MaxSub scores of 0.30 (Table 1) and a Cα-RMSD of 4.5–5.0 Å (Fig. 1b) 

for their aligned regions. These input templates suffice for enabling CS-RosettaCM to 

generate all-atom models with a Cα-RMSD of ~3.3 Å to the experimental structure for its 

ordered regions. For the other three proteins, the CS-RosettaCM models have a Rosetta 

energy that is comparable to those of the de novo CS-Rosetta structures. Even though the 

folds of these CS-RosettaCM models happened to be correct, they could not be accepted as 

they did not meet the criterion that a substantially lower energy must be reached.

For the other four structural genomics proteins, OR135, HR2876C, sgr145 and MTH1958, 

DALI identified a substantial number of good structural homologues, with MaxSub scores in 

the 0.57–0.76 range when considering only database proteins with <20% sequence identity 

(Table 1, Supplementary Fig. 1). POMONA also identifies many of these alignments, albeit 

with lower MaxSub scores (Table 1). The low energy RosettaCM structures for these four 

test proteins all converged to within ~2 Å relative to the structure with the lowest Rosetta 

energy (Table 1, Supplementary Fig. 7). However, only for proteins sgr145 and MTH1958 

does CS-RosettaCM reach energies substantially lower than standard CS-Rosetta 

(Supplementary Figs. 6 and 7), allowing these models to be accepted. For the small OR135 
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and HR2876C proteins (< 90 residues), both CS-Rosetta and CS-RosettaCM generate 

converged and accurate structures, with comparable Rosetta energies.

The remaining eight proteins in our test set are larger (125 to 370 residues), and standard 

CS-Rosetta fails to converge. For seven of these, many structural homologues with <20% 

sequence identity and MaxSub scores in the 0.51–0.83 range are identified by DALI (Table 

1). POMONA also identifies many of these homologous structures (Fig. 1b, Supplementary 

Fig. 3), but only for those without large gaps in their DALI-identified alignment. For 

example, for sensory rhodopsin-II, most of the 149 DALI-identified structures with < 20% 

identity show gaps of > 100 residues, and POMONA is only able to identify six structural 

homologues with the shortest gaps (dots with red circles in Fig. 1b). However, this provides 

an adequate set of starting templates for successful CS-RosettaCM modeling (Table 1). Note 

that substantial structural rearrangements can occur during the CS-RosettaCM modeling 

stage. For example, starting from the fifth-ranking cluster with a Cα RMSD of >7.5Å 

relative to the reference structure, refined models with a backbone RMSD <4Å are obtained 

by CS-RosettaCM (dark green colors in Fig. 1b,c, right most panels).

For Mad2, only three suitable structural homologues with <20% sequence identity are found 

by DALI, all with large gaps in their alignments, and these cannot be identified by 

POMONA. Therefore, without even a single remote structural homologue among the 

POMONA-obtained templates, subsequent CS-RosettaCM modeling fails to converge 

(Supplementary Fig. 7). Moreover, none of the models generated even reach an energy as 

low as the unsuccessful CS-Rosetta approach (Supplementary Figs. 6 and 7), which as 

expected also fails to converge for this relatively large protein of 196 residues, providing an 

additional indication that none of the CS-RosettaCM models are of acceptable quality.

The above results demonstrate that the POMONA/CS-RosettaCM protocol performs well, 

provided that a reasonable structural template can be positively identified by POMONA. In 

practice, a template with a MaxSub score ≥ 0.3 is needed for successful modeling of all-

atom models by CS-RosettaCM. When applying the protocol to a protein of unknown 

structure, the MaxSub score is not available, and the strict acceptance criteria defined for the 

CS-RosettaCM approach then are important to ensure correctness of the generated models. 

Importantly, CS-RosettaCM actually remodels its input template due to the hybrid fragment 

assembly procedure that is used for both the aligned and unaligned parts of the templates. 

However, even while this remodeling generally improves the agreement between the 

template component of the final CS-RosettaCM models and the experimentally determined 

reference structures, it is insufficient to find or correct the fold of the protein when no 

adequate structural template is available as input.

The importance of the quality of the input structural templates to CS-RosettaCM is further 

evaluated by extending the POMONA search to proteins with a sequence identity of up to 

30%. Except for nsp1, which has no homologues in the 20–30% range in the database, 

POMONA identifies virtually all of these more homologous structures it its highest scoring 

clusters, ensuring that at least some of these will be used as structural templates by CS-

RosettaCM. With this improved template quality, reflected in higher MaxSub scores 

(Supplementary Table 1), CS-RosettaCM then converges for all 16 proteins, yielding 
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improved structural accuracy relative to the experimental structure of the query protein 

(Supplementary Fig. 8). Comparison of the structural accuracy obtained with the 

POMONA/CS-RosettaCM protocol when using only the <20% sequence identity templates 

with those available when using a 30% cutoff confirms that for about half the proteins a 

structure closer to the experimentally determined structure is obtained, whereas for the other 

half the final result remains about equal.

Evaluation of modeling performance when including sparse NOEs

Once backbone assignments have been completed it usually is straightforward to measure 

and assign a limited number of unambiguous backbone 1HN-1HN NOEs. The utility of such 

sparse NOEs is evaluated by randomly selecting for each N-residue protein several sets of 

N/10 long range HN-HN NOE distance restraints that are ≤ 5 Å in the experimental structure.

Using again the <20% sequence identity cutoff, the sparse NOEs result in improved 

POMONA alignments (Supplementary Table 1) for all test proteins, except for Mad2 which 

has no suitable template available in the database. For example, for nsp1, its two closest 

structural homologues did not yield the highest alignment scores when no NOE data were 

used (light green symbols in Fig. 1b, left most panel). With sparse NOEs included, both of 

these closest structural homologues now fall in the top cluster with the highest score. 

Subsequent CS-RosettaCM modeling yields somewhat closer agreement to the experimental 

reference structure (Supplementary Table 1), and the same applies for the other proteins.

Often, some of the residues in the query protein for which an NOE is available will be 

aligned by POMONA to a gap in the database protein sequence, in which case this sparse 

NOE will only help in restraining the sampling for such unaligned parts during the CS-

RosettaCM modeling procedure, yielding substantial improvement in both convergence and 

accuracy of the final models (Fig. 1d; Supplementary Figs. 9 and 10, Supplementary Table 

1). In cases where the target sequence corresponds to an extreme variant of a known fold, 

the protocol still permits substantial reorganization of the long template fragments to 

accommodate these structural differences (such as β-sheet register shifts), guided by the 

sparse NOEs, thereby offering further improvement of the final models.

Software availability

The POMONA software, including clustering scripts, all required databases and a complete 

example for ubiquitin, together with the scripts used for the RosettaCM comparative 

modeling and structure selection procedure, can be freely downloaded from http://

spin.niddk.nih.gov/bax/software/POMONA. A public web server (http://

spin.niddk.nih.gov/bax/nmrserver/pomona) is also provided, but only for performing the less 

time-consuming POMONA alignment method for a protein with experimental chemical shift 

data. Such a search procedure typically requires ca 0.5 h on a 10-CPU desk top work station. 

By default, this server also generates all inputs and scripts required for running the 

RosettaCM comparative modeling structure generation. For this purpose, RosettaCM can be 

downloaded with the Rosetta Software Suite from http://www.rosettacommons.org/software.
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Figure 1. 
POMONA/CS-RosettaCM structure generation (a) Flowchart of the POMONA/CS-

RosettaCM structure generation protocol. (b–e) Results of POMONA/CS-RosettaCM 

structure generation for four representative test proteins: nsp1, sensory rhodopsin, maxacal 

and maltose binding protein (mbp). (b) For each of these, the POMONA alignment scores 

(H′, Eq. 5) of the top 1000 protein chains in the PDB are plotted versus the Cα-RMSD, 

calculated over the aligned residues between the query and the database protein. Grey and 

black dots correspond to sequence identities <20% and ≥20%, respectively, between the 

query and database protein. After clustering analysis for the alignments with < 20% 

sequence identity, alignments contained in the ten highest scoring clusters are colored 

according to the cluster number, i.e., red, green, blue, magenta, dark-green, yellow, cyan, 

orange, grey and brown for clusters 1–10, respectively. Only the two highest scoring 

alignments from each of these ten clusters are used as structural templates for CS-

RosettaCM modeling. (c) ROSETTA all-atom energy, incl. the experimental chemical shift 

score, for the CS-RosettaCM models versus their Cα-RMSD relative to the experimental 

structure. Colors correspond to those of the starting template. For comparison, the horizontal 

line and the graph at the bottom of each panel represent the lowest Rosetta all-atom energy 

and the normalized number of structures, respectively, obtained by CS-Rosetta. (d) Same as 

c but for POMONA/CS-RosettaCM modeling with additional sparse 1H-1H NOE data. (e) 

Ribbon models of the lowest energy CS-RosettaCM structure (red) (calculated without 

sparse NOEs) superimposed on the corresponding experimental structure (blue).
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Figure 2. 
Comparison of protein structure alignments obtained by different methods for the 16 

proteins listed in Table 1. (a) Histogram of protein structure alignment quality, represented 

by a MaxSub score, for the top 1000 alignments identified by POMONA (red bars), the 

sequence alignment method HHsearch (black), and the structure alignment method DALI 

(blue). Results are shown only for PDB proteins with < 20% sequence identity to the target 

protein, and DALI and HHsearch results correspond to default thresholds of Z ≥ 2 and Prob 

≥ 10%, respectively, used by these programs to identify homologues. The DALI histogram 

indicates the limit of how good any search program could possibly function. Positive 

POMONA alignments are taken from the top ten clusters (solid red bars) within the top 

1,000 alignments (solid + transparent red), as identified by the highest H′ score (Eq. 5). (b) 

Comparison of alignment quality obtained by DALI and POMONA methods. For each of 

the positive alignments identified by both DALI and POMONA, the MaxSub scores are 

compared, with color representing sequence identity to the query protein (grey: ≥ 30%, blue: 

20–30%, red: < 20%) as observed in the DALI alignments.
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