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Abstract

Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best
quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We
present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616
neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections
were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational
representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible
connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome
graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly
generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the
zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path
length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The
graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was
performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns.
The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of
the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of
information on the zebrafish connectome.
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Introduction

Individually identified neuron connectomes
Studies of individually identifiable neurons have a long history

in neuroscience [1]. One advantage to studying identified neurons

is that ‘the same’ neuron can be studied in different animals,

allowing a rich database of structural and physiological informa-

tion about a neuron to be compiled. Identified neurons have been

useful for studying neural circuit structure at the cellular level,

where the goal is a precise map of all of the synaptic interactions

among neurons in a functional circuit [2]. This approach has

proven feasible in invertebrate models, such as Drosophila [3] and

C. elegans [4], with many identifiable neurons. However, the size

of such datasets, even for relatively simple circuits, poses challenges

for interpreting connectome data. Thus, computational represen-

tations of connectomes are necessary for meaningful analysis.

Graph theory is an increasingly popular computational framework

for analyzing connectome data. Graph analysis can be applied to

neural circuits at different spatial levels, including identified

neuron networks.

We used graph analysis to study a sensorimotor neural pathway

in the zebrafish larvae that is largely comprised of individually

identifiable neurons (Figure 1). The pathway arises from the

posterior lateral line (PLL), a sensory system present in most fish

that consists of mechanosensory hair cell clusters (neuromasts) that

are distributed on the body surface. Lateral line neuromasts detect

water current and are important for many behaviors in fish,

including schooling, detection of prey and predators, object

localization, and rheotaxis [5–7]. Ascending sensory neurons carry

PLL signals to the hindbrain, a major sensorimotor integration

area. Hindbrain neurons that descend to the spinal cord relay

processed PLL signals to spinal motor networks, and the pathway

ends with spinal motor neuron output to muscles. This pathway

underlies the ability of fish to make adaptive locomotor responses

to PLL stimulation.

There have been numerous studies of the PLL in zebrafish and

of downstream sensory and motor neurons involved in PLL-

mediated behaviors. Many of these neurons are individually

identifiable in larvae, a feature that distinguishes this connectome

from other vertebrate connectome models. Posterior lateral line

hair cells and corresponding sensory neurons are identifiable by

their location on the skin surface [6,7]. Descending neurons in the

brain, which number approximately 300, are identified by their

somatic and dendritic morphologies and positions within hind-

brain rhombomeres [8,9]. Spinal cord neurons, of which there are

at least 10 types, are identifiable by their morphologies and the

spinal segments in which they reside [10–12]. The same studies

have also shown that these neurons have highly consistent
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anatomical and physiological properties across individual animals,

which is essential for investigating general principles of the

connectome’s structure.

Graph analysis of neural connectomes
Graph theory has been successfully applied to the problem of

analyzing connectomes [13–15]. All networked systems have a

topology, and graph theory provides tools to analyze network

topologies to understand how they constrain network functions.

Graph representations of neural connectomes are comprised of

nodes (vertices), representing individual neurons or brain areas,

and connections (edges) that link nodes. The structure of a graph

can be described with mathematical metrics that reflect functional

properties of the connectome. Although many metrics can be

defined and computed, the current analysis focuses on two

functional network properties, 1. efficiency of signal propagation

through the network, and 2. resilience of signal propagation to

localized network injury. These properties were assessed by

comparing the graph analytic metrics from the zebrafish network

to those of ‘test networks’ with known structural and functional

properties. This initial analysis determined whether the properties

of the zebrafish PLL graph fell within expected ranges on

computational and biological parameters.

‘Small-worldness’ is the graph metric that was used to assess the

efficiency of signal propagation in the modeled pathway. The term

‘small-world’ network was coined by Watts and Strogatz [16] and

has been since recognized as an important emergent property of a

wide range of complex networks. Small-worldness is based on two

structural features of a graph, the clustering coefficient and

average path length. Clustering occurs when ‘neighbor’ nodes that

are connected to a particular target node are also likely to be

connected to each other. Average path length refers to the mean

number of edges that must be traversed to travel between any two

randomly selected nodes on the graph. Small-worldness occurs

when, in sparsely connected networks, clustering is high and the

Figure 1. The posterior lateral line (PLL) sensorimotor pathway in zebrafish larvae. A. Schematic representation of a 6 day old zebrafish
larva (dorsal view) showing, in different colors, all of the neuron types included in the model pathway, and the effective stimulus for hair cell
activation (water current). Neuron types are labeled to the right of the schematic. B. Photomicrographs showing individually identifiable neurons
within the PLL sensorimotor pathway. Top: Descending neurons in the hindbrain of a 6 day old zebrafish larva after injection labeling with a
fluorescent tracer. The Mauthner neurons (M), Mauthner segmental homologs (Mid2, MiD3), and other identifiable descending neurons can be seen.
The image is a maximum projection of 22 optical sections taken at 3 mm intervals through the dorsal-ventral axis of the hindbrain. Anterior is up and
the yellow line shows the approximate midline. Middle: Spinal neurons imaged in a 7 day old larva prepared as described for A. The image is a
maximum projection of 10 optical sections taken at 2 mm intervals through the rostral spinal cord at approximately the level of the 8th myotome. The
dashed white lines trace the spinal cord’s boundaries, and the yellow arrow is drawn along the bundle of descending axons running down the ventral
spinal cord. Bottom: A PLL neuromast. This neuromast was imaged in a single optical section in a 6 day old Brn3c:eGFP transgenic larva, in which all
lateral line neuromasts express GFP. Individual hairs (cilia) can be seen extending toward the top of the image. Sensory neurons (not shown) contact
the hair cell bodies, which can be seen at the bottom of the image. Scale bars = 20 mm.
doi:10.1371/journal.pone.0037292.g001

Graph Analysis of a Zebrafish Neural Connectome
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average path length between nodes is short (Figure 2). Small-

worldness has been demonstrated for neural networks in the cat

hindbrain [17] and in several cortical networks [18,19]. Small-

world organization in neural systems allows incoming signals to be

processed in areas of high local clustering and output to be sent

efficiently (with few steps) to downstream circuits or effectors

[16,20].

Resilience to localized network injury was assessed in two ways.

First, the degree distribution of the zebrafish connectome was

compared to that of ‘scale-free’ test graphs. Degree distribution is a

probability distribution function that gives the likelihood that an

arbitrary node has a given number of connections (Figure 2).

While random networks have a Gaussian degree distribution,

indicating that most nodes have an average number of connec-

tions, scale-free graphs have an exponential (or ‘‘power-law’’)

degree distribution with a few very highly connected nodes and

many more sparsely connected nodes. Scale-free networks have

been shown to be resilient to random attack as compared to

random networks, but more vulnerable to targeted attack on

highly connected ‘hub’ nodes [21].

The second method for assessing resilience to attack was to

delete nodes in the graph and to examine the effects on graph

metrics. Specific nodes were targeted for deletion, corresponding

to identified zebrafish neurons involved in fast escape behaviors.

The extent to which node deletions disrupted signal propagation

through the pathway was determined by analyzing paths lengths

between neuromasts to spinal motor neurons. Paths of length 3 are

the most direct connections possible between neuromasts and

motor neurons in the model and represented the fastest

sensorimotor responses. Only paths of length 3 and 4 were

analyzed because short paths were considered most relevant to the

fast escape responses being modeled.

Methods

Ethics Statement
All studies involving zebrafish larvae were done in accordance

with an approved protocol issued by the Humboldt State

University animal care and use committee to Dr. Ethan Gahtan

(protocol number 08/09.P.45.A)

Biological basis of the of the zebrafish sensorimotor
pathway model

Most of the information about zebrafish neurobiology that was

used in the model was gleaned from published scientific research

(Table 1). In addition, neuromasts, hindbrain neurons, and spinal

neurons were imaged in larval zebrafish to illustrate structures

and, in the case of neuromasts, to perform cell counts (Figure S1).

Confident estimates could be made of the types of cells involved

in the pathway and the numbers of each type in ,6 day old

zebrafish larvae (Figure 3). In total there were 2,616 model

neurons and 167,114 connections. Many specific connections

among these neurons have also been described and were

incorporated into the model, but most connections were assigned

Figure 2. Properties of random and small-world graphs. Random, small-world and scale-free networks containing 20 nodes and 73
connections were generated by computer algorithms. The number of nodes and connections were chosen to be small to highlight differences
between graphs. A. A structural representation of each graph. The nodes are arranged in a ring and connections are lines drawn between the nodes.
The sparser appearance of the small-world graph occurs because most connections are between nearest neighbors along the perimeter of the ring,
whereas in the random graph, short and long distance connections are equally probable. The scale-free graph has a hub in the upper right portion of
the graph. B. Degree distribution. In random graphs, degrees are roughly normally distributed. In the small-world network, the degree distribution
has a smaller standard deviation relative to random graphs because most nodes have a similar connectivity pattern. The scale-free graph has a
‘‘power-law’’ (approximately exponential) degree distribution. C. Adjacency matrices. Both axes show node number, and connections are represented
as dots in the matrix. There is a uniform distribution of connections in the random graph. The thick diagonal band in the small-world distribution
results from the high frequency of connections between nodes in neighboring positions on the ring. The thick horizontal and vertical bands in the
adjacency matrix for the scale-free network correspond to hubs. D. Description of connectivity patterns.
doi:10.1371/journal.pone.0037292.g002
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according to stochastic rules. The zebrafish network consisted of

three primary compartments– sensory, brain, and spinal cord–

and connections within and between compartments (Figure 3).

This division reflects the general organization of vertebrate

sensorimotor reflex pathways. Each compartment in the model

contains two types of interconnected nodes, modeling relevant

features of the neurobiology. Table 1 presents the connection rules

that guided construction of the model, along with citations for

specific rules.

Sensory compartment
Two types of sensory nodes were included: neuromasts, which

are the sensory transducers, and primary sensory neurons, which

relay signals from neuromasts to the brain. PLL neuromasts occur

in two stripes along the side of the fish’s body. There are

approximately 8 PLL neuromasts per side in a 6 day old zebrafish

larva [22] (Figure S1). Each neuromast is composed of 8 hair cells,

half of which respond best to water flow in the anterior direction

and half to water flow in the posterior direction [7,23]. The model

does not represent individual hair cells. Instead, each neuromast is

represented by two nodes (simply called ‘neuromasts’ in the model)

to account for the two sets of directionally tuned hair cells, and as a

result the model contains double the number of PLL neuromasts

usually found in a 6 day old larva. Usually, two sensory neurons

contact each neuromast [19]. In total, the model contained 30

neuromasts and 40 sensory neurons. Sensory neurons relayed

signals from neuromasts to the ipsilateral hindbrain, with different

sensory neurons having outputs targeted to different hindbrain

segments.

Brain compartment
Neurons in the hindbrain form sensorimotor processing circuits

that receive sensory signals and transform them into motor signals.

Nearly all sensory systems connect to the hindbrain in zebrafish,

and hindbrain circuits mediate many types of sensorimotor

reflexes that allow the fish to interact adaptively with its

environment [24]. The hindbrain is organized into 7 distinct

segments (called rhombomeres) distinguished by gene expression

patterns and by the morphological and physiological properties of

the neurons they contain [25]. Hindbrain segments in zebrafish

are named according to their position along the rostral-caudal

axis, with Ro1-Ro3 corresponding to the rostral 3 segments, Mi1-

Mi3 to the 3 middle segments, and Ca1 to the caudal-most

segment [26]. The model hindbrain was also divided into 7

segments. This was an important feature because several

connection rules favored connections between adjacent segments

(see Table 1).

Table 1. Rules governing distribution of connections in the zebrafish model network.

Connection from Connection to Rules

Sensory Sensory A. 35 neuromast-to-sensory neuron connections per side [19]. B. Ipsilateral connections only [7]. C. Each neuromast
connects to at least one sensory cell [22]. D. Each sensory cell connects to at most 5 (adjacent) neuromasts. E. Number
of neuromasts a sensory neuron connects to is distributed exponentially [19]. F. Total of 70 connections.

Sensory Brain A. Each sensory neuron connects to 25 brain neurons; All connections are ipsilateral [22]. B. Sensory neurons only
project to neighboring brain segments. C. Sensory projections are somatotopic such that more caudal neuromasts
connect (via sensory neurons) to more caudal brain segments [7,54]. D. Most caudal and rostral neuromasts each
connect to two brain segments, with 80% of connections to the most caudal and rostral brain segment, respectively.
E. Mid-body neuromasts connect to three brain segments each, with the most connections (40%) to the middle brain
segment. F. Mauthner neuron has direct connections from the PLL [55]. G. Total of 999 connections

Brain Brain A. Hindbrain neurons are arranged in 7 segments [56]. B. Connections between brain interneurons in same or
adjacent segment only. C. Descending neurons with dendrites in another hindbrain segment [8] receive connections
from that segment via a brain interneuron. D. Brain interneurons make ascending and descending connections in
adjacent segments on both sides of the brain, or have more restricted connections [24]. E. Descending neurons
receive more of their connections from interneurons within their own hindbrain segment (75% in the model) [57]. F.
Descending neurons CRN, MiT, RoM2M, RoM2L, RoM3 connect to other descending neurons with 1,750 connections
(,1% of total) [8,54]. G. Total of 1,750 descending-descending neuron connections, 32,535 descending-interneuron
connections, and 35,700 interneuron-interneuron connections.

Brain Motor A. Each descending neuron makes 10 connections per spinal hemisegment in all hemisegments its axon reaches. B.
Mauthner series cells descend to the caudal most spinal segment and connect to motor neurons in each segment
[58] with a 99.6% probability in the model. C. Total of 34,800 connections (18,045 descending-spinal interneuron
connections and 16,755 descending-spinal motor neurons connections). D. Length (number of segments) and
direction (ipsilateral, contralateral, or bilateral) of descending axon projections were assigned as follows [25,54]: CRN,
CC, and IC all descend 5 segments; RoR1, RoL2; RoL2c, and MiD2i descend 8 segments; MeM, MeM1, MeL, MeLr-m,
MeLc, RoM1r, RoL1, Vestibulospinal descend 13 segments; RoM1c, RoM2m, RoL2r, RoV3, RoL3, MiD2cm, Mid3cm-cl,
MiD3i, MiT descend 18 segments; RoM2l, RoM3m-l, Mauthner, MiM1, MiV1, MiR1, MiR2, MiV2, MiD2cl, CaD, CaV
descend 25 segments; Mauthner, MiD2c, MiD3cm, MiD3cl, CaD, CRN made contralateral connections; 84.8% of
descending neurons connect to ipsilateral cord.

Motor Motor A. Each spinal hemisegment had 14 interneurons [11]. B. Each spinal hemisegment has 3 primary and 10 secondary
motor neurons [10]. C. 25% of a spinal interneuron’s connections are within its own segment. D. Spinal interneurons
have a 29.2% probability of connecting to other spinal interneurons, and a 72.8% probability of connecting to motor
neurons. E. Spinal motor neurons were not connected to other neurons. F. Total of 61,244 connections (17,892 spinal
interneuron-spinal interneurons connections and 43,352 spinal interneuron-spinal motor neuron connections). G.
There were 8 types of spinal interneurons. Their names, numbers (per hemisegments), and properties were as follows
[11]: CoPA, 1, ascends contralaterally to segment 1; CoSA, 2, ascends contrallaterally10 segments; CoLA, 1, ascends
contrallaterally 5 segments; CiD, 2, descends ipsilaterally 13 segments; MCoD, 2, descends contrallaterally13
segments; UCoD, 2, descends contrallaterally 14 segments; VeMe, 2, descends Ipsilaterally 9 segments; CoBL, 2,
ascends and descends contralaterally 4 segments

Rules not associated with citation numbers were estimations made by the authors. The number of each type of neuron and connection in the model is given in Figure 3.
doi:10.1371/journal.pone.0037292.t001
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Descending neurons are one distinct group of hindbrain

neurons. They project long axons into the spinal cord (and, in

some cases, also into the brain) and they form the main pathway

linking the brain to the spinal cord (Figure 1). Descending neurons

have been studied extensively in larval zebrafish. Most are

individually identifiable and have been assigned unique names

based on their morphologies, positions within the hindbrain, and

axonal projection patterns [8]. This naming system has been

preserved in the model. The model included 145 descending

neurons per side (290 total), which is consistent with previous

studies in larval zebrafish [8,27]. When information was available

about the synaptic connections of individual descending neurons,

we incorporated that into the model. This included features such

as the length and direction of axon projections (Table 1). The

Mauthner neuron is a large descending neuron present in

zebrafish and in other fish and amphibian species. The Mauthner

neuron, along with its two segmental homologs (together, the

‘Mauthner series’) control fast escape turns. Information about the

synaptic connectivity of Mauthner series neurons was included in

the model, and information about their function in escapes

Figure 3. Graph structures, showing the numbers of nodes and connections. The outer squares represent processing compartments. Nodes
are shown as rectangles within processing compartments, and node numbers are shown along the borders of those rectangles.Connections (edges)
are shown as arrows, and connection numbers are shown near the respective arrows. The total number of nodes and connections is the same for all
graphs. A. The zebrafish connectome graph model. This schematic does not show the many individual cell-to-cell connection rules that further
distinguished the zebrafish graph. Left and right sides of the nervous system are shown together here to aid visualization, but in the actual graph
they were distinct, and some connections were ipsilateral and others contralateral (see Table 1). B. Adjacency matrix for the zebrafish graph.
Connections are from nodes in rows to nodes in columns. I = neuromasts and sensory neurons, II = descending neurons, III = brain interneurons,
IV = spinal motor neurons, V = spinal interneurons. Spinal motor neuron nodes made no connections to other nodes so are not shown in the matrix. C.
Structured random graph model. This test graph was the most similar to the zebrafish graph but did not have bilaterality or distinct node categories
in brain or motor compartments. All permitted connections in this model were assigned randomly. D. The random graph. Any connection was
permitted and all connections were assigned randomly.
doi:10.1371/journal.pone.0037292.g003

Table 2. Small-world index, Clustering Coefficient, and path length averaged across 100 instantiations for each graph model.

Graph Type Small-world index Clustering Coefficient Characteristic Path Length

zebrafish PLL connectome 4.13 0.1323 2.8643

small-world 19.83 0.6141 2.7658

structured random 1.66 0.0399 2.1530

Random 1.00 0.0244 2.1796

doi:10.1371/journal.pone.0037292.t002
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motivated a ‘simulated lesion’ in which the Mauthner series nodes

were deleted from the model.

There are also many local interneurons contained within the

hindbrain which form connections with sensory and descending

neurons. Interneuron density was estimated by counting hindbrain

cell nuclei in digital images of methylene blue stained brain

sections of 120 hour old zebrafish larvae. The images were

downloaded from an online zebrafish anatomy atlas (available at

www.zfin.org) and are of sufficient quality and resolution (.5

megapixels) to unambiguously count cell nuclei. Cell densities

were sampled from three, 50 mm2 areas of each image within the

brain region where descending neurons occur (a narrow band

running the length of the hindbrain and into the midbrain). The

three sampled areas were selected by visual inspection to be areas

of high, low, and intermediate density of cell nuclei, and all stained

nuclei within each section were counted. Average density across

samples was scaled up to account for the full area of the

sensorimotor hindbrain, yielding an estimate of 19,500 interneu-

rons (Figure S2). This number did not account for areas of

neuropil in the hindbrain or nuclei from non-neuronal cells.

Moreover, even among hindbrain interneurons, only a subset

would be expected to contribute to PLL processing. We ultimately

included 906 interneurons, assigning 3 interneurons to each

descending neuron, and an additional 36 interneurons in

hindbrain regions in the model where no descending neurons

occurred. A range of morphological types of hindbrain interneu-

rons have been found, including neurons with both ascending and

descending axons to both sides of the hindbrain, and others with

more restricted projection patterns [24]. All of these reported

projection patterns were included in the model.

Spinal cord compartment
The vertebrate spinal cord contains complex motor networks,

controlled by descending signals from the brain, that generate

precise motor outputs to muscles. In fish, a basic motor circuit,

consisting of motor neurons and interneurons, repeats in each

segment of the spinal cord. There are ,25 spinal segments in

zebrafish larvae, each with symmetrical left and right sides

(hemisegments). There are at least 10 distinct types of neurons

present in each spinal cord segment in larvae, including 2 types of

motor neurons (primary and secondary) and 8 types of interneu-

rons [11]. The model included all of these neuron types in the

numbers they occur in zebrafish larvae and also incorporated

known differences in their axonal projection patterns.

Following the rules summarized in Table 1, 100 instantiations of

the connectome graph were created. In these graphs, large scale

connection patterns remained the same, though all individual

connections were stochastically generated. The adjacency matrix

for each graph was stored, and subsequent analyses were done on

these 100 instantiations of the connectome.

Test networks
In addition to the zebrafish model network, we generated 3

types of test networks: 1. Structured random, 2. Random, and 3.

Small-world (Figures 2 and 3). The zebrafish network was

compared to these test networks to assess how the biologically-

based connectivity patterns affected graph properties. To isolate

the effects of connectivity, all of the test networks were given the

same number of nodes and edges and differed only in how

connections were distributed. One-hundred instantiations of each

test network were created and stored for analysis.

The small-world network was generated using a standard,

published algorithm [16]. In the small-word network, 94% of

connections were to nearest neighbors, with 6% randomly

assigned. The structured random network, coded by the authors,

maintained the same 3-compartment organization as the biolog-

ical model, and the same number of connections between

compartments. All specific connections in the structured random

model were assigned randomly. Existing Matlab codes were used

to generate the random network [28]. In the random network,

connections between nodes were assigned according to a uniform,

random distribution and there was no compartmental structure to

the network.

Definitions of graph theoretical measures
The Brain Connectivity Toolbox for Matlab was used to

compute graph metrics [28]. We used the average across all 100

instantiations to compare the different networks on each of the

graph metrics. The method for computing graph metrics is

described in detail by Sporns et al. (2011) [28]. Degree distribution

is defined as the probability P(k) associated with the graph that

gives the likelihood that a randomly selected node has degree k.

Small-worldness (S) was computed according to the method

described by Walsh (1999), specifically, S = c/l, where c is the

ratio of the clustering coefficient of the target graph to the

clustering coefficient of a random graph of the same size, and l
equals the ratio of the average path length of the target graph to

the average path length of a random graph of the same size [29].

Path lengths were calculated using a function in the Brain

Connectivity Toolbox. This function allows nodes and path

lengths of interest to be selected, and the software returns the

number of all distinct paths of the given length between nodes.

Only paths of length 3 and 4, emanating from neuromasts and

leading to motor neurons, were examined.

A modularity analysis was performed on anatomically-con-

strained graphs using a community detection algorithm within the

Brain Connectivity Toolbox [28]. The community vector C

identifies groups of nodes (modules) that are more strongly

connected to each other than to nodes outside the group. As an

additional criterion, a node had to belong to the same module

across all 100 instantiations of the graph (by finding the

intersection of the modules) or was dropped from the module.

Only the descending modules are shown, but these modules are

strongly influenced by sensory inputs and spinal outputs shared by

descending neurons. To measure the participation of nodes from

the sensory, brain and spinal compartments, the average number

of each type of node within modules, across all instantiations of the

graph, was calculated.

Results

Our connectome model of the PLL sensorimotor pathway in

zebrafish larvae consisted of 2,616 model neurons with 167,114

connections. The total connection density was 2.45% of all

possible connections. Four properties of the zebrafish graph were

analyzed: small-worldness, scale-freeness, modularity, and the

effects of targeted node deletion on path length frequency.

Small-worldness
Table 2 shows the small-world index for each graph type

analyzed. The zebrafish graph had an average small-world index,

across 100 instantiations of the graph, of 4.1360.01, significantly

higher than the structured random network (p,.001) or the

random network (p,.001). A graph that was designed to

maximize small-worldness, with the same number of nodes and

connection density, had a small-world index of 19.8360.06.

Graph Analysis of a Zebrafish Neural Connectome
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Scale-freeness
The property of scale-freeness is defined to be a degree

distribution in which the degrees have a power-law distribution.

Graphs with a degree distribution best fit by a power law

distribution are called scale-free. There was a wider range of

degrees in the zebrafish graph than in any of the test graphs

(Figure 4A). Most nodes (,80%) had a degree between 75 and

150, but the zebrafish graph had nodes with much higher degrees

(.400) than in any of the test networks. There was also a peak at

,25 degrees, primarily due to the presence of 40 sensory cells that

made relatively few connections each. Among the test graphs, the

structured random model was most similar to the zebrafish

network, but it still lacked nodes with as many degrees as the

zebrafish graph. Average number of degrees for nodes in the

small-world network was approximately 130, with relatively low

variability (128.7665.44) around this peak. Akaike’s Information

Criterion (AIC) was used to examine the relative fit of various

models to the degree distribution of the zebrafish graph. The

relative goodness of fit for these model distributions, from best to

worst, was as follows: Negative binomial, Gamma, Weibull,

Normal, Exponential, Geometric, Power-law, Poisson. Although

there was a large range of degrees in the zebrafish graph, the

Power-law distribution was one of the worst fit distributions (DAIC

essentially zero), so the network was not scale-free (Figure 4B).

Table 3 shows degree distribution among identified descending

neuron types in the model, placed into three broad categories.

Several types of descending neurons have a very large number of

connections (.200), with a maximum of approximately 400.

These very high-degree nodes include cranial relay neurons (also

called T-cells; Table 2; Figure S3), IC, CC and RoM1 cells.

Modularity Analysis
The average number of modules identified across 100

instantiation of the network was 6.3862.46. Three distinct

modules were identified among descending nodes after intersecting

modules across all instantiations of the network. These 3 modules

roughly align with rostral, middle, and caudal sections of the

hindbrain (Figure 5A). Very few sensory and spinal nodes

belonged to the intersection because different nodes were included

in each instantiation. The average number of nodes, without

intersecting modules, was 483.66614.34 in the rostral group,

894.6667.73 in the middle group and 503.6563.72 in the caudal

group. Sensory nodes contributed equally to each module, but the

proportions of brain and spinal nodes varied across the modules

(Figure 5B). Modularity among descending nodes was primarily

determined by the shared sensory inputs and spinal outputs

contained within each module.

Targeted node deletions
Deleting specific nodes from the graph altered the number of

short paths of length 3 or 4 connecting neuromasts and motor

neurons. The intact model had an average of 70.8060.37 paths of

length 3, and 6,534.60625.50 paths of length 4, between

neuromasts and spinal segments. The number of shortest paths

(paths of length 3) between neuromasts and rostral spinal segments

was greatest for rostral and caudal neuromasts as compared to

mid-body neuromasts. In contrast, the number of shortest paths

between neuromasts and caudal spinal segments was greatest for

mid-body neuromasts (Figure 6).

The number of paths of length 3 were different for neuromasts

at different locations along the body, but trend was attenuated for

paths of length 4 (Figure 6). There is also a qualitative difference in

the connectivity patterns of these different path lengths. For paths

originating at mid-body neuromasts (5–10), the number of paths of

length 3 consistently decreases from rostral to caudal spinal

segments. In contrast, for paths of length 4, there is a peak at about

the 5th spinal segment. This means that although the number of

shortest-length (3-step) connections decreases for more caudal

parts of the spinal cord, this isn’t necessarily the case for more

indirect paths.

Deleting the Mauthner series reduced the number of paths of

length 3 and 4 between neuromasts and spinal motor neurons

(Figure 7). In the deleted model, the average number of paths was

65.0860.36 and 6,048.16623.90 for paths of length 3 and 4,

respectively, which is a reduction of 8.08% and 7.44%. Therefore,

shorter paths were somewhat more vulnerable to the effects of

Mauthner series deletion. The loss was not even across somato-

topic locations and was different between the two path lengths at

different locations. For both path lengths, paths originating at mid-

body neuromasts were most affected. This can be explained by the

fact that mid-body neuromasts were more likely to make

connections to middle hindbrain segments, where the Mauthner

series neurons were located. When considering paths of length 3,

paths ending in rostral spinal cord were more affected than paths

ending in middle or caudal spinal cord, but that trend was not

present when considering paths of length 4, which decreased more

evenly along the spinal cord.

A control deletion experiment was done in which an equal

number of nodes was selected randomly for deletion from within

the same hindbrain segments occupied by the Mauthner series.

The selected nodes were a vestibulospinal, an MiV2, and an

MiD3cl node. Each was deleted bilaterally. One-hundred instan-

tiations of the random deletion network were analyzed as

described for the Mauthner series deletion. Random deletions

resulted in a 6.25% reduction in the number of 3-step paths and a

5.57% reduction in 4-step paths between neuromasts and motor

neurons relative to the intact model. This was a significantly

smaller effect on path length reduction than resulted from

Mauthner series deletion for both 3-step (t(99) = 14.90, p,0.001)

and 4-step (t(99) = 20.37, p,0.001) paths.

Discussion

We created a cellular-level connectome model of a sensorimotor

pathway in larval zebrafish based on known cell types and patterns

of synaptic connections. In zebrafish, these interconnected neurons

occur in consistent numbers, locations, and with stereotypical

connection patterns in virtually all individuals, and form a

directional pathway from sensory receptors to motor effectors.

Such identifiable neurons are rare in vertebrates, and to the

authors’ knowledge, this constitutes the largest and most complete

identified neuron connectome model described in any vertebrate.

The model included information from 15 published studies that

focused on separate components of the pathway in zebrafish and

included 45 connection rules (Table 1). Most specific connections

are still uncharacterized, so the model set these connections

stochastically.

We characterized the connectivity of this neural pathway using

graph theory, which provides computational strategies for

expressing patterns in complex networks. Several recent studies

have used graph theory to analyze connectomes at larger spatial

scales [17,18,30] and the same basic strategies were adapted to

analyze this cellular-level connectome. The main findings were

that the network has sparse overall connectivity, a broad

distribution of degrees (connections per node), and a small-world

structure. These properties resulted from the biologically-based

connectivity in the zebrafish model because they were not shared

by test graphs that were similar but that lacked biological detail.

Graph Analysis of a Zebrafish Neural Connectome
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Figure 4. Degree distribution. Degree distribution depicts the probability of nodes with a given degree occurring in the graph. The zebrafish
model and 3 test models had the same overall connection density but a different distribution of connections, as indicated in the chart. The zebrafish
model had the broadest range of degrees.
doi:10.1371/journal.pone.0037292.g004

Table 3. Distribution of degrees among identified descending neuron types in the zebrafish model.

Degree.200 75,Degree,150 Degree,50

Model identified neuron T-cells, IC, CC, RoM1 MeL, MeLR, MeLM, MeLC, MeM,
MeM1, RoR1, vestibular spinal,
Mauther, MiR1, MiR2

RoL1, RoM1R,RoL2, RoL2, RoL2R, RoL2C, RoM2L, RoM2M, RoM3M,
RoM3L, RoV3, MiM1, MiV1, Mid2CM, Mid2CL, MiT, Mid21, MiV2, Cad,
Cav

Number of nodes 102 92 96

doi:10.1371/journal.pone.0037292.t003
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Two other variants of the network that preserved the same

biologically-based connections but altered stochastic connection

rules yielded very similar results to the connectome model

presented here, supporting the conclusions that the biologically-

based connectivity was the main determinant of the network’s

graph properties (File S1).

The zebrafish connectome had a connection density of 2.45%.

This connection density results from the biological detail

incorporated in the graph. Connection density can vary greatly

in neural systems, ranging from 0.1% in sparsely connected

networks, to 40% in more densely connected cortical areas [31],

but connection densities higher than this have not been reported.

In small-world networks overall connection density must be well

below100%, because the requirement for high local clustering

implies areas of relatively sparse connectivity.

Small-world networks simultaneously maximize high degree of

local clustering and short average paths in a network. There are

various ways to compute small-worldness, however, by one

proposed standard [32], the zebrafish connectome graph had a

clear small-world structure. The zebrafish graph included highly

interconnected local circuits and direct paths connecting those

circuits. For example, the model Mauthner neuron mediated two-

step connections between many sensory and spinal nodes. The

much lower small-world index of the structured random and

random graphs reflects the absence of such specialized nodes. The

small-world value for the zebrafish model is consistent with small-

worldness reported in other neural systems, including monkey

cortex [33,34], mammalian reticular formation [17], and C.

elegans nervous system [34]. In C. elegans, nearly every neurons is

identifiable, and small-worldness in this network was also

attributable to specific ‘hub’ neurons with above-average number

of degrees [35].

Small-world organizations have been observed in other neural

connectomes [17,18] and in non-biological networks such as the

internet and social networks, but not in random networks [16].

Several advantages of small-world organization (as compared to

random networks) have been demonstrated, including greater

stability [36] and more efficient signal propagation [37,16]. Small-

world networks also synchronize to phase oscillator input more

readily [16], a property that is relevant to many neural systems.

Neural connectivity shows small-worldness across different spatial

levels, from connections among individual neurons [35,38] to

connections among entire neocortical regions [33,39]. Our results

add to the evidence that small-worldness is a general principle of

Figure 5. Network modularity. Modules of high interconnectivity were identified using a community detection algorithm. A. A schematic of the
zebrafish descending neuron population showing the 3 modules detected in separate colors. Only nodes that placed in the same module across all
100 instantiations of the network were included. Distinct rostral (green), middle (red), and caudal (blue) groups are apparent. Major segments of the
hindbrain are labeled for anatomical reference, as are the midbrain nMLF, Mauthner neurons (M), and vestibulospinal neurons. B. The average
number of nodes in each brain module (rostral, middle, caudal) across 100 instantiations of the network is shown by the height of the bars. The
number of sensory, brain, and spinal nodes within each module is shown by the shading. Nodes in each module largely share afferent and efferent
connectivity.
doi:10.1371/journal.pone.0037292.g005
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neural circuits. The property of small-worldness itself may not

distinguish a circuit’s information processing functions or capabil-

ities. Examining small-worldness and its factors (clustering

coefficient and average path length) within different areas of a

network, however, has been linked to functional differences

between elements of the network [4,35].

There was a wide range of degrees in the zebrafish connectome

model, and this structural diversity in nodes presumably relates to

functional differences among neurons. Nodes with low-degrees,

such as neuromasts, likely have simpler functions while highly

connected nodes play more complex roles in information

processing. There was also a .10 fold range in degrees among

the descending neuron group, reflecting large diversity within this

population in how different nodes contribute to overall connec-

tivity.

Although much recent research has examined the degree

distribution of neural networks [40,41] it is unclear whether all

neural systems can be described with the same degree distribution.

There is evidence that on a larger scale (if individual neurons are

not considered), or for functionally-defined networks, brain

connectivity patterns can be considered scale-free [42–44].

Researchers have failed to show scale-free architecture in neural

network structure [17,38], although in some cases, [45] a

truncated power-law for degree distribution was found. Despite

the lack of clear consensus on whether neural networks are

consistently organized in a scale-free manner, computing the

degree distribution can provide important information about the

existence of hubs, implying subsets of nodes with specialized

functions related to their atypical connectivity patterns. It is

important to note that although some graphs are both small-world

and scale-free, these two measures are independent of each other

and contribute separate information about the properties of a

connectome.

The high degree of clustering within the zebrafish model

suggested the presence of distinct subgroups of nodes, particularly

within the descending node population (Table 3). A modularity

Figure 6. Path lengths between neuromasts and spinal motor
neurons. Number of paths of length 3 (A) or 4 (B) between each
neuromast and motor neurons in each spinal segment for the zebrafish
model. Each point on the graph represents the number of distinct paths
connecting a given neuromast and spinal segment. Two paths are
considered distinct if they have at least one edge that is not shared.
Larval zebrafish silhouettes at the bottom show the orientation of axes
where neuromast and spinal segment numbers are plotted, with higher
number corresponding to more caudal locations (also applies to
Figure 7).
doi:10.1371/journal.pone.0037292.g006

Figure 7. Mauthner series deletion. The effect of deleting the 6
model Mauthner series neurons (3 on each side) on path lengths
between neuromasts and spinal motor neurons was examined
separately for paths of length 3 (A) and length 4 (B). As in Figure 6,
higher numbers on the two bottom axes represent more caudal
positions on the larva’s body.
doi:10.1371/journal.pone.0037292.g007
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analysis revealed three subgroups (modules) of descending nodes.

These modules arose mainly because the descending nodes within

them shared sensory inputs and spinal outputs nodes, not because

of direct connections among descending nodes, which accounted

for only about 1% of all network connections (Figure 5). While

separate modules imply distinct functions for each, no obvious

functional distinctions are apparent. The rostral module contains

most of the midbrain nMLF and RoM1 nodes, which respond to

mechanosensory and visual stimuli [46,47]. The middle module

contains the Mauthner neuron and other escape-related neurons

[27] but omits one of the Mauthner series neurons (MiD3cl).

Rostral and middle modules each contain diverse morphological

types, with widely varying axonal and dendritic morphologies [48]

and multiple neurotransmitter phenotypes [24], and there is

insufficient information to clearly interpret their grouping by this

modularity analysis. The caudal module is comprised of a single

anatomical type (cranial relay neurons or t-cells) and is likely to

reflect a functional grouping, but the function of these neurons has

not been elucidated. An expanded connectome model with other

sensory systems projecting to descending nodes and more

biological detail would yield different modules and perhaps

generate functional hypothesis for biological investigations.

Lesion experiments in neuroscience can provide the best

evidence that a certain neural structure performs a certain

function. Extremely precise nervous system lesions have been

done in zebrafish larvae by focusing a laser on single, identified

neurons. Laser ablation of the Mauthner series neurons was shown

to increase the latency of escape turns in zebrafish larvae [49].

Presented with an escape eliciting water current stimulus, intact

larvae initiated turns in ,4 ms, but when the Mauthner series is

ablated on one side of the brain, latency of escape turns to the

opposite side increases to .30 ms. An analogous ablation was

performed on the connectome model. Path length from neuro-

masts to motor neurons served as a proxy for escape latency, with

shorter paths equated with faster responses. We only analyzed

short paths, with 3 or 4 connections, as paths with greater lengths

are less likely to contribute to information processing [31].The

Mauthner cell itself is known to mediate 3-step paths between

neuromasts and spinal motor neurons in zebrafish larvae, and is

alone responsible for the highest speed escape responses to water

pulse stimuli directed at the tail [49]. The short latency of

behavioral responses to water-current in larvae (,4 ms) is also

consistent with a synaptic path length of 3–4.

We found that path lengths differed depending on where along

the body the path originated or ended. This somatotopic

organization occurred because brain nodes that received input

from different neuromasts had different connectivity to the spinal

cord. There are many descending neurons in rostral hindbrain

segments with high degrees, and therefore likely to have direct

connections to the spinal cord. The caudal hindbrain contained

several types of descending neurons, (cranial relay neurons, IC,

and CC neurons; Table 2; Figure S3), that projected only a short

distance into the rostral spinal cord. Mid-body neuromasts were

the most likely to connect to the Mauthner series nodes, which,

unlike most descending neurons, connected to all spinal segments.

Somatotopic organization has recently been shown within the PLL

ganglion [50], but it is not known whether it is maintained in the

PLL projection to the hindbrain. The different sensorimotor path

lengths associated with different hindbrain segments in the current

model offer some initial hypotheses on how PLL somatotopy may

be represented at downstream levels of the pathway.

When the 6 nodes representing the Mauthner series were

deleted from the model the overall number of short paths

decreased. Mauthner series deletion had a much larger effect on

3-step and 4-step paths than deletion of 6 randomly selected nodes

from the same segments. This result is consistent with the selective

effect of Mauthner series lesion in zebrafish on the latency of

escape turns [49]. The node deletions also altered the somatotopic

distribution of path lengths. For paths ending in the rostral spinal

segments, there was a greater proportional loss of 3-step paths than

of 4-step paths, but caudal spinal segments did not show the same

vulnerability to loss of 3-step paths. This trend was not predicted,

and it is not clear why the rostral spinal cord should be more

vulnerable to losing shorter length connections than longer length

connections as a result of Mauthner series deletion.

Although our model accurately represents some aspects of the

biology, particularly cell types, cell numbers, and elements of

connectivity, there were many biological details left out. One of

the limitations is the lack of physiological detail. Some physiolog-

ical information was incorporated, such as the directional tunings

of individual hair cells, but overall the model greatly simplifies

physiology, for example by not weighting connections and

omitting the distinction between inhibitory and excitatory

connections. Limitations of analyzing only structural elements of

neural connectivity have been widely noted, but graph models of

neural connectivity can include physiological detail. For example,

chemical and electrotonic synapses were represented as separate

networks in a graph model of the C. elegans connectome, and

chemical synapses were further distinguished by excitatory or

inhibitory postsynaptic effect [35]. Effects of these physiological

parameters were measurable as changes in the topological

properties of the graph. Future revisions of the current model

will include recently published physiological information about the

neurotransmitters used by different descending neurons [24].

Despite numerous studies, incomplete information about the

structure of this zebrafish connectome still limits the current

model. While some connections were hard coded on the basis of

biological observations, many others (particularly rules about

interneuron connectivity) were assigned stochastically according to

general rules because more specific information was not available.

Some estimates behind those connectivity rules will almost

certainly have to be revised when new observations are reported.

Moreover, the structure of the zebrafish larva nervous system is

simple only in relative terms, and it is not precisely identical across

all individuals. A one-to-one correlation of structural connections

in the animal and the model is therefore unlikely to be achieved.

Another limitation to the current analysis is that only a subset of a

larger sensorimotor connectome is considered. Most of these

hindbrain and spinal cord neurons receive input from other

sensory systems, so the graph properties described for the PLL

pathway cannot be considered properties of the neurons them-

selves and may not extend to other pathways that share neurons.

Studies of identified neuron connectomes are not new, but have

mostly been done in invertebrate systems, where identified

neurons are easier to find. At least one mammalian connectome

study has taken an identified neuron approach by focusing on the

neuromuscular junction where component cells and connections

can be precisely defined by their anatomical locations [51]. In

contrast, the major investments in vertebrate connectome

research, including the Human Connectome Project (an initiative

of the National Institutes of Health started in 2009), are focused on

connections among brain regions, not individual neurons [52,53].

This is sensible, as it is still not technically feasible to decode

complete mammalian connectomes at the cellular level, but the

gap in spatial scales of analysis may mean that identified neuron

studies have few points of contact to human connectome research.

The fact that graph analysis is an increasingly popular analytic tool
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in both domains may point the way to integrating connectome

research and theory across these spatial levels of analysis.

Supporting Information

Figure S1 Fluorescence imaging montage of a 6 day old
Brn3c:GFP transgenic zebrafish larvae showing labeling
of neuromasts along the body. Five confocal images takes

along the anterior-posterior axis were tiled together in Adobe

Photoshop to show the entire body. Posterior neuromasts on the

left side of the body are labeled, but other neuromasts of the right

PLL can be seen through the transparent body of the larva, as can

sensory hair cells of the anterior lateral line and inner ear (not

labeled). The number of neuromasts counted in this larva (9) is

consistent with counts from published studies [26]. Brn3c:GFP

transgenic zebrafish [41], in which a fluorescent protein is

expressed in all lateral line neuromasts, was obtained from Herwig

Baier at UCSF.

(TIF)

Figure S2 Estimate of brain interneuron numbers. The

number of brain sensorimotor interneurons was estimated using

cell counts from an online atlas of larval zebrafish anatomy

(zfin.org). A. Micrograph of a low resolution reference image of

one micrograph used for cell counting. The inset shows the area of

the larva in the micrograph. Yellow box shows the hindbrain

region where descending neurons occur. Total number of

methylene blue labeled nuclei within this region was estimated.

B A high resolution (.8 megapixels) section of the image in A used

to count cells. Green boxes show 3 50 mm sampling areas. C. The

results of the cell counts and calculation of total number of cells.

(TIF)

Figure S3 Co-labeling of a cranial interneuron (pink)
and a population of descending neurons in the hind-
brain. This confocal micrograph is a projection of 43 optical

section taken 1 mm intervals through the dorsal-ventral axis of the

hindbrain in a living 6 day old zebrafish larva. The view is through

the dorsal surface of the head. Anterior is up. The dashed line

shows the approximate hindbrain-spinal cord boundary. A

population of descending neurons was labeled by spinal injection

of a fluorescent dye on day 5 (Alexa dextran 647, Sigma; black

neurons in panel B) and a single cranial relay neuron was injected

with a different color dye (Alexa dextran 488; CRN, pink) on the

following day by intrasomal injection. The image was recolored

from the original to aid visibility. A. Imaging from the dye channel

detecting only the cranial relay neuron. The cell body is located in

the caudal most hindbrain segment, and it sends ascending and

descending axons to the opposite side of the hindbrain. CRN’s are

also called ‘t-reticular’ neurons because of their t shape, which is

clear in this image. B. The CRN overlaid onto the larger

population of labeled descending neurons. One Mauthner neuron

is labeled (M). The many hindbrain axon outputs of the CRN can

be seen clearly in the context of the other hindbrain descending

neurons. Both dye channels were acquired simultaneously. Scale

bar = 20 mm.

(TIF)

File S1 Dedicated and distributed network models of
the zebrafish PLL pathway. The two models are identical to

the anatomical model within each compartment (sensory/brain/

spinal) but connections between compartments are assigned in

either a ‘‘distributed’’ or a ‘‘dedicated’’ fashion. Although the two

models differ from the anatomical one in over 20% of the

connections, the degree distribution and small-worldness measures

for them are very close to our results for the anatomical model.

(DOC)
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