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Abstract

Toxoplasma gondii is one of the world’s most successful parasites, in part because of its

ability to infect and persist in most warm-blooded animals. A unique characteristic of T. gon-

dii is its ability to persist in the central nervous system (CNS) of a variety of hosts, including

humans and rodents. How, what, and why T. gondii encysts in the CNS has been the topic

of study for decades. In this review, we will discuss recent work on how T. gondii is able to

traverse the unique barrier surrounding the CNS, what cells of the CNS play host to T. gon-

dii, and finally, how T. gondii infection may influence global and cellular physiology of the

CNS.

Introduction

Toxoplasma gondii is an obligate intracellular parasite of the phyla Apicomplexa. Felids are the

only definitive host for T. gondii, but T. gondii has a wide intermediate host range and has

been documented to naturally infect most warm-blooded animals including birds, rodents,

and humans [1]. In most hosts, T. gondii establishes a life-long, latent infection in tissues such

as skeletal muscle, cardiac muscle, or the central nervous system (CNS), which includes the

brain, the spinal cord, and the retina. In this review, we will often use CNS interchangeably

with the brain, in which the majority of the work on T. gondii has been done.

Humans primarily acquire T. gondii through contaminated food or water or via vertical

transmission. T. gondii is found worldwide and seroprevalence rates range from <10% to

>60% [2]. During acute infection, T. gondii disseminates throughout the host as a tachyzoite,

the fast-replicating form of the parasite, which is targeted by the host immune response [3,4].

As infection proceeds, T. gondii transitions into the chronic stage of infection via conversion

to the slowly replicating bradyzoite, which encysts. A number of transitions occur between

tachyzoites and bradyzoites/cysts, some of which are thought to enable the bradyzoite/cyst to

escape immune detection, thereby leading to persistent infection [5]. In humans and rodents,

the brain is the major organ of encystment and persistence [1,6].

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006351 July 20, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mendez OA, Koshy AA (2017)

Toxoplasma gondii: Entry, association, and

physiological influence on the central nervous

system. PLoS Pathog 13(7): e1006351. https://doi.

org/10.1371/journal.ppat.1006351

Editor: Marc-Jan Gubbels, Boston College, UNITED

STATES

Published: July 20, 2017

Copyright: © 2017 Mendez, Koshy. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: Funding was provided by NIH/NINDS

NS095994-01S1 (OM/AAK), http://www.ninds.nih.

gov/, and the BIO5 Institute, University of Arizona

(AAK), http://www.bio5.org. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1006351
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006351&domain=pdf&date_stamp=2017-07-20
https://doi.org/10.1371/journal.ppat.1006351
https://doi.org/10.1371/journal.ppat.1006351
http://creativecommons.org/licenses/by/4.0/
http://www.ninds.nih.gov/
http://www.ninds.nih.gov/
http://www.bio5.org


The ability of T. gondii to asymptomatically persist in the CNS of immunocompetent indi-

viduals is highly unusual, as when most microbes cross into the CNS, symptomatic and often

lethal disease ensues. This tropism for the CNS underlies the devastating disease T. gondii
causes in those with deficient immune responses—e.g., developing fetuses or AIDS patients.

Finally, T. gondii’s predilection for the CNS has been linked to a number of behavioral deficits

in rodents [7–11]. Thus, the T. gondii–CNS interaction is of particular interest for understand-

ing symptomatic toxoplasmosis as well as rodent behavioral changes. As a summary of the

behavioral deficits and possible causes has been reviewed recently [12–14], here we will focus

on work exploring how T. gondii enters the CNS, establishes a persistent infection, and affects

CNS physiology.

Brief overview of the CNS

The CNS is a complex organ composed of multiple cells that include neurons and glia. Glia

were originally defined as neuronal support cells and consist of oligodendrocytes, astrocytes,

and microglia, which are tissue-resident macrophages that have a hematopoietic origin as

opposed to neuroectodermal origin [15,16]. What percentage of glia are astrocytes, oligoden-

drocytes, or microglia will vary by location and state (e.g., baseline versus infected). Neurons

are the signaling cells of the CNS and comprise a vast array of subtypes distributed across the

CNS in a heterogeneous manner. Regional and long-distance connections between neurons

underlie the intricate processing network that allows complex integration of information from

external stimuli to initiate and generate movements and complex behaviors. Oligodendrocytes

insulate the axons of neurons with myelin, allowing for proper signal conduction. Astrocytes

are support units responsible for promoting efficient signaling between neurons, release of

growth factors, and separation of neuronal groups [17]. When these cell populations are dis-

cussed, the number of glia to neurons is often overestimated. Careful counts suggest that glia

and neurons are approximately equivalent in number across a range of mammals, including

humans [18–20]. Astrocyte and oligodendrocyte turnover does occur in the CNS, but this

turnover becomes attenuated in adulthood, with a vast majority of glia becoming oligodendro-

cytes [21–23]. For neurons, even in adulthood, replication occurs but only in distinct regions

of the brain and in limited amounts [24]. While microglia and infiltrating macrophages are

essential for controlling T. gondii in the brain, neurons and astrocytes are the parenchymal

cells that have been most implicated in playing a role in CNS toxoplasmosis.

Entering the CNS

For any pathogen to enter the CNS, it must cross the blood-brain barrier (BBB). The BBB is

a selective barrier that is composed of endothelial cells that line microvessels in the brain.

The basal lamina and pericytes surround endothelial cells, followed by enclosing astrocytic

endfeet (Fig 1A). These cellular interactions allow the BBB to exclude large peptides and pro-

teins and only allow free diffusion of small gaseous molecules like oxygen and carbon dioxide.

At baseline, the presence of tight junctions and adherence junctions excludes paracellular

movement of hydrophilic molecules and the migration of cells past the endothelial barrier

[25]. Though originally conceived of as a highly impermeable barrier through which most

organisms and cells could not pass, it is now recognized that microbes have developed multiple

mechanisms for crossing the BBB, and in the right context, immune cells cross into the CNS

for immune surveillance [26–29]. For T. gondii, 3 mechanisms have been proposed for CNS

entry: paracellular crossing, transcellular crossing, or the so-called “Trojan horse” mechanism,

whereby an infected immune cell crosses the BBB, bringing the intracellular parasite with it

(Fig 1B).
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Fig 1. Diagram of the physical and cellular interactions that compose the blood-brain barrier. (A) The

blood-brain barrier (BBB) is composed of microvessels surrounded by an endothelial cell layer with tight

junctions; pericytes surround the tight junctions and then astrocytic processes or endfeet provide the final

layer. (B) Toxoplasma gondii has been postulated to have 3 mechanisms for crossing the BBB. (1)

Paracellular entry, in which T. gondii migrates directly through the tight junctions of the endothelial cell layer,

(2) transcellular entry, in which free parasites in the vascular compartment infect endothelial cells, replicate,

and then egress out of the basolateral side of endothelial cell (lysing the host cell), (3) the “Trojan horse”

method, whereby an infected immune cell infiltrates the CNS, after which the parasite egresses out of the

immune cell and into the brain parenchyma.

https://doi.org/10.1371/journal.ppat.1006351.g001
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Paracellular entry

Several lines of evidence suggest that T. gondii could cross into the CNS via the paracellular

method (Fig 1B, part 1). Though T. gondii lacks cilia and flagella, the parasite is able to propel

itself using actin-myosin motors, generating movement termed “gliding motility” [30]. This

gliding motility is thought to aid T. gondii across the first barrier it encounters: the epithelium

of the small intestine [31]. The gut epithelial barrier shares many features with the BBB includ-

ing tight junctions, paracellular junctions, regulation of barrier properties, and an immune

barrier [32,33]. Parasites are able to cross polarized cell monolayers and extracellular matrix,

which mimic both the BBB and gut epithelial barrier [34]. In addition, parasites are able to

transmigrate across the intestinal epithelium ex vivo [34]. Importantly, recent work using

physiological shear force applied to live-cell microfluidic chambers has shown that tachyzoites

are capable of adhering to and migrating on vascular endothelium in these semiphysiologic

conditions [35], though actual paracellular crossing by tachyzoites was not observed in these

conditions (personal communication, M. Lodoen to A. Koshy).

Transcellular migration

While Plasmodium sporozoites have been observed to migrate through cells [31], for T. gondii,
transcellular migration refers to infection of a cell followed by replication then lyses or egress

from the basolateral side (Fig 1B, part 2). This concept has been primarily conceptualized for

crossing from the gut epithelium into the intestinal lamina propria [36,37]. However, a recent

study utilizing transgenic reporter systems and multiphoton in vivo imaging suggests such a

mechanism may also have a role in how T. gondii crosses the BBB. In this study, Konradt et al.

found infected endothelial cells in multiple organs including the brain. Further work showed

that free tachyzoites in the bloodstream were able to adhere to CNS endothelial cells, invade,

replicate, and eventually egress from these cells, potentially depositing these egressing parasites

into the CNS parenchyma [38]. This work also used in vitro assays to show that, in shear stress

conditions, parasites were able to attach and invade endothelial cells, especially at lower shear

forces, consistent with the in vivo observation that parasite-infected endothelial cells were pri-

marily found in smaller diameter vessels [38]. Finally, this study noted a lack of infected infil-

trating immune cells early in CNS infection, consistent with prior work that also noted CNS

parasite infection preceding immune-cell infiltration into the CNS [39].

Infected immune cells

The final mechanism proposed for T. gondii entry into the CNS is via the “Trojan horse”

mechanism (infected immune cells) (Fig 1B, part 3). Several studies using in vitro models

have shown that infected immune cells have increased motility and are capable of crossing

endothelial barriers, including during shear stress [40–42]. Additionally, intravenous inocu-

lation of mice with infected macrophages or dendritic cells led to a more rapid appearance of

parasites in the CNS compared to inoculation with free parasites [40,43], though multiple

mechanisms (not just increased BBB crossing by infected immune cells) might explain these

results.

In summary, T. gondii may enter the CNS through multiple mechanisms. Outstanding

questions include the relative importance of each mode of entry and how different mecha-

nisms of entry might affect which regions of the CNS are infected or even which CNS cells

directly interact with T. gondii.
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CNS host cell interactions

Given the importance of CNS persistence to clinical disease, where and how T. gondii persists

in the CNS in the immunocompetent host has long been an area of interest. Human data on

CNS regions “susceptible” to T. gondii primarily come from autopsies of AIDS patients. In

these studies of severely immunocompromised patients, T. gondii lesions were consistently

found in the cerebral cortex and basal ganglia, with fewer lesions in the cerebellum, brainstem,

and spinal cord [44–46]. These data are consistent with the localization of cysts observed in

rodents [47–49].

Host cell–T. gondii interactions of immunocompetent humans are not well characterized.

One recent report from primarily immunocompetent patients states that T. gondii was seen in

both neurons and astrocytes, but it is unclear from the methodology how this observation was

determined [50]. Given the lack of human data, our understanding of CNS host cell–T. gondii
interactions has, by necessity, come from in vitro and rodent models of CNS toxoplasmosis. In

mouse models of toxoplasmosis, some controversy existed over whether T. gondii cysts were

intra- or extracellular [51,52], but the earliest reports using electron microscopy (EM) sug-

gested that cysts were within cells, though this work did not identify the specific cell type

[53,54]. Subsequent improvements in EM led to the identification of synapses near cysts, sug-

gesting that cysts persisted within neurons [55]. The finding that cysts are intracellular and pri-

marily within neurons was further supported by additional studies, including 1 that utilized

parasites recently isolated from AIDS patients and a common lab-passaged strain [56,57]. A

recent study utilizing immunofluorescence and confocal microscopy also found that cysts

were primarily associated with antineuronal labeling [58].

The recognition that T. gondii persists primarily in neurons raised the question of why T.

gondii—a parasite that can invade most nucleated cells in vitro [59] and that brings its own

invasion machinery [60]—predominantly persists in neurons. In vitro studies showed that T.

gondii readily infects and encysts in both astrocytes and neurons [61,62], but astrocytes were

capable of using multiple mechanisms to clear intracellular parasites [63–66]. Conversely, neu-

rons were not capable of such clearance [67], a finding in line with other evidence that neurons

lacked full immune-response capabilities [68]. Based upon these studies and the previously

reviewed in vivo work, the working model for T. gondii–CNS host cell interactions was that

after entering the CNS, parasites invaded both astrocytes and neurons. Astrocytes then cleared

the intracellular parasites while neurons could not, leaving neurons as the host cell for persis-

tent infection.

Until recently, this model could not be tested in vivo as there was no way to identify host

cells that had been invaded but cleared the intracellular parasite. The advent of the T. gondii–
Cre system, an in vivo system in which parasites trigger permanent host-cell expression of

green fluorescent protein (GFP) even when the cell is not productively infected, offered a plat-

form to test this model (Fig 2) [69,70].

Studies using this system suggest that (1) T. gondii interacts with far more CNS cells than

previously described, (2) the majority of these interactions do not lead to productive infection,

and (3) throughout CNS infection, T. gondii predominantly and almost exclusively interacts with

neurons [70,71]. These data suggest a new model for T. gondii–CNS host cells, one in which T.

gondii persists in neurons because parasites primarily interact with and invade neurons.

Many outstanding questions remain, which include (1) determining what factors drive the

T. gondii–neuron interaction, (2) if the injected but uninfected neurons arise through aborted

invasion and/or neuron clearance of intracellular parasites, and (3) how uninfected, injected

neurons differ from (or are the same as) infected neurons, especially in terms of neuroana-

tomic localization, gene expression, and electrophysiology.
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Physiological changes and effects during T. gondii infection

Until recently, little work had been done on how T. gondii changes CNS physiology, but in the

last several years, a number of important in vivo studies have begun to address this question. A

major mechanism for affecting CNS physiology would be through changes in neurotransmit-

ters, the molecules that neurons use for interneuronal communication. In vivo measurements

of neurotransmitters have primarily measured global changes within the brain, not cell-spe-

cific changes. The dopaminergic system has been of major interest because dopamine is essen-

tial for locomotor activity (movement) and various forms of learning, including fear [72]. As

such, investigators have sought to implicate the dopaminergic system in infection-induced

behavioral changes [9]. Several studies that directly measured CNS dopamine levels or dopa-

mine metabolites suggest that postinfection, CNS dopamine levels increase [73,74], though

another group was unable to confirm these changes [75]. One explanation for these contradic-

tory findings is that each group used different mouse strains, which can affect the immune

response to T. gondii [76,77]. As immune cells have been shown to make dopamine [78] and

none of the groups determined the cellular source of the measured dopamine or metabolites,

these differences might simply reflect differing levels of immune infiltration into the CNS

rather than changes in the CNS dopaminergic cells or pathways.

Two recent papers have focused on the neuron neurotransmitter–physiology link and col-

lectively found that the infected CNS shows altered excitability. David et al. found that gluta-

mate, the major excitatory neurotransmitter of the CNS, was increased in the CNS of infected

mice secondary to disruption of the normal reuptake of extracellular glutamate by astrocytes

via the glutamate transporter (GLT-1) (Fig 3). They further showed that these changes were

correlated with decreases in neuronal dendritic spine density (an early sign of distressed neu-

rons) as well as depth-electrode electroencephalogram (EEG) changes and that most of these

changes could be reversed with a brief treatment with Ceftriaxone, an antibiotic that increases

GLT-1 levels [79]. Brooks et al. examined the effect of T. gondii infection on γ-aminobutyric

Fig 2. Using the Toxoplasma gondii–Cre system to test 2 models of why T. gondii primarily persists in neurons in vivo. (A)

After entering the CNS, T. gondii should be able to interact with different cells in the brain, including both astrocytes (orange) and

neurons (beige). As the T. gondii–Cre system leads to the expression of a green fluorescent protein (GFP) in host cells injected with T.

gondii protein regardless of infection status, it can help distinguish between 2 likely models for T. gondii persistence in neurons. (B)

Model 1: after infiltration of the CNS, T. gondii interacts with and invades both astrocytes and neurons, causing both cell types to express

GFP (green). Astrocytes clear the intracellular parasite while neurons cannot, leaving neurons as the primary host cell for persistent

infection. (C) Model 2: after infiltration of the CNS, T. gondii almost exclusively interacts with and invades neurons, leading to GFP

expression primarily in neurons. Neurons potentially clear some but not all invading parasites, leaving neurons as the primary host cell

for persistent infection.

https://doi.org/10.1371/journal.ppat.1006351.g002

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006351 July 20, 2017 6 / 12

https://doi.org/10.1371/journal.ppat.1006351.g002
https://doi.org/10.1371/journal.ppat.1006351


acid (GABA), the major inhibitory neurotransmitter in the brain. Within the hippocampus,

they showed that glutamate decarboxylase (GAD), a key enzyme responsible for the conver-

sion of glutamate to GABA and the most common marker for identifying GABAergic neurons,

was mislocalized within neurons in this region, though the absolute levels of GAD were

unchanged compared to uninfected mice. Though the authors did not directly measure GABA

levels, they did use skull EEG recordings to show that infected mice had an increase in sponta-

neous seizures and sensitivity to drug-induced seizures, both of which would be expected con-

sequences of the loss of neuronal inhibition [80]. In addition to effects on neurotransmitters,

infection has been noted to cause physical changes to the CNS. One study that evaluated mice

infected with T. gondii for 8 months found that infected mice had both an increase in the size

of the ventricles, fluid-filled spaces in the center of the brain, as well as some asymmetry of the

brain parenchyma. While both findings could be explained by loss of parenchymal cells in the

brain, histologic studies showed no neuronal loss, axonal injury, or “extensive” demyelination

[11]. However, another study using diffusion tensor imaging, an MRI method used to evaluate

white matter projections (the axons of neurons and the oligodendrocytes that produce the

myelin that ensheaths axons) found mistargeting of discrete neuronal projections in mice

chronically infected for 4–5 months compared to control animals. This study specifically

focused on the somatosensory cortex (SSC), the part of the brain involved in tactile modes of

sensation, as the authors had noted abnormalities in the SSC in full brain evaluations. Follow-

ing up with immunofluorescence and Western blots, the authors observed reductions in den-

dritic arborization, spine number, and essential synaptic proteins, suggesting that the synaptic

connections of the SSC had been disrupted [81]. This latter study suggests that T. gondii infec-

tion causes discrete areas of disruption and neuronal loss, which may be missed with global

surveys rather than focal studies.

Fig 3. Schematic of Toxoplasma gondii effects on glutamate and glutamate decarboxylase. (A) Under normal conditions,

glutamate, an excitatory neurotransmitter, is released into the synaptic cleft from the presynaptic neuron. Glutamate then diffuses

across the synaptic cleft to act on glutamate receptors on the postsynaptic neuron, leading to excitation of the postsynaptic neuron. This

glutamatergic signaling is terminated by uptake and recycling of synaptic glutamate by the glutamate transporter GLT-1 on surrounding

astrocytes. Glutamate uptake by GLT-1 is essential to avoid excessive glutamate signaling, which can lead to postsynaptic excitotoxicity

and neuronal death. After an infection, GLT-1–dependent transport into astrocytes is impaired, allowing for an increase in glutamate

accumulation in the synaptic cleft, which is expected to lead to more excitation of the postsynaptic neuron. (B) Glutamate decarboxylase

(GAD) is primarily found on presynaptic terminals, where it will process glutamate into γ-aminobutyric acid (GABA), the major inhibitory

neurotransmitter in the brain. Once GABA is released into the synaptic cleft, it will bind onto GABA receptors on the postsynaptic neuron,

which decreases the excitability of the postsynaptic neuron. In the case of infection, GAD is redistributed into the cytosol of the

presynaptic neuron, which would be expected to cause improper GABA localization at synapses, leading to decreased inhibition of the

postsynaptic neuron.

https://doi.org/10.1371/journal.ppat.1006351.g003
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In summary, what has become apparent is that the form and physiology of the rodent brain

are affected during both acute and chronic infection. The mechanisms that cause these changes

in CNS physiology may be due to (1) direct parasite interactions via injection of effector pro-

teins or persistence within a host neuron, (2) indirect effects of the CNS immune response to

control the infection, or (3) both. Additionally, as these studies focused on relatively acute

infections, the duration of these changes has yet to be determined. In addition, it remains

unclear how these findings translate to human outcomes, though both congenitally infected

patients and AIDS patients with toxoplasmic encephalitis are known to have seizures [82,83].

Conclusion

In the last decade, important work has been done to better define many molecular and cellular

aspects of the T. gondii–CNS interaction. While these studies leave a number of outstanding

questions as noted above, they form the foundation of an exciting time in the evolution of our

understanding of CNS toxoplasmosis.
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