
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
MLIP: using multiple processors to compute the posterior
probability of linkage
Manika Govil*1, Alberto M Segre2 and Veronica J Vieland3

Address: 1Department of Oral Biology and Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA, 2Department of Computer Science, The University of Iowa, Iowa City, Iowa, USA and 3Battelle Center for
Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA

Email: Manika Govil* - govil@pitt.edu; Alberto M Segre - alberto-segre@uiowa.edu;
Veronica J Vieland - Veronica.Vieland@nationwidechildrens.org

* Corresponding author

Abstract
Background: Localization of complex traits by genetic linkage analysis may involve exploration of
a vast multidimensional parameter space. The posterior probability of linkage (PPL), a class of
statistics for complex trait genetic mapping in humans, is designed to model the trait model
complexity represented by the multidimensional parameter space in a mathematically rigorous
fashion. However, the method requires the evaluation of integrals with no functional form, making
it difficult to compute, and thus further test, develop and apply. This paper describes MLIP, a
multiprocessor two-point genetic linkage analysis system that supports statistical calculations, such
as the PPL, based on the full parameter space implicit in the linkage likelihood.

Results: The fundamental question we address here is whether the use of additional processors
effectively reduces total computation time for a PPL calculation. We use a variety of data – both
simulated and real – to explore the question "how close can we get?" to linear speedup. Empirical
results of our study show that MLIP does significantly speed up two-point log-likelihood ratio
calculations over a grid space of model parameters.

Conclusion: Observed performance of the program is dependent on characteristics of the data
including granularity of the parameter grid space being explored and pedigree size and structure.
While work continues to further optimize performance, the current version of the program can
already be used to efficiently compute the PPL. Thanks to MLIP, full multidimensional genome scans
are now routinely being completed at our centers with runtimes on the order of days, not months
or years.

from Symposium of Computations in Bioinformatics and Bioscience (SCBB07)
Iowa City, Iowa, USA. 13–15 August 2007

Published: 28 May 2008

BMC Bioinformatics 2008, 9(Suppl 6):S2 doi:10.1186/1471-2105-9-S6-S2

<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB07)</p> </title> <editor>Guoqing Lu, Jun Ni, Thomas L Casavant and Brian Athey</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S6/S2

© 2008 Govil et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S6/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
Background
From at least as far back as 1866, when Gregor Mendel
published his findings on the laws of inheritance based on
experiments with pea plants, statistics has been used as an
important tool for genetic studies of inherited traits. With
advances in technology and the development of increas-
ingly complex models for analysis, the use of computer
science has become integral for all such statistical genetic
studies.

One research area of interest for geneticists is locating on
the genome the gene(s) responsible for inherited traits.
This localization is facilitated by linkage analysis, a statis-
tical genetic method. The method relies on violations of
Mendel's second law of inheritance, which states that
genes assort independently, to estimate the proximity of
trait genes to known genomic locations (genetic markers).
The model-based linkage statistic is the LOD score,
defined as the log10 ratio of the likelihood of the observed
data, divided by the likelihood assuming "no linkage."
This statistic utilizes genetic map, pedigree, and trait
model information (e.g., the population frequency of the
trait, and the penetrance or probability that an individual
with a given genetic combination at the trait locus mani-
fests the trait) to obtain an estimate of the recombination
fraction θ, the traditional measure of genetic distance
between two genomic locations.

A typical linkage analysis therefore involves computing
likelihoods in several parameters in order to summarize
the information regarding θ. However, complicating fac-
tors exist. While sex-averaged genetic maps are normally
used in analyses, the true male-female maps are of differ-
ent lengths. This use of sex-averaged maps results in map
misspecification. Heterogeneity among pedigrees from
different populations is another complicating factor.
Finally, the trait may be complex, possessing a genetic
component but not a simple mode of inheritance. For
such traits, linkage analysis may involve exploration of a
vast multidimensional parameter space.

The posterior probability of linkage, or PPL, [1,2] is a class
of linkage statistics designed to model both sex-specific
maps and the trait model complexity represented by the
multidimensional parameter space in a mathematically
rigorous fashion. It also accommodates both inter- and
intra-population heterogeneity by using Bayesian sequen-
tial updating over data subsets. However, the method
requires the evaluation of integrals with no functional
form, making it difficult to compute, and thus further test,
develop and apply.

This paper describes MLIP (Multiprocessor LInkage analysis
Program), a new, dual-language system that calculates, in
parallel, two-point LOD scores by pedigree and marker

over a user-specified range of genetic parameters and male
and female recombination fractions. MLIP is designed to
facilitate genetic linkage analysis (gene mapping) by
allowing the coverage of a complex, multidimensional
parameter space using partitioning and parallelization of
the computation. Motivation for the development of
MLIP derives from the utility of representing the underly-
ing linkage likelihood explicitly as a function of all
implicit parameters to allow computation of the PPL.

MLIP utilizes NICE, the Network Infrastructure for Combina-
torial Exploration [3], a network computing infrastructure
for dynamic parallelization across a grid of processors.
While parallelization has been considered previously in
connection with linkage analysis (e.g., see [4-10]), none of
these approaches have dealt with computation over the
trait parameter space, the focus of the present work.

Methods
The simplest characterization of MLIP is as a two-layer
model: an inner layer that is used to compute each individ-
ual LOD score, and an outer layer that oversees the system-
atic exploration of the multidimensional parameter space
by dividing it into chunks, managing the distribution of
these chunks to other processors, collecting the results,
and subsequently writing them to disk.

Figure 1, provides an overview of MLIP and the different
internal and external components that comprise the dis-
tributed computing package. The output of MLIP, essen-
tially a large set of single-precision LOD scores describing
the likelihood surface over a multidimensional parameter
space, can then be used to calculate the PPL integral.

Inner layer: computing the LOD scores
The two-point PPL is by definition the definite integral
over the interval [0, 0.5) of the recombination fraction
(θ). In other words, it is the probability that θ < 1/2 given
the data. For marker data M, and trait data T, the two-
point PPL can be expressed in terms of LOD scores as
[1,11]:

Where:

In these equations, L indicates linkage, g is a vector of trait
parameters, θ is the recombination fraction, α is the
admixture parameter, and f(g), f(θ), f(α) are prior distri-

PPL

P L BR f L d

P L BR f L d P L
=

()∈⎡
⎣⎢

⎞
⎠⎟

∫

() + − ()

() () |,

() () |

q q qq

q q q

0
1
2

1(()∈⎡
⎣⎢

⎞
⎠⎟

∫q 0
1
2

,

BR f f d dHLODq a aq a

a
() = () ()∫∫ 10 (, ,)g

g
g g
Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
butions for g, θ, and α respectively. BR(θ), a function of θ,
is the direct analogue of the usual likelihood ratio (LR).
Since it is also proportional to the posterior density of θ,
the BR is simply multiplied across the data (sub)sets to
sequentially update the PPL over multiple sets of data and
the PPL is recomputed using Eq. 2 [12]. Nuisance param-
eters are integrated out of the BR independently for each
set of data, thereby allowing these parameters to vary
independently across data sets, while evidence regarding θ
is accumulated across data sets. Since the integrand for
computing the PPL involves several integrals and has no
analytical functional form, it is approximated by averag-

ing heterogeneity LOD scores (HLODs) over a discretized
parameter space [13-15].

The inner layer of MLIP allowing computation of the LOD
scores necessary for the PPL is LIPED [16], Jurg Ott's FOR-
TRAN implementation of the Elston-Stewart algorithm
[17]. LIPED has been selected as the inner layer of MLIP
for several reasons. Since the program is an implementa-
tion of the Elston-Stewart algorithm, it is capable of han-
dling the medium to large pedigrees regularly
encountered in our own clinical collaborations.

MLIP: OverviewFigure 1
MLIP: Overview. MLIP relies on NICE to provide a dynamic hierarchy of processors, all of which obtain portions of the
parameter space from their parent or root node. These processors in turn, return results to the root node for storage on
disk. MLIP invokes functions provided by RADSML (Random Access Data Storage for MLip) to store the output compactly in a
special file.

NICE
(network)

RAID0 (striped)

M
LI

P

N
IC

E
A

PI

M
LI

P

N
IC

E
A

PI

M
LI

P

N
IC

E
A

PI RADSML API

Post−Processing
Programs

Results

RA
D

SM
L A

PI

M
LIP

N
ICE A

PI

Input

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
Not only is LIPED both trusted and well tested, with the
source code freely available, but it also has additional
important advantages over some of the other existing
Elston-Stewart implementations. Computing the PPL
requires the flexibility to include a variety of genetic
parameters in the model. LIPED supports sex-specific
recombination fractions; accepts haplotype frequencies in
a manner that allows modeling linkage with disequilib-
rium correctly; handles quantitative traits; models delayed
onset; and supports loops, or complex pedigree structures
where more than one path may exist between two individ-
uals.

While the code is not new, when compared to more recent
Elston-Stewart implementations (such as FASTLINK
[18]), optimized to reduce the cost of a single LOD score
calculation, somewhat surprisingly, the performance of
the original LIPED code is still quite competitive overall.
For some pedigree structures, it even provides better per-
formance than more recent implementations. When
tightly integrated into MLIP and with just a few small
improvements, our modified LIPED core's performance is
quite respectable (especially when compared to, e.g.,
using remote procedure calls to invoke multiple copies of
FASTLINK over a network).

Finally, although LIPED is written in FORTRAN, the code
is relatively compact and well documented. Since the
modifications required to the original LIPED code did not
involve extensive changes to its algorithmic core, our
resulting calculations should inspire the same faith and
confidence as those produced by the original LIPED code.

Outer layer: partitioning over a cluster
Wrapped around LIPED is a new outer layer, coded in
ANSI C. This layer is responsible for reading in the prob-
lem specification (pedigrees, markers, loop breakers, and
the parameter grid) and checking it for errors; performing
simple data transformations in the interests of efficiency
(e.g., allele downcoding, where the total number of alleles at
each marker is adjusted down to the observed number);
and breaking the space into appropriate size chunks to
assign chunks to itself and other processors. It is also
responsible for invoking LIPED and collecting computed
LOD scores and storing them on disk. Finally, the layer
ensures that the entire space is exhausted while taking
appropriate measures to allow effective restarting of a pre-
viously interrupted computation via checkpointing.

MLIP utilizes the NICE infrastructure for distributed com-
puting. Unlike peer-to-peer infrastructures, NICE models
the distributed computing resource as a hierarchy of proc-
essors (see Figure 2). A NICE-enabled application com-
municates with the infrastructure via a set of callable
functions contained in the NICE applications program-

mer's interface, or API. This linkable library contains func-
tions that, when invoked, e.g., request that new copies of
the application be spawned on the same or other
machines. It also contains functions to support communi-
cation between these multiple copies of the application
once they are established. Note that the library does not
actually contain code specific to any application, but
rather only the handful of functions that are needed to
efficiently parallelize appropriately designed serial appli-
cations.

Once the NICE infrastructure has spawned the appropri-
ate configuration of processes over the nodes in the clus-
ter, parallelization by partitioning involves having an idle
slave processor ask its master for a chunk of work and then
returning the results once the calculation is completed.
Since a master processor may have multiple slaves, it
should be able to partition independent chunks of its own
assigned work among them. The model extends recur-
sively, with each slave potentially having slaves of its own,
subdividing its own chunk(s) into still smaller ones.

There are several complicating factors. First, this is a
mixed-language system (LIPED is coded in FORTRAN),
which requires special handling [19]. Second, the outer
layer is responsible for managing the distribution of
chunks to other processors. This requires care to keep all
processors working at maximum capacity. A good parti-
tioning scheme performs load balancing (ensures all avail-
able processors are kept busy) and is also fault tolerant
(robust to processor or network failure). Good load bal-
ancing in heterogeneous computing environments
presents a challenge. Differences in processor speed or
memory capacity, and thus intrinsic computation speeds,
makes it difficult to distinguish an unduly slow slave from
one that has failed. Furthermore, for hierarchically-organ-
ized processors, some processors will appear much faster
than others by virtue of the processor(s) available beneath
them. Finally, in the case of MLIP, we have no a priori
knowledge of the amount of CPU time required to per-
form a unit of work. This is due to the fact that not all LOD
scores are created equal: differences in markers, pedigree
size and structure, and pattern of unknown genetic marker
and/or trait data, all affect the cost of the calculation.

Since load balancing and fault tolerance are intertwined,
the load balancing scheme should also handle lost proc-
essors in a systematic fashion, "recovering" and reassign-
ing inchoate chunks that had been assigned to slower or
unresponsive processors. In this manner, faster processors
cover more and more of a slower processor's assigned ter-
ritory. If a processor has failed, the faster processors will
eventually complete its work. If a processor is truly slow
and completes its work before the faster processors report
back, the redundantly assigned processors can be aborted
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
without prejudice. This strategy implies that some LOD
scores may be computed more than once to keep all CPUs
busy and preserve fault tolerance. The key issue here is to
tune the partitioning criteria such that all chunks are fin-
ished at approximately the same time and little redundant
calculation actually occurs.

Finally, since the outer layer is ultimately responsible for
collecting the LOD scores and efficiently streaming them
to disk, it must keep up with the high rate with which

results are generated by multiple processors. For MLIP, the
protocol invoked when a slave completes a portion of its
work is the most expensive and the number of LOD scores
returned to the root can be quite large. For example, for 50
pedigrees, a typical genome-wide analysis with 400 mark-
ers over the regular space for the sex-specific PPL [15]
entails the calculation, communication, and storage of 2.7
× 1010 LOD scores, roughly 100 GB of output. This
presents a special challenge for distributed computing.
Typically, distributed applications will require that the
input data sets, which can be quite large, be broadcast to
individual processing elements at initialization, and that
the subsequent results, which are typically small, be col-
lected over the course of the calculation. Here, the input
data sets, while not insignificant, are trivially small in
comparison to the size of the results, which must be trans-
mitted over the network for storage on disk, so that, e.g.,
the PPL can be computed and recomputed with arbitrary
priors.

To minimize communication costs, each slave node,
regardless of its relative position in the hierarchy, commu-
nicates its results directly back to the root node, circum-
venting its own master.

Results and discussion
The fundamental question addressed here is whether
additional processors effectively reduce total computation
time. While the use of N processors should, in theory,
allow completion of the same calculation N times faster,
few, if any, parallel computing efforts attain linear speedup
in practice. This is because some of the work does not par-
allelize. For MLIP, all disk-writing costs are incurred solely
by the root processor, while network communications are
a necessary expense of all parallel systems.

A sequence of empirical tests is used to explore the ques-
tion "how close can we get?" to linear speedup. Since it is
well known that pedigree size and structure, presence/
absence of marker genotypic information, and number of
marker alleles all affect the degree of difficulty and
expected computation time for the Elston-Stewart algo-
rithm, four simulated test sets have been generated from
very different parts of the spectrum. We also test perform-
ance on a real data set later. To avoid confounding factors
due to complex interactions between data features and
computation time, the simulated sets are homogeneous,
each consisting of many replicates or variants of one of
two pedigree structures (see Figure 3).

Each test set has 32 markers. The markers for sets A and B
have 2 alleles each, while for sets C and D the markers
each have 16 alleles. The number of pedigree copies and
marker alleles in each set reflects the expected complexity
and computation time for the configuration. Sib pairs

The NICE hierarchyFigure 2
The NICE hierarchy. Propagation of parallel application
down the NICE hierarchy. An application started on the root
processor will spawn copies of the application recursively on
descendent nodes.

niced

niced niced

niced niced

niced niced niced

niced niced

mlip mlip

mlip

niced

niced niced niced

niced niced

mlip mlip

mlip mlip

niced

mlip

niced

mlip

mlip

Step 3

Step 2

Step 1
mlip
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
with two-allele markers and fully-known parental geno-
types (set A) are expected to require the least amount of
computation per LOD score, while larger pedigrees with
more diverse markers and missing genotype information
represent the other extreme (set D). Since the sets have dif-
ferent intrinsic difficulty, a different number of model
parameters (the grid size) are selected for each set allowing
a single processor trial to take approximately the same
amount of time across sets. To examine the behavior of
the system as the number of processors increases, each set
is tested with n = 1, 2, 4, 8, 16, and 32 processors arranged
in a uniform NICE hierarchy, where each processor has at
most three child processors. The grid size is increased pro-
portionally as n increases. Table 1 gives the minimum (for
1 processor) and maximum (for 32 processors) grid size
for each test set.

Speedup and scalability
Figure 4 plots the effective speedup obtained as the number
of processors increases, where speedup, Sn, is defined here
as the ratio of the LODs/second on n processors to the
LODs/second on a single processor: thus Sn = n represents
linear speedup.

Clearly, as seen from the plot, linear speedup is not being
achieved for each of the test sets. What is interesting here
is that the observed performance appears to be clustering
by set, with B, C performing better than A, D.

To understand the reason behind this observed perform-
ance, we need to take a closer look at computation, disk-
writing, and network costs of the root processor. Of these
three, only the first represents work that can be distributed
to other processors. Furthermore, while we expect that
disk activity should remain relatively constant (since
roughly the same number of LOD scores are always being
written to disk, modulo any redundant calculations
undertaken to ensure fault tolerance), we might also
expect to see network activity increase, given that the root
processor must now receive relatively more results from
other machines.

Figure 5 makes this breakdown explicit for each test set,
for the serial and 32 processor case. From the serial com-
putation times, it is clear that set D is the most costly of
the four test sets, with potentially the most computation
time available for partitioning. However for such sets with
fewer but more computationally-intensive calculations (D
consists of only four replicated but complex pedigrees),
granularity of the available space is a limiting factor and
there is a point where the work remaining cannot be par-
titioned any more finely, forcing some processors to
remain idle.

Set A, on the other hand, is the least computationally-
intensive of the four sets. However, the grid space for this
set is at least twice as large as the space for any other set.
As the number of processors grows, the amount of calcu-
lation performed by the root processor diminishes to the

Sample pedigrees for simulated dataFigure 3
Sample pedigrees for simulated data. Circles represent females, squares represent males. Individuals with filled symbols
manifest the trait under study. (a) An affected sib pair pedigree. Test sets A and B comprise 500 copies each of this pedigree
with known (for set A) and unknown (set B) parental marker genotypes. (b) A multigenerational pedigree with 43 individuals.
Test set C consists of 32 copies of this pedigree with all known marker genotypes. Set D consist of 4 copies of the pedigree
with unknown marker genotypes for all but the last generation.

(b)

(a)
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
extent that with n = 32 processors, almost all of the root
processor's workload comprises disk and network activi-
ties. Test sets B and C represent the most favorable setup
here with fairly complex data, and a sufficiently large grid
space for distribution.

Behavior over time
We next consider the qualitative behavior of an MLIP cal-
culation over time. Figure 6 plots the load or the total
number of log-likelihood scores computed as a percent-
age of the original grid size, versus the elapsed time for
data set C, normalized to account for grid size differences.

The single-processor curve shows steady progress through
the test, with each regularly-spaced data point corre-
sponding to completion of one of the 32 identical pedi-
grees in data set C. Since there is only one processor, there
is no additional overhead to complicate matters.

The two-processor system also produces a regular,
smooth, line, while working its way through its load at

about twice the speed. With additional processors, the
slope of the lines in the plot continues to increase,
although the relative margin of improvement declines.
Furthermore, from a qualitative perspective, three striking
changes can be seen in the lines generated. First, the spac-
ing of the data points increases and is much less regular
than for n = 1 and n = 2. Second, the slope of the line
decreases towards the end of the calculation, forming a
pronounced "knee" near the end of the trial. Finally, each
line generally extends beyond 100% load.

These visual cues tell an interesting story: the increased
spacing implies that the root processor is spending rela-
tively more of its time supervising the collection of data
from slaves as opposed to making progress on its own cal-
culations. The fact that the spacing is irregular and tends
to decrease towards the end of the calculation is because
the chunks being handed out to idle slave processors are
getting smaller as the remaining workload decreases, leav-
ing less work for the root to complete a pedigree. Moreo-
ver, it becomes increasingly difficult to find work for idle
processors as the size of the remaining calculation
decreases, so some processors are simply told to remain
idle. Since the idle slaves are not producing LOD scores,
the overall rate at which the load completes is reduced,
resulting in a lower slope. Finally, as the number of proc-
essors increases, proper load balancing also becomes
tricky, leading to an increase in the number of redundant
LOD scores computed notwithstanding the fact that the
homogeneity of this data (replicated pedigrees) represents
a best-case scenario for load balancing.

Reducing network and disk overhead
The time devoted to network communication and disk
access represents a significant obstacle to better perform-
ance. Two design changes are evaluated here to help side-
step these obstacles. In the original LIPED
implementation, LOD scores are calculated as double pre-
cision floating point numbers. Since only 4 to 5 decimal
digits of precision are needed for computing the PPL, the
cost of disk storage can be halved and the data rate on the
network doubled, simply by casting double precision
LOD scores to 32-bit floating point.

A second improvement comes from the manner in which
these values are written to the disk. The file on the disk is
as an ordered repository of LOD scores, indexed by pedi-
gree and parameter space values. Since each processor
generally produces LOD scores in sequential order, collec-
tions of LOD scores can be efficiently streamed to the disk
at the same time, thereby amortizing disk access time and
producing higher throughput.

Figure 7 shows the effect of these configuration changes
on set A, with a 32 processor hierarchy. Changing repre-

Speedup by number of processorsFigure 4
Speedup by number of processors. The dotted line rep-
resents linear speedup, which is difficult to achieve in prac-
tice.

●

Number of Processors

S
p

e
e

d
u

p

●
●

●

●
●

●

0 2 4 8 16 32

0

2

4

6

8

10

12

14

16
●

Set A
Set B
Set C
Set D

Table 1: Grid size variation

Processors Set A Set B Set C Set D

1 CPU 33 × 106 16 × 106 10 × 105 4096
32 CPUs 52 × 107 26 × 107 34 × 106 13 × 104
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
sentation from double to single precision floating point
does indeed reduce both communication costs and the
cost of writing the file. Even greater improvements are
afforded by streaming data to the disk rather than individ-
ually addressing each LOD score as it is written. While the

performance for the 32 processor single-precision stream-
ing system for set A is still well short of linear speedup, the
final effect on this I/O bound test set is impressive. There
is an 80% increase in speedup from 2.55 for the 32 proc-
essor double-precision system to 4.59 for the 32 processor
single-precision streaming system, a significant improve-
ment.

Improving performance via better load balancing
One of the hardest problems for any distributed system is
how to best keep all available processors equally busy. The
granularity issue briefly mentioned previously is one
incarnation of this more general problem that arises when
the space remaining is not easily apportioned to all avail-
able processors. For some datasets (e.g., dataset D) the
problem is particularly acute, but it arises to some degree
with any dataset, albeit perhaps only at nodes that are
nested deeply within the NICE hierarchy. A related prob-
lem occurs when the root processor is unable to keep up
with the results being generated by all the slave processors
in the hierarchy. In this situation, the slaves queue up,
lying idle while they wait for service from the root proces-
sor. The problem is compounded because any idle slaves
wanting additional chunks must also wait in line for serv-
ice. Finally, inefficiencies arise when the allocation of
processors within the hierarchy of processors is subopti-
mal. Unfortunately, what constitutes the optimal alloca-
tion depends on the specifics of the problem being solved,

Overhead costs by configuration with 32 processors for set AFigure 7
Overhead costs by configuration with 32 processors for set
A.

Original +float +stream +float,stream

Network
Disk
Compute

Configuration

T
im

e
 (

s
e

c
.)

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
Breakdown of root processor activityFigure 5
Breakdown of root processor activity.

A:1 A:32 B:1 B:32 C:1 C:32 D:1 D:32

Test Set : Number of Processors

T
im

e
 (

s
e

c
.)

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

Compute
Disk
Network

Load completed vs. normalized elapsed time for set CFigure 6
Load completed vs. normalized elapsed time for set C.

●

Normalized Elapsed Time

L
o

a
d

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

●

1 CPU
2 CPUs
4 CPUs
8 CPUS
16 CPUs
32 CPUs
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
and is not always easy to predict when the data are not as
well behaved as our simulated data sets.

Consider, as an illustration of this last point, the follow-
ing empirical results (see Table 2). In the results reported
thus far, all processors were organized in a hierarchy with
branching factor limited to 3; that is, no processor has
more than 3 child processors. We repeated our test for
each of the four datasets with a variety of branching fac-
tors, ranging up to a relatively "flat" hierarchy where the
root processor had as many as 17 immediate descendent
processors. For the most part, a "broader" hierarchy led to
reduced speedup. Some of these reductions (e.g., for data-
set C) are quite dramatic: using 32 processors in a flat hier-
archy led to only an 8% improvement in performance
over the single processor case. But for other datasets (e.g.,
dataset B), peak speedup was obtained when each proces-
sor was allowed as many as 9 children.

The message here is that load balancing is difficult: no sin-
gle strategy is likely to be optimal for all possible datasets.
Even with the simple, uniform, datasets used here (repli-
cated pedigrees, etc), effective load balancing is likely to
rely on a set of heuristics or a collection of adaptive mech-
anisms that can help fine tune performance while the cal-
culation is underway.

Performance on real data
In preceding sections the performance of MLIP was evalu-
ated using simulated test sets with homogenous complex-
ity of each grid point. Here, a set of 59 real pedigrees are
considered next. These pedigrees consist of 4–14 individ-
uals, genotyped for 34 microsatellite markers, although
not all individuals in a pedigree may be genotyped. The
grid size (15 × 107) is roughly similar to that used for sets
A and B. Figure 8, which shows percent load completed
against elapsed time for the real data, can be compared
with Figure 6, which plots similar measures for simulated
set C.

The most striking observation is that Figure 8 is decidedly
less smooth than Figure 6. This fact is to be expected, given
that the computation time of an individual pedigree is
likely to vary significantly with real data. In particular, one
pedigree encountered about 25% of the way through the
serial run required about 10% of the overall runtime (this

is the plateau in the single processor curve, the central
data point on the plateau corresponds to a system check-
point, not completion of a pedigree). The effect is less
noticeable as more processors are added, since the other

Performance overviewFigure 9
Performance overview.

●

Configurations

L
O

D
s
/s

e
c
 (

in
 '0

0
0

 s
e

c
o

n
d

s
)

BL MC MDC MF MRD M4 M16D

0

5

10

15

20

0.27

20.5

Table 2: Speedups by branching factor (bf)

bf Set A Set B Set C Set D

3 4.62 5.07 5.60 3.87
5 4.52 7.39 4.88 2.74
9 4.19 8.76 3.27 2.74
17 3.42 5.03 1.08 2.05

Load completed vs. elapsed time for real dataFigure 8
Load completed vs. elapsed time for real data.

●

Elapsed Time
L

o
a

d

●●
●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●

●
●

●
●
●●

●
●

●
●
●

●
●
●

●
●

●
●●
●

●
●
●
●
●

●
●
●
●
●●

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

125%

●

1 CPU
2 CPUs
4 CPUs
8 CPUS
16 CPUs
32 CPUs
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
processors continue to generate LOD scores while the one
exceptionally expensive pedigree is being handled.

As with Figure 6, the increased spacing between points
with the addition of more processors reflects a change in
root processor workload from computation to disk I/O.
However, this change is particularly marked here for the
32 processor case. In Figure 8, it can be seen that with 32
processors, the root processor completes the space for its
first pedigree only when over 90% of the total LOD scores
have already been computed. For both Figures 6 and 8,
spacing between successive data points tends to decrease
as the trial completes, indicating smaller chunk sizes. Per-
centage of effort also increases beyond 100% as proces-
sors perform redundant calculations in an attempt to
ensure fault tolerance. For the real data, however, Figure 8
reveals that the wildly differing costs of each pedigree con-
tribute to broad fluctuations in final percentage of effort.

Conclusion
This paper described MLIP, a new multiprocessor two-
point genetic linkage analysis system that enables statisti-
cal calculations based on the full multidimensional
parameter space implicit in the linkage likelihood. Empir-
ical results on a broad variety of data have also been pro-
vided to support the claim that MLIP does significantly
speed up two-point LOD score calculations over the grid
space of model parameters necessary for computing the
PPL. In keeping with the requirements for the statistic,
MLIP not only provides needed flexibility in model
parameter specification, but it also stores individual LOD
scores, providing users with the ability to create data sub-
sets and change priors during post processing. Obtaining
the output in this form provides some additional benefits
as well. The likelihood surfaces tend to be irregular with
extensive interaction among the parameters. The output
produced by MLIP can also be used by visualization soft-
ware to allow the user to interactively explore the likeli-
hood surface [20-22].

Figure 9 summarizes the effect of the different improve-
ments on the LOD scores computed per second for a data
set comprising 500 large pedigrees with 20 microsatellite
markers. The different versions are on the x-axis, while the
LOD rate has been plotted along the y-axis. Starting with
a baseline rate of approximately 265 using the original
LIPED code base; then including changes to strip the code
of all I/O; merging the Fortran with the C; allowing for

allele downcoding; streaming single-precision output;
and finally, using an optimized deep hierarchy instead of
a flat one; the rate of output produced and written has
gone up to approximately 20,500 LODs/second.

Table 3 puts these results in perspective, summarizing
what this means, in practical terms, for the full multidi-
mensional genome scans for which MLIP is already being
used. As can be seen, analyses which would have taken
two years or more with LIPED can now be routinely per-
formed in days or less by MLIP. Yet, obviously, there is
still much room for improvement. In particular, 50 large
pedigrees with some unknowns may still take a year or
more to analyze.

The immediate task is to continue making incremental
improvements in the load balancing strategy. The current
partitioning strategy is not sensitive to predictable differ-
ences in expected computation time required for different
portions of the grid space. A more fine-grained partition-
ing strategy would at the very least postpone the granular-
ity problems described earlier. Adaptive partitioning
strategies that take cues from observed run times in the
course of a calculation are also possible.

While the distributed computing approach adopted here
is more coarse-grained, it may be useful to also consider
parallelization at the algorithmic level. In such a situation,
a hybrid distributed computing infrastructure-allowing
both distributed and shared memory-may be a possibility.
Use of a grid computing type of infrastructure may per-
haps facilitate better time results as opposed to a hierarchy
of processors.

Another area of interest is the definition of the grid space
itself. Currently, by use of a simple grid specification lan-
guage, the grid space is defined a priori by the user when
the MLIP job is started. Since much of the space might be
expected to be relatively "flat," standard adaptive quadra-
ture techniques from numerical integration might be used
to allow MLIP to effectively "design its own grid" over the
course of an evolving calculation.

Finally, it is a fact that the current core is not fully opti-
mized with respect to the actual likelihood calculation.
Well-established differences exist among linkage analysis
algorithms. Both these facts suggest that the use of a new
computational core, different from LIPED, could signifi-

Table 3: From the infeasible to the feasible

Large Ped. (500; No Unknowns) Nuclear Ped. (50; Some Unknowns) Large Ped. (50; Some Unknowns)

LIPED Base 2 years 32 years 59 years
16 CPU MLIP 9 hours 19 days 232 days
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
cantly extend the capabilities of MLIP. In particular,
LIPED is restricted to two-point analyses. Based on what
we have learned with MLIP, we are working on construct-
ing a multipoint parallel linkage analysis system [23]
based on a reimplementation of the VITESSE [24,25] link-
age analysis engine.

As work continues to optimize the performance of the sys-
tem, the "brute force" grid search method to approximate
the PPL as implemented in MLIP, will continue to serve as
a benchmark against which future approximations may be
judged. Further development and evaluation of fast alter-
native numerical integration methods is necessarily pred-
icated upon the ability of this program to carry out the
calculation based on a full grid-enumeration in an effi-
cient manner.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MG implemented a large portion of MLIP and was also
responsible for all testing of the application and writing
its LINUX man page. AMS supervised the implementation
and developed the NICE infrastructure utilized by MLIP
and further enhanced the infrastructure to provide effi-
ciencies in data streaming and partitioning. VJV conceived
of the project and developed the linkage analysis statistic
(the PPL) which MLIP was written to compute. All authors
contributed equally to the conceptual design of MLIP and
in composing this manuscript.

Acknowledgements
The authors would like to thank Jurg Ott for providing LIPED. We also wish
to acknowledge Mark Logue for his many useful suggestions during the
design of MLIP, Martin Milder for developing the disk management code
libraries used in MLIP, Rhinda Goedken for her patient assistance with
debugging, and the other faculty, staff and students of the (former) Univer-
sity of Iowa Center for Statistical Genetics Research for their contribu-
tions. Support for this research was provided in part by the National
Science Foundation through grant ITR/ACI0218491 (AMS) and in part by
the National Institutes of Health through grants R01/MH76433 and R03/
DE017167 (VJV). A shorter version of this paper appeared in the
IMSCCS07 proceedings published by IEEE as "MLIP: A Multiprocessor Link-
age Analysis System."

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 6, 2008: Symposium of Computations in Bioinformatics and Bio-
science (SCBB07). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/9?issue=S6.

References
1. Vieland VJ: Bayesian linkage analysis, or: how I learned to stop

worrying and love the posterior probability of linkage. Am J
Hum Genet 1998, 63:947-954.

2. Vieland VJ: Thermometers: something for statistical geneti-
cists to think about. Hum Hered 2006, 61:144-156.

3. Segre AM, Foreman S, Resta S, Wildenberg A: Nagging: a scalable,
fault-tolerant, distributed search paradigm. Artif Intell 2002,
140:71-106.

4. Miller PL, Nadkarni PM, Gelernter JE, Carriero N, Pakstis AJ, Kidd
KK: Parallelizing genetic linkage analysis: a case study for
applying parallel computation in molecular biology. Comput
Biomed Res 1991, 24:234-248.

5. Dwarkadas S, Schäffer AA, Cottingham RW Jr, Cox AL, Keleher P,
Zwaenepoel W: Parallelization of general linkage analysis
problems. Hum Hered 1994, 44:127-141.

6. Gupta SK, Schäffer AA, Cox AL, Dwarkadas S, Zwaenepoel W: Inte-
grating parallelization strategies for linkage analysis. Comput
Biomed Res 1995, 28:116-139.

7. Matise TC, Schroeder MD, Chiarulli DM, Weeks DE: Parallel com-
putation of genetic likelihoods using CRI-MAP, PVM, and a
network of distributed workstations. Hum Hered 1995,
45:103-116.

8. Rai A, Lopez-Benitez N, Hargis JD, Poduslo SE: On the paralleliza-
tion of Linkmap from the LINKAGE/FASTLINK package.
Comput Biomed Res 2000, 33:350-364.

9. Kothari K, Lopez-Benitez N, Poduslo SE: High-performance
implementation and analysis of the Linkmap program. J
Biomed Inform 2001, 34:406-414.

10. Conant GC, Plimpton SJ, Old W, Wagner A, Fain PR, Pacheco TR,
Heffelfinger G: Parallel genehunter: implementation of a link-
age analysis package for distributed-memory architectures.
J Parallel Distrib Comput 2003, 63:674-682.

11. Vieland VJ, Logue MW: HLODs, trait models, and ascertain-
ment: implications of admixture for parameter estimation
and linkage detection. Hum Hered 2002, 53:23-35.

12. Vieland VJ, Wang K, Huang J: Power to detect linkage based on
multiple sets of data in the presence of locus heterogeneity:
comparative evaluation of model-based linkage methods for
affected sib pair data. Hum Hered 2001, 51:199-208.

13. Bartlett CW, Flax JF, Logue MW, Vieland VJ, Bassett AS, Tallal P,
Brzustowicz LM: A major susceptibility locus for specific lan-
guage impairment is located on 13q21. Am J Hum Genet 2002,
71:45-55.

14. Logue MW, Vieland VJ, Goedken RJ, Crowe RR: Bayesian analysis
of a previously published genome screen for panic disorder
reveals new and compelling evidence for linkage to chromo-
some 7. Am J Med Genet B Neuropsychiatr Genet 2003, 121:95-99.

15. Logue MW, Vieland VJ: The incorporation of prior genomic
information does not necessarily improve the performance
of Bayesian linkage methods: An example involving sex-spe-
cific recombination and the two-point PPL. Hum Hered 2005,
60:196-205.

16. Ott J: Estimation of the recombination fraction in human
pedigrees: efficient computation of the likelihood for human
linkage studies. Am J Hum Genet 1974, 26:588-597.

17. Elston RC, Stewart J: A general model for the genetic analysis
of pedigree data. Hum Hered 1971, 21:523-542.

18. Cottingham RW Jr, Idury RM, Schäffer AA: Faster sequential
genetic linkage computations. Am J Hum Genet 1993,
53:252-263.

19. Burow BD: Mixed language programming. Chep '95: Proceedings
of the Workshop on Computing in High Energy Physics, Rio de Janeiro, Bra-
zil 1995 [http://www.hep.net/chep95].

20. Logue MW, Park J, Ni J, Cremer J, Segre AM, Knosp B, Beck B, Vieland
VJ: Interactive visualization tools for genetic data [abstract
2957]. 54th Annu Meeting Am Soc Hum Genet 2004 [http://
www.ashg.org/meetings/2004/].

21. Park JW, Logue MW, Ni J, Cremer J, Segre AM, Vieland VJ: Scientific
visualization of multdimensional data: genetic likelihood vis-
ualization. In Current Trends in High Performance Computing and Its
Applications: Proceedings of the International Conference on High Perform-
ance Computing and Applications Edited by: Zhang W, Chen Z, Glowinski
R, Tong W. Berlin: Springer-Verlag; 2005:157-161.

22. Park JW, Cremer JF, Segre AM, Logue MW, Vieland VJ: Visual
exploration of genetic likelihood space. Proc ACM Symp on Appl
Comput 2006:1335-1340.

23. Huang Y, Segre AM, O'Connell JR, Wang H, Vieland VJ: KELVIN: a
2nd generation distributed multiprocessor linkage and link-
age disequilibrium analysis program [abstract 1556]. 56th
Annu Meeting Am Soc Hum Genet 2006 [http://www.ashg.org/genetics/
ashg06s/index.shtml].
Page 11 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9758634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9758634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16770079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16770079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1868693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1868693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8039796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8039796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7656549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7656549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7750973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7750973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7750973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11017726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12198760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12198760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11901268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11901268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11901268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12898582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12898582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12898582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16397399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4422075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4422075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4422075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5149961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5149961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8317490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8317490
http://www.hep.net/chep95
http://www.ashg.org/meetings/2004/
http://www.ashg.org/meetings/2004/
http://www.ashg.org/genetics/ashg06s/index.shtml
http://www.ashg.org/genetics/ashg06s/index.shtml

BMC Bioinformatics 2008, 9(Suppl 6):S2 http://www.biomedcentral.com/1471-2105/9/S6/S2
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

24. O'Connell JR: Rapid multipoint linkage analysis via inheritance
vectors in the Elston-Stewart algorithm. Hum Hered 2001,
51:226-240.

25. O'Connell JR, Weeks DE: The VITESSE algorithm for rapid
exact multilocus linkage analysis via genotype set-recoding
and fuzzy inheritance. Nat Genet 1995, 11:402-408.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7493020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7493020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7493020
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

