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Abstract
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant 
roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, 
we analysed the expression profile and clinical relevance of snoRNAs from TCGA da-
tabase including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By 
using univariate and multivariate Cox analysis, we established a six-snoRNA signature 
and divided patients into high-risk or low-risk groups. We found patients in high-
risk group had significantly shorter overall survival and recurrence-free survival than 
those in low-risk group in test series, validation series and entire series by Kaplan-
Meier analysis. We also confirmed this signature had a great accuracy and specificity 
in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver oper-
ating characteristic curve analysis we found the six-snoRNA signature was an supe-
rior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, 
combining the signature with TNM stage or Fuhrman grade were the optimal indica-
tors (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. 
Finally, we found the SNORA70B and its hose gene USP34 might directly regulate 
Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study 
established a six-snoRNA signature as an independent and superior diagnosis and 
prognosis indicator for ccRCC.
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1  | INTRODUC TION

Renal cell carcinoma (RCC) is one of the most common malignant tu-
mours in urological malignancies, accounting for about 90% of all adult 
renal tumours. It is estimated that approximately 73 820 new cases and 
14 770 deaths of RCC would occur in the United States during 2019.1 
ccRCC, accounting for 90% of RCC, represents the most common 
histologic subtype and aggressive form.2 So far, there are mainly two 
problems in clinical treatment of ccRCC. On the one hand, it is difficult 
to diagnose ccRCC early, especially for patients with small renal masses 
(pT1a, ≤4 cm).3 On the other hand, there are no specific prognostic 
indicators for predicting overall survival (OS) and recurrence-free sur-
vival (RFS) of ccRCC patients largely depended on stage, grade, tumour 
size and so on.4 Although some biomarkers, such as VHL,5 BAP16 muta-
tions and overexpression of AHNAK27 and SLC6A3,8 have been discov-
ered, few markers have been validated their diagnostic or predictive 
power in clinical practice.9 Therefore, it is imperative to identify more 
sensitive and reliable biomarker for ccRCC.

Small nucleolar RNAs (snoRNAs) are a kind of non-coding RNA 
with 60-300 nucleotides in length,10 involving in guiding site-specific 
post-transcriptional modification of rRNAs, tRNAs, snoRNAs and sn-
RNAs.11 Small nucleolar RNAs are primarily classified into H/ACA box 
and C/D box snoRNAs based on their structure and main function. H/
ACA box snoRNAs guide pseudouridylation of nucleotides, whereas 
C/D box is responsible for 2′-O-methylation.11-13 The defects in ribo-
some maturation and function can destroy important protein synthesis 
processes and lead to diseases, especially cancer.14 In recent years, new 
and previously unrecognized functions of snoRNAs have been discov-
ered in various cancers, revealing that the snoRNAs might associate 
with tumorigenesis. SNORA42,15 SNORD33, SNORD66, SNORD76,16 
SNORD7817 and SNORD114.118 have been reported the potential prog-
nostic value in colorectal cancer, non–small-cell lung cancer and pe-
ripheral artery disease. Furthermore, Gong et al19 analysed snoRNA 
expression landscape across 31 cancer types and observed that over-
expression of several snoRNAs in kidney renal clear cell carcinoma 
(KIRC), suggesting snoRNAs may play important roles in KIRC.

Despite the emerging knowledge about the role of snoRNAs in 
cancer, the clinical relevance of snoRNAs in ccRCC has not been in-
vestigated systematically. In this study, we identified a six-snoRNA 
signature as an independent and specific predictor to predict the 
prognosis of ccRCC patients from TCGA database and validated its 
clinical application value in a subset of ccRCC tissue and serum by 
qRT-PCR. Hence, the six-snoRNA signature might provide a pro-
spective prognostic biomarker set and potential therapeutic targets 
for ccRCC.

2  | MATERIAL AND METHODS

2.1 | ccRCC datasets preparation

The TCGA ccRCC tumour and paired adjacent tissue samples RNA-
seq gene expression data (HTSeq-Counts) and corresponding 

clinical data were downloaded from The Cancer Genome Atlas of 
the National Cancer Institute (TCGA, http://cance rgeno me.nih.gov). 
After removal of the nine samples without survival study and clinical 
information, a total of 530 ccRCC patients and 72 control cases were 
analysed in the present study. The downloaded clinical data included 
age, gender, TNM stage, Fuhrman grade, haemoglobin levels and so 
on for ccRCC. Simultaneously, we also downloaded RNA-seq gene 
expression data (HTSeq-Counts) and corresponding clinical data for 
patients with papillary renal cell carcinoma (KIRP, 281 patients and 
32 control cases included), chromophobe renal cell carcinoma (KICH, 
65 patients and 24 control cases included) and bladder cancer (411 
patients and 18 control cases included).

2.2 | Gene selection and gene signature building

First, the differentially expressed snoRNAs were screened using 
‘edgeR’ package. Then, the 530 ccRCC cases in TCGA data sets were 
randomly assigned into test series (N = 371) and internal validation 
series (N = 159) at ratio 7:3 (Table S1). By univariable and multivari-
able Cox regression analysis, we established a prognostic signature 
and validated it in the internal validation series and entire validation 
series. A snoRNA-based risk score model formula was conducted in 
the test series as follows:

where n was the number of predicted snoRNAs, Coei indicated the 
coefficient of the ith snoRNA in multivariable Cox regression analy-
sis, and EVi represented the expression value of the ith snoRNA. The 
snoRNAs with Coei < 0 were considered as protective factors, whereas 
those with Coei > 0 were considered as risky factors.

2.3 | Patients and clinical specimens

We recruited 32 pairs of matched fresh-frozen ccRCC and adjacent 
normal tissue, and also serum from 25 cases patients with ccRCC 
and 25 control cases. The tissue samples and corresponding clinical 
pathology data were from the Second Hospital of Dalian Medical 
University, and the serum samples and corresponding clinical pathol-
ogy data were from the Second and Fourth Affiliated Hospitals of 
China Medical University. The study was approved by Institutional 
Review Board.

2.4 | RNA isolation

The recruited serum sample was allowed to coagulate at room tem-
perature for 30 min and then centrifuged at 1000 g for 10 min to take 
the supernatant. The supernatant was centrifuged again for 12 000 g 
for 15 min to remove all cellular components and immediately stored 

snoRNA − based resk score=

n
∑

i=1

Coei×EVi,

http://cancergenome.nih.gov
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at −80°C. For tissue and serum RNA isolation, 1mL TRIzol (Invitrogen) 
was added to 50 mg of tissue or 200 μL of serum and total RNA extrac-
tion according to the manufacturer's instructions.20 Purified RNA was 
quantified using NanoDrop 2000 (Thermo Scientific). In general, the 
yield was 0.3-1 μg/mg tissue or 0.1-0.5 ng RNA/mL serum.

2.5 | qRT-PCR

Reverse transcription was performed from 500 ng of total RNA using 
the ReverTra Ace qPCR RT Kit. 37°C for 15 min, followed by reverse 
transcriptase inactivation at 85°C for 5 min was utilized. The cDNA was 
used for PCR or stored at −80°C immediately. The expression of snoR-
NAs was analysed by custom TaqMan assays (Applied Biosystems), using 
the QuantStudio™ 3 Flex Real-Time PCR System (Applied Biosystems) 
and using the following condition: 95°C for 1 min, followed by 40 cy-
cles of 95°C for 15 s, 60°C for 30 s and 72°C for 1 min. Primers were 
as follows: SNORA2 forward (5′-ATTCAAGGCCAGCAGTTTGC-3′) and 
SNORA2 reverse (5′-AGATGGCCAACAGACCATGAA-3′); SNORD12B 
forward (5′-TCCTGCTGGCATATATGATGACTT-3′) and SNORD12B 
reverse (5′-GCTCAAGCTGGCATATCAGAC-3′); SNORA59B for-
ward (5′-CCTCACAACGTTTGTGCCTC-3′) and SNORA59B 
reverse (5′-AGCTGTTCCTTATCACCAACGA-3′); SNORA70B for-
ward (5′-TCCTTATGGGGGTCCAGTGT-3′) and SNORA70B re-
verse (5′-CAACAAACAGGCCGCATACA-3′); SNORD93 forward 
(5′-GCCAAGGATGAGAACTCTAATCTGA-3′) and SNORD93 reverse 
(5′-GGCCTCAGGTAAATCCTTTAATCCA-3′); SNORD116-2 for-
ward (5′-TGGATCGATGATGAGTCCCC-3′) and SNORD116-2 reverse 
(5′-AGTTCCGATGAGAATGACGGT-3′). The expression levels of snoR-
NAs were calculated using the 2−ΔCt method.21

2.6 | Principle component analysis

Principle component analysis (PCA; 3-D PCA plots were generated 
using SPSS 22.0) was performed and visualized to compare varia-
tions of within- and between-sample groups. The expression pro-
files of snoRNAs were normalized so that the data approach normal 
distributions.

2.7 | GO term and KEGG enrichment analysis

The clusterProfiler package was implemented to further explore 
the biological function of snoRNAs including biological process (BP) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.22 
P < .05 was considered a significant enrichment.

2.8 | Construction of nomogram predictive model

The ‘rms’, ‘nomogramEx’ and ‘regplot’ R package were used to con-
struct nomogram. The nomogram was used to predict the survival 

rate of ccRCC with multiple indicators.23 The total points were ob-
tained by plus the points of each prognostic parameters, and patients 
with higher total points had worse survival. Separating capacity of 
the nomogram was tested by Harrell's concordance index (C-index).

2.9 | Statistical analysis

Overall survival differences between patients in high-risk and low-
risk groups were estimated by Kaplan-Meier survival curve and cal-
culated using the log-rank test. The receiver operating characteristic 
(ROC) curve was made to determine the sensitivity and specificity 
of the snoRNA signature through calculating the area under curve 
(AUC). The Cancer Cell Line Encyclopedia (CCLE) data were down-
loaded to explore the expression of snoRNAs (http://www.broad 
insti tute.org/ccle).24 The GEPIA (http://gepia.cancer-pku.cn) website 
was used to analyse expression correlation between two genes.25 
We compared two groups using t test for numerical variables, one-
way ANOVA for different groups and chi-square test or Fisher's 
exact test for categorical variables. The SNORic (http://bioin fo.life.
hust.edu.cn/SNORic) was used to examine the correlation between 
snoRNAs and copy number variation (CNV), DNA methylation and 
protein expression. The methsurv was used to evaluate prognos-
tic properties of DNA methylation (https ://biit.cs.ut.ee/methsurv). 
All statistical analyses were carried out using R (https ://www.r-
proje ct.org/, v3.5.1), SPSS 22.0 (SPSS Inc) and GraphPad Prism7 
(GraphPad Software Inc.).

3  | RESULTS

3.1 | Identifying a six-snoRNA signature as a 
potential prognostic marker for ccRCC

Although some small nucleolar RNAs (snoRNAs) had prognostic 
value in various cancer,15,16 the expression level and clinical sig-
nificance of snoRNAs in ccRCC have not been established sys-
tematically. Therefore, we first determined the expression level of 
snoRNAs by analysing TCGA database and identified 43 significantly 
differential expression snoRNAs between 530 ccRCC cases and 72 
control cases (|Log FC|>1, P < .05, Figure 1A and Table S2). Then, 
to evaluate prognostic value of snoRNAs in ccRCC, we subjected 
the 43 snoRNA expression data of the test series to univariable 
Cox analysis and screened 15 snoRNAs which were significantly 
associated with prognosis of ccRCC patients (Table S3). To further 
determine whether those snoRNAs could be independent risk fac-
tors for predicting survival of ccRCC patients, those 15 candidate 
snoRNAs were further analysed by multivariable Cox analysis in the 
test series. Finally, six snoRNAs (P < .05) were identified as the inde-
pendent risk factors markedly related to survival, including SNORA2, 
SNORD12B, SNORA59B, SNORA70B, SNORD93 and SNORD116-
2 (Table S4). To better predict the prognosis of ccRCC patients, 
these six snoRNAs were further used to build a predictive snoRNA 

http://www.broadinstitute.org/ccle
http://www.broadinstitute.org/ccle
http://gepia.cancer-pku.cn
http://bioinfo.life.hust.edu.cn/SNORic
http://bioinfo.life.hust.edu.cn/SNORic
https://biit.cs.ut.ee/methsurv
https://www.r-project.org/
https://www.r-project.org/
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signature. The coefficients were depended on the HR of each 
snoRNA calculated by multivariable Cox regression in the test series 
(Figure 1B). We established the risk score formula as follows: risk 
score = (−0.2791*SNORA2) + (−0.2461*SNORD116-2) + (−0.1322* 
SNORA59B) + (0.2680*SNORD93) + (0.2330*SNORD12B) + (0.4199*
SNORA70B). To investigate the effect of risk score on survival status 
of patients and expression level of each snoRNA, we then calculated 
risk score for each patient based on the risk score formula in the 
test series, and ranked them according to their scores. The distri-
bution of risk score, the survival status of the ccRCC patients and 
these snoRNA expression profiles were also obtained. In the test 
series (Figure 1C), we found that patients in high-risk group tended 
to express high level of risk snoRNAs (SNORD12B, SNORA70B 
and SNORD93), whereas patients in low-risk group tended to ex-
press high level of protective snoRNAs (SNORA2, SNORA59B and 
SNORD116-2). Similar results were also observed in validation series 
and entire TCGA series (Figure 1D-E). To further explore the valid-
ity of this signature, we analysed the risk score in ccRCC cell lines 
and the result showed that risk score of HEKTE, 786-O and Caki-1 
cell lines was 0.29, 1.23 and 2.00, respectively. We found the risk 
score of tumour cells (786-O and Caki-1) was higher than that of 
normal cells (HEKTE), which implied that our six-snoRNA signature 
had a good diagnostic value to distinguish tumour from non-tumour 

cell lines. Furthermore, the risk score of highly malignant cells (Caki-
1) was higher than that of lowly malignant cells (786-O), which im-
plied that our six-snoRNA signature had a good prognostic value for 
ccRCC (Figure 1F).

To evaluate the prognostic utility of the six-snoRNA signature in 
ccRCC, patients were divided into high-risk group or low-risk group 
by the median risk score as the cut-off point. By Kaplan-Meier anal-
ysis, we found patients in high-risk group had significantly shorter 
OS than those in low-risk group (P < .0001) (Figure 1G). Besides, 
similar results were also observed in validation series and entire 
TCGA series (Figure 1G). Furthermore, we also analysed the RFS and 
found patients in high-risk group had significantly shorter RFS than 
those in low-risk group in test series (P < .0001), validation series 
(P = .0071) and entire series (P < .0001) (Figure S1A) What is more, 
patients with recurrence had higher risk score than those without 
recurrence (Figure S1B).

To explore the sensitivity and specificity of the six-snoRNA 
signature, we conducted time-dependent ROC analysis and result 
showed that the prognostic accuracy of the signature was 0.701, 
0.721, 0.744 and 0.759 for 1, 3, 5 and 7 years in entire series which 
increased with time prolonging (Figure 1H). Taken together, this six-
snoRNA signature is a potentially helpful biomarker for predicting 
OS and RFS of ccRCC patients.

F I G U R E  1   Six ccRCC relevant snoRNAs were identified. A, The differentially expressed snoRNA status in TCGA data between ccRCC 
tissue and adjacent tissue (N = 530). B, The coefficients of six snoRNAs. Risk score distribution patients’ survival time and status and heat 
map of six-snoRNA expression in test series (C), validation series (D) and entire series (E). Rows represent snoRNAs, and columns represent 
patients. F, The risk score of cell lines including HEKTE (normal renal cells), 786-O ccRCC cell line (primary) and Caki-1 ccRCC cell line 
(metastatic). G, Kaplan-Meier analysis for OS of the six-snoRNA signature in test series, validation series and entire series. H, The time-
dependent ROC analysis of the sensitivity and specificity of the signature in entire series. The differences between the two curves were 
determined by the two-side log-rank test
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3.2 | High-risk score is associated with 
advanced TNM, higher Fuhrman grade and low 
haemoglobin level

To further comprehensively investigate whether there was a rela-
tionship between the risk score and pathological characteristics, 
patients were arranged according to their risk score. The results 

showed obviously asymmetric distribution of the Fuhrman grade, 
TNM stage and haemoglobin level (Figure 2A). We found elevated 
risk score was positively associated with advanced TNM stage, 
higher Fuhrman grade and lower haemoglobin level. However, age, 
gender, VHL status, chemotherapy, immunotherapy and target mo-
lecular therapy showed no difference in the distribution (Figure 2A). 
We further compared the risk score of patients separated by clinical 

F I G U R E  2   Relationship between the predictive signature risk score and clinicopathologic characteristics. A, The clinicopathologic 
information of patients in TCGA database, arranged by the increasing risk score. The distribution of risk score in patients stratified by age 
(B), gender (C), VHL status (D), therapy type (E), TNM stage (F), Fuhrman grade (G) and haemoglobin level (H). *P values were measured 
by unpaired t test. *P < .05, **P < .01, ***P < .001, ****P < .0001. #, one-way ANOVA for different pathological stages. ###P < .001, 
####P < .0001
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characteristics. Some clinical characteristics were not associated 
with our risk scores, such as gender status, VHL status and therapy 
type (Figure 2C-E). However, the risk score was highly related to 
age, TNM stage, Fuhrman grade and haemoglobin level (Figure 2B, 
2-H). To illustrate, the risk score was higher in TNM stages III and 
IV, compared with TNM stages I and II (Figure 2F). Contrasted to 
the Fuhrman I and II stages, the risk score was higher in Fuhrman 
III and Fuhrman IV stages (Figure 2G). Furthermore, the risk score 
was higher in low haemoglobin level (Figure 2H). We also found that 
along with the ccRCC stage developed, the risk score was higher 
(Figure 2F,2). These results demonstrated that elevated risk score 
indicated advanced TNM stage, higher Fuhrman grade and lower 
haemoglobin level.

3.3 | Prognostic value of the six-snoRNA signature 
is independent of conventional clinical factors

To further appraise the predictive effect of the six-snoRNA signa-
ture and other clinicopathologic characteristics on survival status, 
we performed univariable and multivariable Cox analysis to deter-
mine whether the six-snoRNA signature could be an independent 
risk factor for evaluating prognosis of ccRCC patients. Univariable 
Cox analysis revealed that age, the six-snoRNA signature, TNM 
stage, Fuhrman grade and haemoglobin level were significantly re-
lated to the patients' survival status (Table S5). Multivariable Cox 
regression showed that the six-snoRNA signature, age, TNM stage, 
Fuhrman grade and haemoglobin were independent prognostic fac-
tors (Table S6). In addition, the six-snoRNA signature was also an 
independent risk factor for RFS by univariable and multivariable Cox 
regression analysis (Tables S7 and S8). Therefore, to further assess 
the robustness of the six-snoRNA signature, we performed data 
stratification analysis to estimate whether the six-snoRNA signature 
exhibited prognostic value within the same clinical factor.

The Fuhrman grading system was an important independent and 
most widely used predictive factor in renal cell carcinoma, based 
on assessment of the uniformity of nuclear size, nuclear shape and 
nuclear prominence.26-28 Hence, we first stratified patients into 
Fuhrman I and II groups, III group and IV group. Then, we divided 
these patients into high-risk and low-risk groups again. As results 
shown in Figure 3A, patients in high-risk group had significantly 
shorter OS than those in low-risk group no matter in Fuhrman I 
and II groups or in Fuhrman III group and IV group (P < .0001). 
Furthermore, we separately analysed Fuhrman I and II groups, III 
group and IV group, and found after the six-snoRNA signature sep-
arated them into high-risk and low-risk groups, patients in high-risk 
group had shorter OS (Figure 3B-D). In addition, patients in high-
risk group had shorter RFS than those in low-risk group which was 
the same with OS, although there was no statistically significant in 
Fuhrman IV subgroup (Figure S1C).

For ccRCC, according to the Memorial Sloan-Kettering Cancer 
Center (MSKCC) criteria, serum haemoglobin less than the lower 
limit of normal (LLN) was one of the adverse prognostic factors.29,30 

Hence, we first stratified patients into normal and low-level hae-
moglobin groups. Then, we divided these patients into high-risk 
and low-risk groups again. As results shown in Figure 3E, patients 
in high-risk group had significantly shorter OS than those in low-
risk group no matter in normal or in low-level haemoglobin group 
(P < .0001). Furthermore, we separately analysed normal and low-
level haemoglobin groups, and found after the six-snoRNA signature 
separated them into high-risk and low-risk groups, patients in high-
risk group had shorter OS (Figure 3F-G). In addition, patients in high-
risk group had shorter RFS than those in low-risk group which was 
the same with OS (Figure S1C).

Lastly, we first stratified patients into TNM I and II stage groups 
and TNM III and IV stage groups according to TNM stage. Then, we 
divided these patients into high-risk and low-risk groups again. As 
results shown in Figure 3H, patients in high-risk group had signifi-
cantly shorter OS than those in low-risk group no matter in TNM 
I and II stages or TNM III and IV stages (P < .0001). Furthermore, 
we separately analysed I stage, II stage, III stage and IV stage, and 
found after the six-snoRNA signature clearly separated them into 
high-risk and low-risk groups, patients in high-risk group had shorter 
OS (Figure 3I-L). Besides patients in high-risk group had shorter RFS 
than those in low-risk group which was the same with OS, there 
were no statistically significant in TNM stage II subgroup and TNM 
stage III subgroup (Figure S1C).

Combining the results of multivariable Cox regression analysis 
and stratification analysis, the six-snoRNA signature was demon-
strated to be a powerful and independent indicator for survival pre-
diction in ccRCC patients.

To compare the sensitivity and specificity of predictive ability 
among the six-snoRNA signature, TNM stage, Fuhrman grade and 
haemoglobin level, we performed receiver operating characteristic 
curve analysis (ROC). The area under characteristic (AUC) was calcu-
lated and compared among the four independent prognostic factors 
(Figure 3M). Firstly, as an independent indicator of survival prediction 
for ccRCC patients, the six-snoRNA signature (AUC = 0.732, P < .0001) 
showed higher AUC than Fuhrman grade (AUC = 0.692, P < .0001) and 
haemoglobin level (AUC = 0.616, P < .0001). Moreover, the sensitivity 
and specificity of the six-snoRNA signature (AUC = 0.732, P < .0001) 
were as good as TNM stage (AUC = 0.738, P < .0001). Previous stud-
ies have reported that combined biomarkers were able to improve the 
prognostic accuracy than a single biomarker.31 Therefore, we further 
determined whether the incorporation of risk score into clinical indi-
cators could better predict prognosis of ccRCC patients. The result 
showed that when the six-snoRNA signature incorporated into TNM 
stage, Fuhrman grade or haemoglobin, the AUC of three clinical char-
acteristics increased from 0.738, 0.692 and 0.616 to 0.792, 0.800 and 
0.747, respectively. Although we had calculated AUC when three or 
four independent risk factors combined together, there was no obvi-
ous optimization compared with the six-snoRNA signature and TNM 
stage or the six-snoRNA signature and Fuhrman grade combination. 
These results suggested the six-snoRNA signature combining with 
TNM stage or Fuhrman grade probably processed the clinical applied 
value for ccRCC.
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Based on univariate and multivariate Cox regression analysis, we 
further performed nomogram analysis of independent prognosis fac-
tors and compared the C-index value with or without our risk score 
system. We found when risk score, age, TNM stage, Fuhrman grade 
and haemoglobin were included, the C-index of nomogram was 0.78 
(95% CI = 0.74-0.82) and when age, TNM stage, Fuhrman grade and 
haemoglobin were included, the C-index was 0.75 (95% CI = 0.71-0.78) 
(Figure 3N). This result demonstrated our risk score system was effec-
tive and would be a good index parameter in prognostic prediction.

3.4 | Validating the prognostic value of the six-
snoRNA signature in ccRCC tissue and serum

To further validate the prognostic value of the six-snoRNA sig-
nature for ccRCC, we, respectively, measured these six-snoRNA 

expressions in ccRCC patients and healthy people by qRT-PCR. Then, 
we calculated and compared the risk score of patients in tissue and 
serum, respectively, and found that the risk score was significantly 
higher in patients' tissue and serum, compared with normal controls 
(P < .0001, P = .0018, Figure 4A). Furthermore, no matter in tissue 
or in serum samples, patients in high-risk group exhibited higher ex-
pression of risky snoRNAs, whereas patients in low-risk group exhib-
ited higher expression of protective snoRNAs (Figure 4B-M). Taken 
together, these results suggested that the six-snoRNA signature ex-
hibited its diagnostic value as biomarker for ccRCC patients.

Furthermore, to evaluate the sensitivity and specificity of the 
six-snoRNA signature in distinguishing patients from healthy indi-
viduals, ROC analysis was performed and the AUC was calculated 
using tissue and serum expression of each snoRNA. The results 
showed that the AUC value was 0.800 in tissue and 0.747 in 
serum (Figure 4N), suggesting the six-snoRNA signature had high 

F I G U R E  3   Kaplan-Meier estimates of the overall survival of TCGA patients using the six-snoRNA signature. A, Kaplan-Meier curves for 
the entire TCGA series patients with Fuhrman (I and II, III, and IV). Kaplan-Meier curves for patients with Fuhrman I and II (B), Fuhrman III 
(C) and Fuhrman IV (D). E, Kaplan-Meier curves for the entire TCGA series patients with haemoglobin (combined with normal and low-level 
haemoglobin). Kaplan-Meier curves for patients with normal haemoglobin (F) and low-level haemoglobin (G). H, Kaplan-Meier curves for 
the entire TCGA series patients with TNM stage (I and II, III and IV). Kaplan-Meier curves for patients with TNM stage I (I), TNM stage II (J), 
TNM stage III (K) and TNM stage IV (L). M, ROC analysis of the sensitivity and specificity of the overall survival prediction by the six-snoRNA 
risk score, TNM stage, Fuhrman and haemoglobin. N, The nomogram for predicting proportion of patients with 1-, 3- and 5-y OS (stage: 
0 = stage I, 1 = stage II, 2 = stage III and 3 = stage IV; Fuhrman grade: 0 = Fuhrman grade I + II, 1 = Fuhrman grade III and 2 = Fuhrman grade 
IV; and haemoglobin: 0 = normal haemoglobin level and 1 = low haemoglobin level)
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sensitivity and specificity for ccRCC in tissue and serum. To fur-
ther compare the diagnostic performance among the six-snoRNA 

signature between tissue and serum, and evaluate the overall qual-
ity of our samples, the 3-D PCA plot (Figure 4O) was performed 
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and showed that the tissue samples and serum samples could be 
separated by the 1st component, which explained 72.97% of the 
data variation. Furthermore, the normal tissue and tumour tissue 
scattered separately on the 1st component, and the normal serum 
and tumour serum were scattered separately by the 2nd compo-
nent, which explained 18.12% of the data variation. Also, the 3-D 
PCA plot showed that the reproducibility of tissue samples was 
better than serum samples. In addition, we further investigated 
whether there was a relationship between the risk score and clin-
icopathologic characteristics in tissue and found that higher risk 
score was significantly associated with advanced TNM stage and 
higher Fuhrman grade (Table S9). Taken together, these results 
demonstrated that the six-snoRNA signature yielded better diag-
nostic accuracy in distinguishing patients from normal controls.

Although the six-snoRNA signature served as a potentially use-
ful indicator for assessing poor prognosis of ccRCC patients, it was 
unclear whether the six-snoRNA signature was working in other 
urological malignancies. Therefore, we analysed expression data 
sets and corresponding clinical and survival data of other urologi-
cal malignancies including KICH, KIRP and bladder cancer in TCGA 
database. As results shown in Figure 4P, there was no difference in 
OS in high-risk group and low-risk group for KICH (P = .3971), KIRP 
(P = .1582) and bladder cancer (P = .7648). Simultaneously, we also 
performed ROC analysis and found that the six-snoRNA signature 
had low sensitivity and specificity of survival prediction for KICH 
(AUC = 0.514), KIRP (AUC = 0.576) and bladder cancer (AUC = 0.499) 
(Figure 4Q), indicating the six-snoRNA signature could not be used 
as biomarker for these cancers. These results demonstrated that the 
six-snoRNA signature served as an effective and specific biomarker 
to predict the survival of ccRCC.

3.5 | The snoRNA methylation and WNT pathway 
potentially function ccRCC tumorigenesis

The biological function of snoRNAs has not been investigated clearly. 
Small nucleolar RNAs are primarily classified into H/ACA box and 
C/D box snoRNAs based on their structure and main function. H/
ACA box snoRNAs guide pseudouridylation of nucleotides, whereas 
C/D box snoRNAs are responsible for 2′-O-methylation.11-13 As 
shown in Figure 5A, among these selected six snoRNAs, there 
were three C/D box snoRNAs including SNORD12B, SNORD93 
and SNORD116-2, and three were H/ACA box snoRNAs including 
SNORA2, SNORA59B and SNORA70B. Copy number variation (CNV) 
is a key regulator of gene expression, and some snoRNAs were 
significantly associated with their CNVs in various cancers.19,32,33 

Therefore, we evaluated relevance of CNV and these snoRNA ex-
pressions. The result showed that the expression levels of SNORA2, 
SNORD12B, SNORA70B, SNORD93 and SNORD116-2 were posi-
tively correlated with their CNVs in ccRCC, respectively (Figure 5B). 
In addition, DNA methylation is a common epigenetic mechanism 
that regulates gene expression and studies have reported that the 
methylation level of snoRNAs was involved in regulating snoRNA 
expression.19,34,35 Thus, we further evaluated the correlation of 
these snoRNAs with DNA methylation using snoRic database. The 
results showed SNORD12B and SNORD93 had significant correlation 
with their DNA methylation (Figure 5C). To illustrate, we have vali-
dated SNORD12B was the risk factor in ccRCC, and the expression of 
SNORD12B was negatively correlated with the methylation level of 
probe cg18598146. Hence interestingly, probe cg18598146 meth-
ylation of SNORD12B was protective factor for ccRCC (Figure 5C). 
Similar result was also observed in SNORD93. These results demon-
strated that the methylation level of snoRNAs might affect progno-
sis of ccRCC by regulating the expression level of snoRNAs.

In eukaryotes, the complexes between snoRNAs and ribonuc-
leoproteins (RNPs) are called small nucleolar RNPs (snoRNPs).36 
Previous report suggested that RNPs were strongly correlated 
with snoRNAs and demonstrated their co-activation and synergy 
involves in cancer progression by affecting the processes of ribo-
some and protein translation.19 Therefore, we further investigated 
the correlations between these six snoRNAs and their correspond-
ing RNPs. We identified 159 RNPs that were associated with these 
six snoRNAs (Figure 5D). To further explore the potential function 
of these snoRNAs, we first performed protein-protein interaction 
analysis for these snoRNPs by STRING tool (Figure 5E,G). Then, we 
performed GO and KEGG enrichment analysis by clusterProfiler 
package to analyse high-risk group-related snoRNP genes genes and 
low-risk group related-snoRNP genes, respectively. We found most 
high-risk group-related snoRNP genes genes were similar to low-risk 
group-related snoRNP genes (Table S10). The GO analysis results 
showed that high-risk–related snoRNPs (Figure 5H) and low-risk–re-
lated snoRNPs (Figure 5F) were mainly enriched in ‘mRNA process-
ing’, ‘RNA splicing’ and so on. The KEGG analysis results showed that 
high-risk–related snoRNPs (Figure 5H) and low-risk–related snoRNPs 
(Figure 5F) were mainly enriched in ‘Splicesome’, ‘Transcription mis-
regulation in cancer’, ‘cell cycle’, ‘Wnt signalling pathway’ and so on. 
These results suggested that there was no significant difference 
between high-risk–related snoRNPs and low-risk–related snoRNPs.

In mammals, the majority of snoRNAs are encoded within in-
trons of protein-coding or non-coding genes, which are called ‘host 
genes’.37 An alteration of snoRNA expression may result from host 
genes through co-transcription.38 To understand the potential 

F I G U R E  4   The expressions of six snoRNAs and risk score in ccRCC patients’ tissues and serums. A, The comparisons of six-snoRNA 
risk score for ccRCC tissues and serums, respectively. The expressions of six snoRNAs in tissues (B-G) and serums (H-M). P values were 
measured by unpaired t test. N, ROC analysis of the sensitivity and specificity of the overall survival prediction by the six-snoRNA risk score 
in tissues and serums. O, 3-D PCA plot analysis of the six-snoRNA expression data in tissues and serums samples. Abbreviations; TN: normal 
tissue, TT: tumour tissue, SN: normal serum, ST: tumour serum. P, Kaplan-Meier curves for TCGA patients with KICH, KIRP and bladder 
cancer by the six-snoRNA risk score. Q, ROC analysis of the sensitivity and specificity of the overall survival prediction for patients with 
KICH, KIRP and bladder cancer by the six-snoRNA risk score
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regulated mechanism of snoRNA expression, we further analysed 
the distribution and function of host genes for these snoRNAs. We 
observed that host genes of SNORA2, SNORA59B and SNORA70B 
were protein-coding genes and host genes of SNORD12B, SNORD93 
and SNORD116-2 were non-coding genes (Figure 6A). Then, we an-
alysed the correlation between snoRNAs and their corresponding 
host genes, and observed that SNORA2, SNORD12B, SNORA59B, 
SNORA70B and SNORD116-2 were highly correlated with their host 
genes, respectively (Figure 6B-F). In addition, we also analysed dif-
ferential expression of host genes between low-risk and high-risk 
groups (Figure 6G). The results showed that SLC47A1 and SNHG14, 

host genes of protective SNORA59B and SNORD116-2, had higher 
expression in low-risk group and ZFAS1 and USP34, host genes of 
risky SNORD12B and SNORA70B, had higher expression in high-risk 
group. These results suggested that the host genes of snoRNA may 
play the same protective or risky role as well as snoRNA itself. To 
explore the potential function of these protein-coding host genes, 
we first performed protein-protein interactions analysis for these 
host genes by STRING tool (Figure 6H,J). Then, we performed GO 
and KEGG enrichment analysis by clusterProfiler package to anal-
yse high-risk group–related host genes and low-risk group–related 
host genes, respectively. The GO analysis results showed that 

F I G U R E  5   The function analysis of these six snoRNAs. A, Distribution of different types of snoRNAs. B, The correlation between 
snoRNAs and copy number variations. C, The correlation between snoRNAs and methylation and multivariable cox analysis of methylation 
site in ccRCC. D, Network of snoRNP genes highly associated with six snoRNAs. Protein-protein interactions analysis of snoRNP genes 
highly correlated with low-risk snoRNAs (E) and high-risk snoRNAs (G) by STRING tool. Biological process analysis and KEGG analysis of 
snoRNP genes highly correlated with low-risk snoRNAs (F) and high-risk snoRNAs (H) by clusterProfiler package



     |  2225YAN et Al.

low-risk–related host genes were mainly enriched in ‘peptidyl-ly-
sine modification’, ‘histone modification’ and so on (Figure 6I) and 
high-risk–related host genes were mainly enriched in ‘Wnt signalling 

pathway’, ‘cell-cell signalling by wnt’ and so on (Figure 6K). The KEGG 
analysis results showed that low-risk–related host genes were mainly 
enriched in ‘Lysine degradation’, ‘Cushing's syndrome’ and so on 

F I G U R E  6   The function analysis of the host genes of these six snoRNAs. A, The host genes of six snoRNAs. (B-F) The correlation between 
host genes and snoRNAs. G, The differential expression of snoRNAs' host genes between high-risk and low-risk groups. Protein-protein 
interaction analysis of snoRNP genes highly correlated with low-risk snoRNAs (H) and high-risk snoRNAs (J) by STRING tool. Biological process 
analysis and KEGG analysis of snoRNP genes highly correlated with low-risk snoRNAs (I) and high-risk snoRNAs (K) by clusterProfiler package. 
(L) The correlation between SNORA70B and CTNBB1, and between SNORA70B host gene USP34 and CTNBB1, MYC, TCF4 and TCF7L2
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(Figure 6I), and high-risk–related host genes were mainly enriched in 
‘Ribosome’, ‘Wnt signalling pathway’ and so on (Figure 6K). Both GO 
and KEGG analysis results showed that high-risk–related host genes 
were mainly enriched in ‘Wnt signalling pathway’. Hence, we fur-
ther analysed correlation between SNORA70B, its host gene USP34 
and Wnt signalling pathway–related genes such as CTNNB1, MYC, 
TCF4 and TCF7L2 (Figure 6L). The results showed that SNORA70B 
was positively related to CTNNB1 and USP34 was positively related 
to CTNNB1, MYC, TCF4 and TCF7L2, suggesting SNORA70B and its 
host gene USP34 might play significant roles in ccRCC tumorigenesis 
through ‘Wnt signalling pathway’.

4  | DISCUSSION

Clear cell renal cell carcinoma is the most common subtype among 
renal cell carcinoma.2,39 In the past few decades, great progress has 
been made from a non-specific immune approach to targeted ther-
apy (against VEGF, PDGF) and now to novel immunotherapy with 
immune-checkpoint inhibitors.31 At present, indolent and aggressive 
tumours cannot be distinguished depending on TNM staging system, 
which mainly relies on anatomical information without biological 
characteristics. Although APEX1 has been reported diagnosis value 
of ccRCC, its clinical practical prospective was still a long way.40 In 
recent years, the potential of snoRNA as biomarkers has been gradu-
ated recognized.15,16,41 For example, SNORA42 was identified as a 
novel diagnostic, predictive biomarker and prospective therapeutic 
targets for CRC patients.15 In our study, we identified a six-snoRNA 
signature as the diagnosis marker depending on TCGA database and 
validated its value to distinguish ccRCC patients and healthy people 
in tissue and serum samples.

TNM stage, Fuhrman grade and haemoglobin level are conven-
tional clinical-pathological characteristics for ccRCC. Although these 
features are very important, they are not just belong to ccRCC. 
There is still a desert of specific diagnostic indicators in ccRCC Gong 
et al have reported snoRNAs were specifically overexpression in 
ccRCC, implying the potential value of snoRNAs as biomarkers. In 
our study, we found the six-snoRNA signature was an independent 
risk factor for OS and RFS in ccRCC (Tables S6 and S8), and high 
six-snoRNA signature expression indicated poor OS and RFS. In ad-
dition, we also compared the performance between conventional 
clinical-pathological characteristics and our six-snoRNA signature. 
Intriguingly, we found six-snoRNA signature was as good as TNM 
stage and much better than Fuhrman grade and haemoglobin level. 
Besides, we further integrated the six-snoRNA signature with TNM 
stage or Fuhrman grade and found their potentially clinical applied 
value. More significantly, we confirmed the six-snoRNA signature 
was related to clinical characteristics in tissue, especially TNM stage 
and Fuhrman grade.

Minimal invasion, easy method for detection, low cost and con-
venient census are the advantages of serum-based biomarkers. The 
previous study has reported snoRNAs were stably present and reli-
ably detectable in serum and suggested snoRNAs could be as novel 

non-invasive diagnostic biomarkers for osteoarthritis.42 However, 
the expression of snoRNA in ccRCC serum has not been studied. 
Hence, we further investigated the six-snoRNA signature's sta-
bility in serum to evaluate the clinical potential value in ccRCC. In 
our study, we found the six-snoRNA signature expressed stably in 
serum, suggesting serum snoRNAs may serve as novel non-invasive 
biomarkers for ccRCC. The results were similar to above TCGA data 
set analysis, verifying the feasibility and validity of the six-snoRNA 
signature as molecular marker. Interestingly, according to the results 
of ROC and 3-D PCA, we found the six-snoRNA signature perfor-
mance in tissue was better than that in serum. The possible reasons 
for these results may be as follows: (a) Although snoRNA itself was 
stable, it was not that high level in serum. Therefore, our detection 
methods needed to be further optimized; (b) at present, the method 
of extracting snoRNA in serum was not perfect enough, resulting in 
more snoRNA loss during the extraction process; and (c) the number 
of serum samples was much smaller than tissue samples. It should 
be pointed out that although expression profile-based snoRNA sig-
nature with superiority for survival prediction in ccRCC patients has 
not yet been applied in clinical practice, this area seems prospective 
with the development of technology.

An increasing number of studies emerged about the mecha-
nism research of snoRNA regulating the development of cancer. 
Hypermethylation is characteristic of most ccRCCs.43 On the one 
hand, the C/D box snoRNAs exert a promotion role in tumorigen-
esis by regulating rRNA 2′-O-methylation.44,45 SNORD12B and 
SNORD93 in our selected snoRNAs were C/D box snoRNAs and 
exhibited a tumorigenic effect in ccRCC. On the other hand, snoR-
NAs exist methylation site and have poor prognosis in KIRC, so is 
snoRNA methylation correlated with better survival?19 In this study, 
we found high expression of risky factors SNORD12B and SNORD93 
was negatively correlated with methylation sites cg18598146, 
cg04907244 and cg22407942, respectively, and these methylation 
sites were associated with better survival in ccRCC. In addition, 
Ferreira et al46 suggested that the host gene–associated 5'CpG is-
lands of SNORA59B were hypermethylated in colorectal cancer cells. 
Hence, the specific function of methylation in snoRNAs regulating 
ccRCC is paradox and further investigation is needed.

WNT family genes play important roles in human organogen-
esis and tumorigenesis. Moreover, they were involved in renal 
development and initiation of several renal diseases including kid-
ney malignancy.47 In our study, host gene USP34 of SNORA70B 
was mainly involved in regulating WNT signalling pathway. 
Interestingly, we did not found SNORA70B-related snoRNPs, which 
was the most studied mechanism, participated in WNT pathway. 
Lasted studies have reported that snoRNAs could directly bind to 
functional protein to promote tumorigenesis.48,49 Therefore, we 
inferred that USP34 or SNORA70B might bind WNT pathway–re-
lated protein to activate it.

In general, we identified a six-snoRNA signature as an indepen-
dent and specific indicator to diagnose and predict prognosis of 
ccRCC patients, providing a prospective diagnostic and prognostic 
biomarker and potential therapeutic targets for ccRCC.
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