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Abnormal expression of homeobox genes
and transthyretin in C9ORF72 expansion
carriers

ABSTRACT

Objective: We performed a genome-wide brain expression study to reveal the underpinnings of
diseases linked to a repeat expansion in chromosome 9 open reading frame 72 (C9ORF72).

Methods: The genome-wide expression profile was investigated in brain tissue obtained from
C9ORF72 expansion carriers (n 5 32), patients without this expansion (n 5 30), and controls
(n 5 20). Using quantitative real-time PCR, findings were confirmed in our entire pathologic
cohort of expansion carriers (n 5 56) as well as nonexpansion carriers (n 5 31) and controls
(n 5 20).

Results: Our findings were most profound in the cerebellum, where we identified 40 differentially
expressed genes, when comparing expansion carriers to patients without this expansion, includ-
ing 22 genes that have a homeobox (e.g., HOX genes) and/or are located within the HOX gene
cluster (top hit: homeobox A5 [HOXA5]). In addition to the upregulation of multiple homeobox
genes that play a vital role in neuronal development, we noticed an upregulation of transthyretin
(TTR), an extracellular protein that is thought to be involved in neuroprotection. Pathway analysis
aligned with these findings and revealed enrichment for gene ontology processes involved in
(anatomic) development (e.g., organ morphogenesis). Additional analyses uncovered that HOXA5
and TTR levels are associated with C9ORF72 variant 2 levels as well as with intron-containing
transcript levels, and thus, disease-related changes in those transcripts may have triggered the
upregulation of HOXA5 and TTR.

Conclusions: In conclusion, our identification of genes involved in developmental processes and
neuroprotection sheds light on potential compensatory mechanisms influencing the occurrence,
presentation, and/or progression of C9ORF72-related diseases. Neurol Genet 2017;3:e161; doi:

10.1212/NXG.0000000000000161

GLOSSARY
ALS 5 amyotrophic lateral sclerosis; FTD 5 frontotemporal dementia; FTLD 5 frontotemporal lobar degeneration; IQR 5
interquartile range; MND 5 motor neuron disease.

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a disease
continuum. Although ALS is the most common form of motor neuron disease (MND) and re-
sults in progressive muscle weakness, FTD is a frequent cause of dementia and is associated with
changes in personality, behavior, and language. A hexanucleotide repeat expansion in chromo-
some 9 open reading frame 72 (C9ORF72) is a major genetic cause of both diseases.1,2 Emerging
evidence suggests that C9ORF72-related diseases are characterized by a loss of C9ORF72
expression,1 the formation of RNA foci with flawed RNA transcripts,1 and the generation of
dipeptide repeat proteins aberrantly translated from the repeat expansion,3,4 with both RNA foci
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and dipeptide repeat proteins potentially con-
tributing to disease by compromising nucleo-
cytoplasmic transport.5–7

In our quest to increase our understanding
of C9ORF72-related diseases, we assessed the
genome-wide expression profile in brain tissue
obtained from the Mayo Clinic Florida Brain
Bank (n 5 82). Of interest, in C9ORF72
expansion carriers, we discovered an upregula-
tion of genes involved in developmental pro-
cesses and neuroprotection, particularly in the
cerebellum, a region without substantial neu-
ronal loss that demonstrates pathologic hall-
marks of C9ORF72-related diseases,3,8 and in
which abnormalities associate with neuropath-
ologic and clinical phenotypes.9,10 Such find-
ings may point toward mechanisms that could
compensate for the harmful effects of
C9ORF72 repeat expansions.

METHODS Participant selection. From the Mayo Clinic

Florida Brain Bank, participants were selected for our genome-

wide expression study: patients with a pathologic diagnosis of

frontotemporal lobar degeneration (FTLD) and/or MND who

harbored C9ORF72 repeat expansions (n 5 32), patients with

FTLD and/or MND without repeat expansions (n 5 30), and

controls without neurologic diseases (n 5 20, table 1). To con-

firm the observed upregulation of homeobox A5 (HOXA5) and
transthyretin (TTR), quantitative real-time PCR was performed,

when expanding investigations to our entire pathologic cohort of

C9ORF72 expansion carriers for whom brain tissue was available

(n 5 56) as well as FTLD and/or MND patients without an

expansion (n 5 31) and controls without any neurologic disease

(n5 20).11 In this cohort, C9ORF72 transcript levels, the length
of the repeat expansion, and dipeptide repeat protein levels had

already been determined.10–12 To examine the cerebellar TTR

protein, Western blots (n 5 10) and immunohistochemistry

(n 5 13) were performed on a representative subset of samples

(table e-1 at Neurology.org/ng). Next, an immunoassay was used

to evaluate TTR protein levels in the CSF, studying 2 indepen-

dent clinical cohorts obtained at either the Mayo Clinic (n5 67)

or the University of Miami (n 5 40, table e-1).

Standard protocol approvals, registrations, and patient
consents. All participants agreed to participate in the study, and

biological samples were obtained after informed consent with eth-

ical committee approval from the respective institutions.

Methods and statistical analysis. To examine the genome-

wide expression pattern, Whole-Genome DASL HT assays (Il-

lumina, San Diego, CA) were used, which were processed by the

Mayo Clinic Core Facility. Validation was performed with

quantitative real-time PCR using TaqMan gene expression assays

(Life Technologies, Carlsbad, CA). Western blotting was used to

evaluate cerebellar TTR protein levels, complemented with

immunohistochemistry to assess the presence of potential TTR

protein aggregates. Meso Scale Discovery (MSD, Rockville, MD)

electrochemiluminescence detection technology was used to

establish a sandwich immunoassay for TTR. Cell culture ex-

periments were then performed in an attempt to clarify under-

lying mechanisms. In U251 and HepG2 cells, a loss of C9ORF72
expression was mimicked with small interfering RNAs (siRNAs,

Dharmacon, Lafayette, CO), and in addition, the effect of full-

length C9ORF72 and the repeat expansion itself was examined by

transfecting cells with expression vectors.13 A detailed description

of our methods and statistical analysis is provided in the sup-

plemental data.

RESULTS Upregulation of homeobox genes and TTR

in C9ORF72 expansion carriers. We performed
a genome-wide expression study in the cerebellum
and frontal cortex to identify genes involved in
C9ORF72-related diseases. First, we compared pa-
tients with or without a repeat expansion in
C9ORF72. Although participants included in those
groups are both affected by neurodegenerative dis-
eases, this enabled us to find C9ORF72-specific dif-
ferences. Second, we compared expansion carriers
with controls without neurodegenerative diseases,
allowing the detection of more general differences
that could, theoretically, be due to the presence of
a neurodegenerative disease.

In the cerebellum, when comparing expansion car-
riers to patients without expansions, we detected 40
differentially expressed genes (table e-2). Generation
of a heat map of those genes revealed that expansion
carriers generally cluster together (figure 1). Of interest,
our list of differentially expressed genes contained 22
genes that have a homeobox (e.g., HOX genes) and/or
are located within the HOX gene cluster (table e-2). In
addition to the upregulation of multiple homeobox
genes (top hit: HOXA5) that play a vital role in neu-
ronal development,14 we noticed a cerebellar upregula-
tion of TTR (table e-2), an extracellular protein that is
thought to be involved in neuroprotection.15–19 We
then compared expansion carriers with controls and

Table 1 Participant characteristics

Cohort/variable
C9Plus cohort
(n 5 32)

C9Minus cohort
(n 5 30)

Control cohort
(n 5 20)

Genome-wide expression

Sex, male 20 (63) 12 (40) 7 (35)

Age at death, y 63.7 (58.4–71.7) 75.0 (64.0–81.8) 87.5 (81.8–93.0)

RIN cerebellum (value) 9.4 (9.2–9.6) 9.2 (8.7–9.4) 9.3 (8.5–9.4)

RIN frontal cortex (value) 9.0 (8.5–9.6) 9.1 (8.6–9.5) 8.9 (8.6–9.2)

Diagnosis

FTLD 12 (38) 10 (33) —

FTLD/MND 10 (31) 10 (33) —

MND 10 (31) 10 (33) —

Other — — —

Abbreviations: FTLD 5 frontotemporal lobar degeneration; IQR 5 interquartile range;
MND 5 motor neuron disease.
Data are sample median (IQR) or n (%). Information was obtained for patients with (C9Plus)
and without (C9Minus) expansions in C9ORF72, as well as from controls. This study was
performed in the cerebellum and frontal cortex.
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discovered 1,575 differentially expressed genes in the
cerebellum (table e-2). Again, our heat map showed
that expansion carriers tend to cluster together (figure
1). Of interest, our new list contained 37 of the 40
(93%) genes we identified previously (table e-2),
including homeobox genes and TTR.

We also performed gene ontology analysis and
observed an enrichment for pathways involved in
the regulation of (anatomic) development, which
was most profound when comparing expansion car-
riers with disease controls (e.g., organ morphogenesis,
pattern specification process, regionalization, and
skeletal system development, table e-3), but which
was also seen when comparing expansion carriers with
controls (table e-3).

In the frontal cortex, a comparison between pa-
tients with or without repeat expansions resulted in
the detection of 3 differentially expressed genes:
HOXA5, C9ORF72, and POU class 4 homeobox 2
(POU4F2; table e-2). We also compared expansion
carriers with controls and revealed 679 differentially
expressed genes, including C9ORF72 and TTR (table
e-2). Again, enrichment was observed for pathways
involved in developmental processes (table e-3).

Associations of C9ORF72 transcripts withHOXA5 and TTR

transcripts in our overall cohort. In previously published
studies, we investigated the levels of known C9ORF72
transcript variants (variant 1 [NM_145005.6], variant 2
[NM_018325.4], and variant 3 [NM_001256054.2])

Figure 1 Expression of homeobox genes and transthyretin

C9Plus5 patients with C9ORF72 repeat expansions; C9Minus5 patients without C9ORF72 repeat expansions; and control 5 controls without neurologic
diseases. Heat map plots of intensity values of differentially expressed genes are displayed for the cerebellum, when comparing C9ORF72 expansion
carriers with patients without expansions (A, fold change above 1.2), and when comparing C9ORF72 expansion carriers with controls (A, fold change above
2.5 [more stringent to allow visualization]). Rows (samples) and columns (genes) are grouped by hierarchical clustering using Manhattan distance measure-
ments; low intensities are shown as blue, and high intensities are shown as red. In our expression cohort, cerebellar expression levels of homeobox A5
(HOXA5; B) and transthyretin (TTR; C) are increased in patients withC9ORF72 repeat expansions as compared to patients without expansions or to controls.
The median is represented by a solid line, and each box spans the 25th percentile to the 75th percentile (interquartile range). A Western blot is shown
demonstrating higher cerebellar TTR protein levels in expansion carriers (1) than in patients without this expansion (2, D). Quantification of Western blot
samples confirmed the cerebellar increase of TTR protein levels in patients with a repeat expansion as compared to patients without this expansion (E),
which is displayed in a bar graph that represents the mean of the relative normalized TTR protein with the SEM, using glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as the loading control.
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as well as 2 intronic regions (1 upstream of the repeat
expansion [intron 1a] and 1 downstream of the repeat
expansion [intron 1b]).11 In this study, we examined the
same cohort to validate our findings related to HOXA5
and TTR, which demonstrated that their cerebellar lev-
els are indeed higher in C9ORF72 expansion carriers
than in (disease) controls (table 2, figure 1). In addition,
in the frontal cortex, we showed that TTR levels are
elevated in patients with a C9ORF72 repeat expansion
as compared to controls (table 2). Of note, we also
performed a sensitivity analysis to assess whether our
findings could have been biased by differences in age
at death. It is important that similar findings were
observed when restricting our analysis to a subset of
participants with a comparable age at death (not shown).
In addition, given the low levels of TTR and HOXA5,
especially in (disease) controls, we also validated their
upregulation in a subset of participants using other tech-
niques, including digital molecular barcoding (not
shown) and previously published RNA sequencing data
(figure e-1).20

The vast amount of C9ORF72 expression data
available for this cohort then allowed us to determine
whether the levels of C9ORF72 transcripts were asso-
ciated with the levels of HOXA5 and TTR. In our
overall cohort (expansion carriers, disease controls,
and controls), lower cerebellar levels of C9ORF72
transcript variant 2 were associated with higher cere-
bellar levels of both HOXA5 (r520.60, p5 3.21e-
09, Spearman test of correlation) and TTR (r 5

20.47, p 5 2.21e-06, Spearman test of correlation,
table 3), which is not surprising given the fact that
expansion carriers demonstrate decreased levels of
C9ORF72 transcript variant 2.11 More excitingly,
we noticed that higher cerebellar levels of intron-
containing transcripts (both intron 1a and intron
1b) are associated with higher cerebellar levels of
HOXA5 transcripts (intron 1a: r 5 0.43, p 5

6.47e-05, intron 1b: r 5 0.36, p 5 0.0008, Spear-
man test of correlation, table 3). In the frontal cortex,
lower C9ORF72 variant 2 levels were also associated
with higher TTR levels (r 5 20.28, p 5 0.006,
Spearman test of correlation, table 3).

Associations of C9ORF72 transcripts with HOXA5 and

TTR transcripts in expansion carriers. Because we were
able to validate our findings related to HOXA5 and
TTR and detect significant associations with specific
C9ORF72 transcripts in our overall cohort, we then
evaluated the presence of any potential associations
within our cohort of C9ORF72 expansion carriers. In
the cerebellum, increased levels of total C9ORF72
transcripts were associated with increased HOXA5
transcripts (r 5 0.51, p 5 8.86e-05, Spearman
test of correlation, table 4), most prominently in pa-
tients with a pathologic diagnosis of FTLD (r5 0.65,
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p 5 0.0009, Spearman test of correlation). Of inter-
est, we also noticed that elevated levels of intron-
containing transcripts were associated with elevated
levels of HOXA5 or TTR (table 4). For HOXA5, this
association (intron 1a: r 5 0.60, p 5 1.61e-06,
intron 1b: r 5 0.54, p 5 2.75e-05, Spearman test of
correlation, table 4) was driven by patients with
a pathologic diagnosis of FTLD (intron 1a: r5 0.72,
p 5 0.0001, intron 1b: r 5 0.59, p 5 0.003,
Spearman test of correlation). For TTR, however, the
association (intron 1a: r 5 0.40, p 5 0.003, intron
1b: r 5 0.43, p 5 0.001, Spearman test of correla-
tion, table 4) was most profound in patients with
a pathologic diagnosis of MND (intron 1a: r5 0.83,
p 5 0.0002, intron 1b: r 5 0.88, p 5 3.78e-05,
Spearman test of correlation).

Because we previously discovered associations
between dipeptide repeat proteins and intron-
containing transcripts,11 we subsequently evaluated

potential associations with poly(GP) and poly(GA)
proteins, which can form abundant inclusions in
the neocortical regions, hippocampus, thalamus,
and cerebellum.3,4,9,21–24 Although no significant asso-
ciations were detected for TTR, we did observe an
association for HOXA5: higher levels of dipeptide
repeat proteins were associated with higher levels of
HOXA5 (poly[GP]: r5 0.52, p5 0.0002, poly[GA]:
r5 0.56, p5 3.89e-05, Spearman test of correlation,
table 4).

In the frontal cortex, we noted a trend between
C9ORF72 variant 2 and TTR (r 5 20.39, p 5

0.004, Spearman test of correlation), particularly in
the subset of patients with a pathologic diagnosis of
FTLD (r 5 20.62, p 5 0.002, Spearman test of
correlation, table 4).

In both brain regions, we did not detect significant
associations with other variables, such as expansion
size (table 4), disease subgroup, sex, age at onset,
age at death, or survival after onset (not shown).

Cerebellar changes in TTR transcripts are reflected by

changes in protein levels. Given the fact that TTR is an
extracellular protein, we determined whether changes
in RNA levels were reflected by changes in protein
levels, which could indicate that TTR may serve as
a biomarker for C9ORF72-related diseases. Because
our findings were most profound in the cerebellum,
we extracted protein from this neuroanatomic region
and performed Western blots. As expected, we de-
tected a significant increase in cerebellar TTR protein
levels in patients with a repeat expansion (mean
174% 6 34%) as compared to patients without
a repeat expansion (mean 100% 6 18%, p , 0.05,
2-sample t test, figure 1). We also performed
immunohistochemistry to examine whether an
aggregated form of the TTR protein was present in
the cerebellum because TTR protein aggregates have
been reported in other diseases, such as familial
amyloid polyneuropathy.25 We observed diffuse
cytoplasmic TTR staining in pyramidal neurons and
Purkinje cells, and in the neuropil; however, no TTR
deposits were detected similar to those seen in pa-
tients with TTR amyloidosis (not shown).

To further evaluate TTR as a potential biomarker,
we determined its protein levels in the CSF. In our
first cohort, the median TTR protein level in expan-
sion carriers was 15.5 mg/mL (interquartile range
[IQR] 13.7–17.6) and in the remaining participants
16.3 mg/mL (IQR 14.5–17.7), which was not signif-
icantly different (p5 0.29, Wilcoxon rank-sum test).
Our second cohort revealed a median TTR protein
level of 12.5 mg/mL in expansion carriers (IQR 11.0–
12.6) and 12.3 mg/mL in other participants (IQR
11.8–14.4); again, this difference did not reach sta-
tistical significance (p 5 0.58, Wilcoxon rank-sum

Table 3 Associations ofHOXA5 and TTR transcripts withC9ORF72 transcripts
in the overall cohort

TaqMan Group Association

Overall

Spearman r (95% CI) p Value

Cerebellum HOXA5 Total 20.21 (20.40 to 0.02) 0.07

Variant 1 20.19 (20.39 to 0.03) 0.09

Variant 2 20.60 (20.73 to 20.42) 3.21e-09

Variant 3 0.06 (20.14 to 0.27) 0.56

Intron 1a 0.43 (0.23 to 0.60) 6.47e-05

Intron 1b 0.36 (0.16 to 0.54) 0.0008

TTR Total 20.19 (20.39 to 0.02) 0.06

Variant 1 20.20 (20.40 to 0.003) 0.05

Variant 2 20.47 (20.62 to 20.28) 2.21e-06

Variant 3 20.03 (20.24 to 0.18) 0.78

Intron 1a 0.23 (0.03 to 0.42) 0.03

Intron 1b 0.23 (0.04 to 0.41) 0.03

Frontal cortex TTR Total 20.15 (20.35 to 0.07) 0.16

Variant 1 20.06 (20.25 to 0.14) 0.58

Variant 2 20.28 (20.47 to 20.08) 0.006

Variant 3 20.17 (20.35 to 0.03) 0.09

Intron 1a 0.23 (0.02 to 0.42) 0.03

Intron 1b 0.14 (20.07 to 0.34) 0.19

Data are Spearman correlation coefficient r (95% confidence interval [CI]) or p value;
HOXA5 and TTR transcript levels are normalized to the geometric mean of endogenous
control genes ribosomal protein, large, P0 (RPLP0), and glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH). In total, in our overall cohort (expansion carriers, disease controls, and
controls), we examined 6 different associations (total C9ORF72 transcripts, C9ORF72
transcript variant 1, C9ORF72 transcript variant 2, C9ORF72 transcript variant 3, intron
1a–containing C9ORF72 transcripts, and intron 1b–containing C9ORF72 transcripts) for
each outcome, and thus, p values below 0.0083 were considered significant after Bon-
ferroni correction. A Spearman test of correlation was used (p , 0.0083 considered sig-
nificant after Bonferroni correction). Similar findings were obtained when normalizing to
neuronal markers (not shown for simplicity).
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Table 4 Associations of HOXA5 and TTR transcripts with C9ORF72 transcripts, expansion size, and dipeptide repeat proteins in expansion carriers

TaqMan Group Association

C9Plus cohort FTLD cohort FTLD/MND cohort MND cohort

Spearman r (95% CI) p Value Spearman r (95% CI) p Value Spearman r (95% CI) p Value Spearman r (95% CI) p Value

Cerebellum HOXA5 Total 0.51 (0.29 to 0.68) 8.86e-05 0.65 (0.32 to 0.83) 0.0009 0.20 (20.40 to 0.65) 0.47 0.43 (20.19 to 0.86) 0.13

Variant 1 0.33 (0.08 to 0.54) 0.01 0.50 (0.11 to 0.78) 0.01 20.12 (20.68 to 0.44) 0.67 0.16 (20.45 to 0.68) 0.59

Variant 2 20.13 (20.40 to 0.15) 0.33 20.07 (20.51 to 0.41) 0.77 20.19 (20.68 to 0.36) 0.50 20.08 (20.67 to 0.50) 0.80

Variant 3 0.38 (0.13 to 0.59) 0.005 0.35 (20.12 to 0.69) 0.10 0.41 (20.16 to 0.81) 0.12 0.22 (20.42 to 0.77) 0.44

Intron 1a 0.60 (0.37 to 0.77) 1.61e-06 0.72 (0.39 to 0.89) 0.0001 0.56 (20.02 to 0.91) 0.03 0.41 (20.21 to 0.82) 0.14

Intron 1b 0.54 (0.31 to 0.71) 2.75e-05 0.59 (0.20 to 0.82) 0.003 0.65 (0.17 to 0.88) 0.009 0.42 (20.13 to 0.80) 0.14

C9ORF72 expansion size 20.17 (20.42 to 0.10) 0.24 20.09 (20.53 to 0.36) 0.68 20.42 (20.70 to 0.02) 0.12 20.18 (20.64 to 0.44) 0.55

Poly(GP) 0.52 (0.26 to 0.72) 0.0002 0.32 (20.12 to 0.71) 0.15 0.50 (20.15 to 0.91) 0.08 0.45 (20.09 to 0.84) 0.10

Poly(GA) 0.56 (0.33–0.73) 3.89e-05 0.60 (0.20 to 0.85) 0.004 0.41 (20.26 to 0.84) 0.17 0.09 (20.59 to 0.62) 0.74

TTR Total 0.25 (20.02 to 0.50) 0.07 0.44 (0.08 to 0.70) 0.03 20.02 (20.62 to 0.60) 0.95 0.35 (20.23 to 0.83) 0.22

Variant 1 0.07 (20.23 to 0.36) 0.60 0.29 (20.13 to 0.62) 0.18 20.18 (20.74 to 0.47) 0.53 0.03 (20.52 to 0.61) 0.91

Variant 2 20.17 (20.43 to 0.12) 0.21 20.06 (20.53 to 0.42) 0.77 20.24 (20.74 to 0.36) 0.40 20.37 (20.78 to 0.21) 0.19

Variant 3 0.11 (20.19 to 0.39) 0.43 0.10 (20.34 to 0.52) 0.65 0.05 (20.61 to 0.67) 0.85 0.24 (20.36 to 0.75) 0.41

Intron 1a 0.40 (0.15 to 0.59) 0.003 0.27 (20.16 to 0.66) 0.22 0.28 (20.31 to 0.73) 0.31 0.83 (0.54 to 0.96) 0.0002

Intron 1b 0.43 (0.18 to 0.63) 0.001 0.37 (20.04 to 0.67) 0.08 0.33 (20.32 to 0.80) 0.23 0.88 (0.62 to 0.97) 3.78e-05

C9ORF72 expansion size 0.01 (20.29 to 0.30) 0.93 0.05 (20.38 to 0.45) 0.83 0.12 (20.57 to 0.66) 0.67 0.01 (20.66 to 0.64) 0.96

Poly(GP) 0.09 (20.19 to 0.36) 0.55 20.11 (20.49 to 0.30) 0.62 0.19 (20.43 to 0.66) 0.54 0.38 (20.15 to 0.76) 0.17

Poly(GA) 20.02 (20.29 to 0.26) 0.91 0.15 (20.26 to 0.54) 0.50 0.00 (20.60 to 0.63) 0.99 20.002 (20.53 to 0.57) 1.00

Frontal cortex TTR Total 20.19 (20.47 to 0.11) 0.17 20.05 (20.51 to 0.43) 0.84 20.33 (20.79 to 0.24) 0.26 20.39 (20.86 to 0.30) 0.19

Variant 1 20.03 (20.32 to 0.26) 0.82 20.09 (20.40 to 0.56) 0.69 20.12 (20.58 to 0.40) 0.70 0.01 (20.61 to 0.60) 0.96

Variant 2 20.39 (20.59 to 20.14) 0.004 20.62 (20.80 to 20.31) 0.002 20.51 (20.90 to 0.07) 0.06 20.11 (20.68 to 0.53) 0.73

Variant 3 20.03 (20.31 to 0.26) 0.81 0.32 (20.10 to 0.67) 0.14 20.33 (20.79 to 0.30) 0.26 0.08 (20.61 to 0.68) 0.80

Intron 1a 0.18 (20.08 to 0.41) 0.21 0.31 (20.14 to 0.70) 0.16 0.14 (20.39 to 0.58) 0.63 0.21 (20.46 to 0.75) 0.49

Intron 1b 20.02 (20.31 to 0.30) 0.88 20.08 (20.52 to 0.47) 0.72 20.08 (20.71 to 0.51) 0.79 0.22 (20.54 to 0.80) 0.47

C9ORF72 expansion size 0.02 (20.28 to 0.30) 0.91 20.25 (20.62 to 0.19) 0.26 0.49 (20.08 to 0.83) 0.07 20.19 (20.80 to 0.48) 0.55

Poly(GP) 0.15 (20.15 to 0.42) 0.32 0.40 (20.10 to 0.71) 0.08 0.43 (20.14 to 0.88) 0.12 0.05 (20.63 to 0.65) 0.85

Abbreviations: FTLD 5 frontotemporal lobar degeneration; MND 5 motor neuron disease.
Data are Spearman correlation coefficient r (95% confidence interval [CI]) or p value; HOXA5 and TTR transcript levels are normalized to the geometric mean of endogenous control genes ribosomal protein, large, P0
(RPLP0), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In total, within our cohort of C9ORF72 expansion carriers, we examined 16 different associations (total C9ORF72 transcripts, C9ORF72 transcript
variant 1, C9ORF72 transcript variant 2, C9ORF72 transcript variant 3, intron 1a–containing C9ORF72 transcripts, intron 1b–containing C9ORF72 transcripts, C9ORF72 repeat length, poly[GP] levels, poly[GA] levels,
disease subgroup, sex, age at onset, age at death, and survival after onset [using 3 different cutoff points]) for each outcome, and thus, p values below 0.0031 were considered significant after Bonferroni correction; in
this table, only 9 of those 16 associations are displayed (total C9ORF72 transcripts, C9ORF72 transcript variant 1, C9ORF72 transcript variant 2, C9ORF72 transcript variant 3, intron 1a–containing C9ORF72
transcripts, intron 1b–containing C9ORF72 transcripts, C9ORF72 repeat length, poly[GP] levels, and poly[GA] levels). A Spearman test of correlation was used (p , 0.0031 considered significant after Bonferroni
correction). Similar findings were obtained when normalizing to neuronal markers (not shown for simplicity).
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test). Of note, similar findings were obtained when
adjusting for possible confounders, when removing
outliers, and when restricting our analysis to specific
(sub)groups (e.g., symptomatic participants).

Loss of C9ORF72 expression increases HOXA5 and TTR

transcripts. Next, we performed cell culture experi-
ments to determine which C9ORF72-related disease
characteristics might drive the specific upregulation
of HOXA5 and TTR. Of interest, we observed an
increase of HOXA5 in response to a knock-down of
total C9ORF72 transcripts (mean 193% 6 3%, p5
0.0002, 2-sample t test). A comparable effect was
seen on TTR (mean 129% 6 6%, p 5 0.01, 2-
sample t test) after knocking down total C9ORF72
transcripts. Given our significant findings related to
C9ORF72 transcript variant 2, we then targeted
variant 2. It is important that knocking down of
variant 2 was sufficient to increase HOXA5 levels
(mean 274% 6 12%, p 5 0.005, 2-sample t test).
For TTR, targeting C9ORF72 variant 2 also affected
TTR levels (mean 293% 6 37%, p 5 0.03, 2-
sample t test). Overexpression of full-length
C9ORF72 or expression of 66 GGGGCC repeats,
however, did not seem to affectHOXA5 or TTR (not
shown). Consequently, it seems that a loss of
C9ORF72 expression triggers an increase in HOXA5
and TTR.

DISCUSSION We set out to increase our under-
standing of C9ORF72-related diseases and revealed
elevated levels of multiple homeobox genes (e.g.,
HOXA5) and TTR. Of interest, our findings were
most profound in the cerebellum, a region without
substantial neuronal loss that demonstrates patho-
logic characteristics of diseases linked to a repeat
expansion in C9ORF72.3,8 In fact, in this neuroan-
atomic region, associations with neuropathologic
and clinical features of the disease have already been
reported. It has been shown, for instance, that
dipeptide repeat protein levels are lower in patho-
logically diagnosed patients with MND as compared
to patients with FTLD,9,10 and that they are associ-
ated with the cognitive score of clinically diagnosed
patients with ALS.10 Moreover, an association
between dipeptide repeat proteins and intron-
containing transcripts has been described in the
cerebellum, indicating that transcripts containing
the entire first intron may serve as templates for
repeat-associated non-ATG translation.11 In addi-
tion, extensive alternative splicing and poly-
adenylation defects have been reported in the
cerebellum of C9ORF72 expansion carriers.20 The
fact that our findings were most prominent in
the cerebellum emphasizes that this region may have
been underappreciated and could play an important
role in C9ORF72-related diseases.

The upregulation of multiple homeobox genes
and TTR was further substantiated by the results of
our gene ontology analysis that revealed enrichment
for developmental processes. The observed enrich-
ment for developmental processes is not surprising
given the function of homeobox genes and TTR in
neuronal development and neuroprotection.14–19

Homeobox genes, for example, are involved in neu-
ronal specification and target connectivity; they play
a key role in the identity, organization, and peripheral
connectivity of motor neuron subtypes.14 TTR is
important for the transportation of thyroid hormones
(thyroxine [T4]) and retinol (vitamin A), and in addi-
tion, it is thought to participate in behavior, mainte-
nance of normal cognitive processes during aging,
neuropeptide processing, and nerve regeneration.26

Of interest, homeobox genes and TTR are linked.
For instance, an active metabolite of vitamin A (all-
trans retinoic acid) functions in maintenance of many
processes (e.g., brain function) and is essential for
limb and organ development through homeobox
gene–mediated mechanisms.27

Although the relative differences we observed in
HOXA5 and TTR are a reflection of small absolute
differences, the fact that their levels are barely detect-
able in (disease) controls raises the possibility that
their expression may have been (re)activated in the
adult brain. Such a (re)activation could be specific to
C9ORF72-related diseases and might be driven by
certain mechanisms underlying those diseases. It
is currently unknown where the elevated HOXA5
and TTR levels are coming from; a change in cell-
type composition, invading progenitor cells, and
cell-autonomous effects need to be taken into
consideration.

One of the pathologic hallmarks of C9ORF72-
related diseases is a reduction in C9ORF72 expression
levels.1 Because the most prominent decrease has
been reported for C9ORF72 variant 2 transcripts,11

one could speculate that levels of this transcript might
be associated with levels of HOXA5 or TTR. Indeed,
in our overall cohort, we demonstrated that lower
levels of C9ORF72 variant 2 transcripts were associ-
ated with higher levels of HOXA5 and TTR
transcripts. We also detected associations with
intron-containing transcripts; in our expansion car-
riers, for instance, higher levels of intron-containing
transcripts were associated with HOXA5 transcript
levels, especially in patients with a pathologic diagno-
sis of FTLD. In addition, HOXA5 transcript levels
were associated with dipeptide repeat proteins, which
is in agreement with reports that describe associations
between intron-containing transcripts and dipeptide
repeat proteins.11 For TTR, we also observed a corre-
lation with intron-containing transcripts, but this
association was most profound in patients with
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a pathologic diagnosis of MND; no significant asso-
ciations were observed with dipeptide repeat proteins.
Thus, although some associations were shared
between HOXA5 and TTR, others differed.

We emphasize that in our study, as in any obser-
vational study, performing association analysis
between 2 variables is not intended to provide infor-
mation about possible mechanisms, but rather is in-
tended to address the initial question whether 2
variables are related in any way. It is only after this ini-
tial question is addressed that further questions, such
as mechanism, become relevant. To determine what
may have driven an increase in HOXA5 and TTR,
we already performed cell culture experiments, dem-
onstrating that lower levels of C9ORF72 resulted in
higher levels of HOXA5 and TTR. These effects were
observed when targeting either total C9ORF72 tran-
scripts or C9ORF72 transcript variant 2; we cannot,
however, exclude nonspecific effects on other tran-
script variants, and further studies are warranted.
Additional studies could also help to learn more about
mechanisms that link C9ORF72 to HOXA5 and
TTR, particularly because little is known about the
function, and interaction partners, of C9ORF72.
Moreover, future studies could examine downstream
targets and/or upstream regulators that might con-
tribute to the observed differences.

It is important that TTR protein levels have been
evaluated as a potential biomarker for ALS and
FTD,28–33 but findings were inconsistent, which
could, in part, be explained by the genetic, patho-
logic, and clinical heterogeneity observed in those
patients. Although our results seem to indicate that
cerebellar TTR protein levels are elevated in
C9ORF72 expansion carriers, we could not detect
significant differences in CSF TTR protein levels.
The lack of a significant difference could be due to
the presence of posttranslational modifications to the
TTR protein that are undetectable using our immu-
noassay. Alternatively, it might be possible that the
secretory pathway is affected, hampering the secretion
of TTR into the CSF. Future experiments using mass
spectrometry and immunoassays with different anti-
bodies as well as experiments investigating the secre-
tion of TTR (e.g., in cell culture models) should be
used to test these hypotheses. In addition, future
studies should examine whether TTR protein levels
are associated with features of the disease (e.g., in the
CSF or plasma) and whether they change over time,
especially because one could postulate that a single
time point in a clinical cohort may not reflect changes
observed in a pathologic cohort (end-stage disease).

Thus, we discovered elevated levels of multiple
homeobox genes and TTR, reported to be involved
in developmental processes and neuroprotection, in
brain tissue obtained from C9ORF72 expansion

carriers. Our findings may point to the presence of
compensatory mechanisms aiming to mitigate the
progression of C9ORF72-related diseases.
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