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Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs
against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood.
Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003.
FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of
FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional
enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation,
cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC
pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network
pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.

1. Introduction

Pancreatic cancer (PC) is the most lethal cancer type (0.47
million deaths per year worldwide) with the lowest survival
rates [1]. At present, the standard anticancer drugs for PC
treatment are mainly cytotoxic chemotherapeutics such as
gemcitabine and FOLFIRINOX [2, 3]. However, these agents
have limited effects on improving the survival rate of pa-
tients with PC, and their use is inevitably accompanied by
toxic effects and drug resistance that have serious adverse
effects on the physical and mental status of cancer patients
[2–4]. Herbal drugs have been extensively studied and are
increasingly recognized as effective anticancer agents that
enhance the success rate of cancer treatment and inhibit the
development of therapeutic resistance and unwanted side

effects [5–8]. *ey were shown to play beneficial roles in
improving survival and prognostic outcomes and health status,
while reducing the mortality rate of patients with PC [5–8].

FDY003, which is made up of Lonicera japonica*unberg
(LjT), Cordyceps militaris (Cm), and Artemisia capillaris
*unberg (AcT), is an herbal drug that exerts anticancer ac-
tivity [9–11]. *is herbal drug has antiproliferative and apo-
ptosis-promoting properties in a variety of cancer types by
pharmacologically modulating cancer-associated genes and
proteins that regulate and promote key protumorigenic cellular
processes [9–11]. However, the anti-PC potential of FDY003
and the underlying mechanisms remain to be investigated.

Network pharmacology, an analysis methodology that
aims to dissect the complicated multiple component-
multiple target mechanisms of herbal drugs by integrating
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large-scale pharmacological information associated with
them, is recognized as the most effective research technique
for studying the therapeutic features of herbal drug [12–19].
Network pharmacology explores the therapeutic mecha-
nisms of herbal drugs through the analysis of the topology,
structures, and functions of various herbal drug-related
networks that are composed of interactions between the
phytochemical components and the target genes and
proteins [12–19]. In this study, we investigated the anti-PC
activities of FDY003 and its underlying pharmacological
mechanisms from a systemic perspective based on network
pharmacology approaches.

2. Materials and Methods

2.1. Cell Culture. *e PANC-1 (a human PC cell line) cells
were obtained from the Korean Cell Line Bank (Seoul, Korea)
and maintained in Dulbecco’s modified Eagle’s medium
(WELGENE Inc., Daegu, Korea) that contained 10% fetal
bovine serum (WELGENE Inc., Daegu, Korea), and 1%
penicillin-streptomycin (*ermo Fisher Scientific, Inc., Wal-
tham,MA, USA) in a humidified 5%CO2 atmosphere at 37°C.

2.2. Herbal Drug Preparation. All dried raw herbal medi-
cines (e.g., AcT [6.25 g], Cm [6.25 g], and LjT [4.16 g]) were
obtained from Hanpure Pharmaceuticals (Pocheon, Korea).
*e herbal medicines were ground, mixed, and suspended in
70% ethanol (500mL) and refluxed at 80°C for 3 h to obtain
the herbal extracts. After filtering and purifying the herbal
extracts consecutively with 80% and 90% ethanol, the
samples were lyophilized at −80°C, stored at −20°C, and
dissolved in distilled water before the experiments.

2.3. Assessment of the Effect of the Drug Treatment on the Cell
Viability. *e effect of drug treatment on cell viability was
assessed using water-soluble tetrazolium salt (WST-1) ex-
periments. After seeding 1.0×104 cells in a 96-well plate, we
incubated them with FDY003 in the presence or absence of
gemcitabine (Sigma-Aldrich, St. Louis, MO, USA) for 72 h
and subsequently added WST-1 solution (Daeil Lab Service
Co., Ltd.; Seoul, Korea) for 2 h in a humidified 5% CO2
atmosphere at 37°C. *e resulting cell viability was calcu-
lated following the measurement of the absorbance at
450 nm using an xMark microplate absorbance spectro-
photometer (Bio-Rad, Hercules, CA, USA).

2.4. Screening of the Active Phytochemical Components.
We investigated the list of the phytochemical components
present in FDY003 and their pharmacokinetic information
from the Traditional Chinese Medicine Systems Pharma-
cology [20], Bioinformatics Analysis Tool for Molecular
Mechanism of Traditional Chinese Medicine [21], and
Anticancer Herbs Database of Systems Pharmacology [22].
Among the chemical constituents of FDY003, we deter-
mined those that are potentially pharmacoactive using their
drug-likenesses, Caco-2 permeabilities, and oral bioavail-
ability parameters that are commonly used in network

pharmacology studies to identify the active components
[14, 20, 23]. Drug-likeness is a criterion to explore the
possibility of a chemical component to function as a
pharmacological agent determined by its molecular, phys-
ical, chemical, and structural aspects [20, 24]. A drug-
likeness factor of ≥0.18 (the mean value of the drug-likeness
score of all available drugs) is a common determinant for
druggability [20, 24]. Caco-2 permeability is a criterion to
investigate the permeable capacity of a chemical component
in the intestinal system [20, 25–27]. Caco-2 permeability of
≥−0.4 is a general determinant for suitable intestinal per-
meability in drug design and the development processes
[28, 29]. Oral bioavailability is a criterion to assess the
fraction of a chemical component delivered to the systemic
circulation after oral administration, which subsequently
allows the chemical component access to the desired
pharmacological site of action at different tissues and/or
organs in the human body [20, 30]. Oral bioavailability of
≥30% is a determinant for reasonable distribution and ab-
sorption capability in the body [20, 30]. Overall, we de-
termined the active phytochemical components to be those
with drug-likeness ≥0.18, Caco-2 permeability ≥−0.4, and
oral bioavailability ≥30% [14, 20, 23].

2.5. Identification of Molecular Targets of FDY003. We in-
vestigated the simplified molecular input line entry system
(SMILES) information on the bioactive components of
FDY003 from the PubChem database [28]. *is infor-
mation was then read into PharmMapper [29], Swis-
sTargetPrediction [31], Similarity Ensemble Approach [32],
and Search Tool for Interactions of Chemicals [33], to obtain
the FDY003 targets forHomo sapiens. A list of the genes and
proteins associated with the PC pathomechanisms was
obtained from Online Mendelian Inheritance in Man [34],
DrugBank [35], Pharmacogenomics Knowledgebase [36],
Comparative Toxicogenomics Database [37], Human Ge-
nome Epidemiology Navigator [38], GeneCards [39],
*erapeutic Target Database [40], and DisGeNET [41] using
“pancreatic cancer” as the search term.

2.6. Generation of FDY003-Associated Networks. A network
is composed of nodes, which represent herbal medicines,
phytochemical components, target genes and proteins,
pathways, etc., and links/edges, which refer to the molecular,
functional, and pharmacological interactions between nodes
[42]. A degree indicates the number of links (or edges) of
node [42]. *e herbal medicine-phytochemical component-
target (H-C-T) network consists of the connected links
between the herbal constituents of FDY003, their active
phytochemical components, and the targeted PC-related
genes and proteins. *e H-C-Tpathway (H-C-T-P) network
is generated by adding the pathway information to the H-C-
T network, which is performed by linking the targets of the
H-C-T network to their associated pathways. *e protein-
protein interaction (PPI) network consists of connected
links between the PC-associated targets using the molecular,
genetic, and functional interaction information obtained
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from STRING [43]. *e generation, depiction, and analysis
of all the networks were conducted using Cytoscape [44].

2.7. Analysis of Survival Outcome of Patients with Pancreatic
Cancer. *e relationship between the survival outcome of
PC patients and the expression levels of FDY003 targets were
assessed using the Kaplan–Meier Plotter [45], a widely used
comprehensive online database that integrates large-scale
gene expression profiles and the survival information of
patients with various cancer types obtained from the Gene
Expression Omnibus (GEO) [46], European Genome-Phe-
nome archive (EGA) [47], and *e Cancer Genome Atlas
(TCGA) [48]. *e survival analysis was performed using the
auto-selected best cutoff, and the results with p< 0.05 (log-
rank test) were considered statistically significant.

2.8. Determination of Functional Enrichment of the FDY003
Targets. Functional enrichment of the FDY003 targets in
terms of gene ontology (GO) and pathway was determined
by uploading them into g:Profiler [49].

2.9. Investigation of Molecular Docking Activity. *e struc-
tural data for the phytochemical components of FDY003 and
their interacting targets were collected from the RCSB
Protein Data Bank [50] and PubChem [28], respectively.*e
binding affinities of the interactions between the phyto-
chemical components and the targets were determined using
the scores for their molecular docking calculated using
AutoDock Vina [51]. *e phytochemical component-target
pairs with molecular docking scores of ≤−5.0 were con-
sidered to have high binding affinities [52, 53].

3. Results

3.1. Exploration of the Inhibitory Activity of FDY003 on
Pancreatic Cancer. To determine the anticancer properties
of FDY003 for PC, we monitored the changes in the viability
of PANC-1 cells treated with FDY003 in the presence or
absence of gemcitabine, an anticancer drug clinically used
for treating PC [54]. We found that FDY003 decreased the
viability of PANC-1 cells and further enhanced the anti-
proliferative effect of gemcitabine (Supplementary
Figure S1(a) and S1(b)), indicating the anti-PC potential of
FDY003.

3.2. Identification of the Active Phytochemical Components of
FDY003 and eir Interacting erapeutic Targets. We
considered the active phytochemical components of
FDY003 as those satisfying the following parameters: drug-
likeness ≥0.18, Caco-2 permeability ≥−0.4, and oral bio-
availability ≥30%, as previously suggested (Supplementary
Table S1) [9, 14, 20, 23]. In addition, some of them were
included in the list of active components despite not fully
meeting the corresponding requirements. *us, 18 phyto-
chemical components were found to be active in FDY003
(Supplementary Table S2). Afterward, we obtained 270 ther-
apeutic targets based on the structural information of the active

components of the herbal drug of which 123 were associated
with PC pathophysiology (Supplementary Table S3).

3.3. Network-Based Investigation of FDY003 Mechanisms for
Pancreatic Cancer Treatment. To conduct a network-based
investigation of the anti-PC mechanisms of FDY003, we
built an H-C-T network by merging and integrating large-
scale FDY003-associated data. *e network contains 142
nodes (three herbal medicines, 16 active components, and
123 PC-associated targets) and 261 links between them
(Figure 1 and Supplementary Table S3). Quercetin, luteolin,
and kaempferol were the components with the largest number
of targets (Figure 2 and Supplementary Table S3), implying
their crucial role in conferring the pharmacological effects on
FDY003. Of note, 48.8% of the targets (60 out of 123 targets)
were targeted by two or more phytochemical components
(Figure 1), which suggests multiple component-multiple
target polypharmacological activities of FDY003.

Because the drugs exhibit their therapeutic activities by
modulating the interactions with genes and proteins asso-
ciated with disease mechanisms [55–59], we generated a PPI
network using the PC-associated targets of FDY003 as nodes
(Figure 2). By investigating the topological features of the
PPI network, we identified high-degree hub nodes that are
reported to exert functional significance and act as effective
drug targets [60, 61]. According to previous findings, nodes
were determined to be hubs if their degrees were twice or
greater than the average node degree [62, 63]. *us, the hubs
in the network were AKT1, CTNNB1, EGFR, HSP90AA1,
IL-6, JUN, MAPK1, MAPK3, PIK3CA, PIK3R1, SRC,
STAT3, TNF, TP53, and VEGFA in the PPI network
(Figure 2); this result suggests that these targets may play key
roles in mediating the anti-PC effects of FDY003. We further
found that the hub targets are potential predictors of the
survival rates of patients with PC (Figure 3), which suggests
their prognostic importance.

3.4. Functional Investigation of Antipancreatic Cancer
Mechanisms of FDY003. To dissect the system-level mech-
anisms that underlie the therapeutic activities of FDY003
against PC from the perspective of molecules and pathways,
we investigated the functional enrichment of PC-associated
targets of FDY003. *e analysis indicated that the targets
may participate in the regulation and coordination of cell
growth and proliferation, cell cycle process, survival, and
apoptosis (Supplementary Figure S2). Moreover, the
FDY003 targets acted as key components of various path-
ways related to the pathophysiology and signaling mecha-
nisms of PC (Figure 4 and Supplementary Figure S2).

*ese functional analysis results show the system-level
mechanisms underlying the anti-PC activity of FDY003
from the molecular- and pathway-level points of view.

3.5. Investigation of Binding Activities between the FDY003
Targets and eir Interacting Phytochemical Components
Using a Molecular Docking Analysis. To determine the
binding affinities between the targets of FDY003 and their
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interacting phytochemical components, we conducted a
molecular docking analysis. *e analysis results indicated
that the docking scores of phytochemical components and
their hub targets were less than −5.0 (Figure 5 and Sup-
plementary Figure S3), implying their strong binding
potential.

4. Discussion

Although the therapeutic use of herbal drugs against PC has
drawn growing attention [5–8], their complex poly-
pharmacological properties have not been clearly under-
stood. Here, we investigated the anti-PC activities of

Figure 1: *e herbal medicine-phytochemical component-target network for FDY003. Green nodes, herbal medicines; red nodes, active
phytochemical components; blue nodes, pancreatic cancer-associated targets.

Figure 2: *e protein-protein interaction network for the pancreatic cancer-associated targets of FDY003. Purple nodes, hub targets.
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Figure 3: Survival analysis of the FDY003 targets. Kaplan–Meier curves analyzing the survival of patients with pancreatic cancer according
to the expression levels of the indicated FDY003 targets.
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FDY003 and its underlying mechanisms in a systematic
manner based on network pharmacology approaches.
FDY003 decreased the viability of human PC cells and
strengthened their pharmacological responses to chemo-
therapeutic agents. Network pharmacological analysis in-
dicated that FDY003 possesses 16 active phytochemical
components and 123 PC-related pharmacological targets.
Functional enrichment analysis revealed that the PC-related
targets of FDY003 were found to participate in the regulation
of cell growth and proliferation, cell cycle process, survival,
and cell death. In addition, FDY003 was shown to target
diverse key pathways associated with PC pathophysiology,
namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF,
p53, HIF-1, and Ras pathways. Overall, the findings suggest
that the anticancer effectiveness and underlying pharma-
cological mechanisms of FDY003 are potentially suitable for
PC treatment.

*e key target genes and proteins of FDY003 are re-
ported to be strongly linked to PC pathomechanisms and
potentially effective targets for PC therapeutics. *e un-
controlled activation of the oncogenic kinase, Akt1 (encoded
by AKT1), promotes pancreatic tumorigenesis and cancer
progression; this kinase is a potential therapeutic target, and
its expression levels and genetic polymorphisms are related
to the survival, prognosis, and onset of cancer-associated
disorders in patients with PC [64–69]. β-Catenin (encoded
by CTNNB1) is upregulated in the tumor tissues of patients
with PC and induces carcinogenesis, invasiveness, metas-
tasis, angiogenesis, and therapeutic sensitivity of PC cells
and tumors [70–74]. *e oncogenic receptor tyrosine kinase
epidermal growth factor receptor (EGFR; encoded by EGFR)
is a predictor of sensitivity to anticancer agents and prog-
nosis in patients with PC, and targeting it may suppress the

angiogenesis, growth, metastasis, proliferation, and stem-
ness of PC cells and tumors [75–78]. HSP90 (encoded by
HSP90AA1) plays a role in the development of therapeutic
resistance in PC, which can be overcome if targeted suffi-
ciently [79, 80]. *e pro-inflammatory cytokine interleukin
(IL)-6 (encoded by IL-6) participates in the modulation of
proliferation, migration, invasion, growth, oncogenesis,
malignant progression, therapeutic resistance, tumor mi-
croenvironment, and remodeling of PC cells and tumors; the
cytokine is further correlated with the survival, prognosis,
tumor aggressiveness and metastasis, and occurrence of
cancer-related complications of patients with PC [81–86].
*e proto-oncogene c-Jun (encoded by JUN) is a potent
contributor to the chemoresistance of PC, and its phar-
macological modulation can enhance the sensitivity of an-
ticancer therapeutics [87–89]. Targeting the extracellular
signal-regulated kinase 1 (ERK1; encoded by MAPK3) and
ERK2 (ERK2; encoded by MAPK1) may suppress diverse
protumorigenic cellular phenotypes such as carcinogenesis,
proliferation, angiogenesis, survival, metastasis, migration,
invasion, and epithelial-to-mesenchymal transition (EMT)
of PC cells and further alleviate resistance to anoikis and
chemotherapeutics [90–95]. In addition, the expression
levels of phosphorylated Akt and ERK may be associated
with therapeutic and prognostic implications in patients
with PC [96]. PIK3CA is involved in the initiation, migra-
tion, invasion, progression, and chemoresistance of PC cells
[97–100]. PI3KR1 expression is associated with lym-
phangiogenesis, lymphatic metastasis, and survival in PC
[101, 102]. Src (encoded by SRC) is an oncogenic kinase that
regulates EMT, migration, invasion, cell adhesion and
spreading, metastasis, stem-like features, proliferation,
growth, angiogenesis, and survival of PC cells, and its

Figure 4: *e herbal medicine-phytochemical component-target-pathway network for FDY003. Green nodes, herbal medicines; red nodes,
active phytochemical components; blue nodes, pancreatic cancer-associated targets; orange nodes, pancreatic cancer-associated pathways.
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Figure 5:Molecular docking assessment of the pancreatic cancer-associated targets and the interacting active phytochemical components of
FDY003. (a) Cordycepin-IL-6 (score� −6.1). (b) Isorhamnetin-AKT1 (score� −6.4). (c) Kaempferol-AKT1 (score� −6.9). (d) Kaempferol-
EGFR (score� −8.1). (e) Kaempferol-JUN (score� −9.3). (f ) Kaempferol-MAPK1 (score� −7.3). (g) Kaempferol-MAPK3 (score� −8.4).
(h) Kaempferol-SRC (score� −8.6). (i) Kaempferol-STAT3 (score� −7.8). (j) Kaempferol-TP53 (score� −8.9).
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expression and activity are further correlated with the
survival, progression, and therapy response rate of patients
with PC [103–114]. Signal transducer and activator of
transcription (STAT)-3 (encoded by STAT3) induces ini-
tiation, progression, proliferation, metastasis, angiogenesis,
EMT, self-renewal stemness, migration, invasion, immune
escape, and resistance to anoikis, chemotherapy, and ra-
diotherapy of PC cells, and its activation is associated with
poor prognosis of patients with PC [115–121]. Tumor ne-
crosis factor-α (TNF-α; encoded by TNF) plays a crucial role
in the pathological process of PC by regulating angiogenesis,
metastasis, proliferation, pro-tumorigenic inflammation,
chemoresistance, and immune evasion of PC cells, and
increased expression levels are associated with enhanced
cancer risk, tumor stage, lymph node metastases, cancer-
associated symptoms, and poor prognosis of patients with
PC [122–126].*e genetic and activity status of TP53 is a key
determinant of survival outcomes, recurrence, and disease
progression of PC [127–129]. Vascular endothelial growth
factor-A (VEGF-A; encoded by VEGFA) is closely involved
in the angiogenesis of PC cells, and previous clinical studies
have reported the relationship between its expression status
with cancer grade and stage, tumor aggressiveness and
metastasis, and prognostic and survival outcomes of patients
with PC [130–134].

FDY003-targeted signalings are crucial pathways in PC
pathomechanisms. *e 5′ adenosine monophosphate-acti-
vated protein kinase (AMPK) and mammalian target of
rapamycin (mTOR) pathways contribute to PC carcino-
genesis and its malignant progression by enhancing survival,
invasiveness, angiogenesis, proliferative growth, EMT,
chemo- and radio-sensitivity, autophagy, stemness, and
immune evasiveness of PC cells [135–140]. *e cyclic
adenosine monophosphate (cAMP) pathway regulates
various protumorigenic processes such as migration, inva-
sion, cell cycle progression, proliferation, stem-like ability,
and metastasis of PC cells [141–144]. *e oncogenic
erythroblastic leukemia viral oncogene homolog (ErbB),
focal adhesion, mitogen-activated protein kinase, phos-
phoinositide 3-kinase (PI3K)-Akt, and Ras signaling path-
ways are the key pathways responsible for the various
mechanisms involved in the pathological processes of PC
cells and tumors, and they have important roles as effica-
cious targets and biomarkers for survival and therapeutic
response rate in patients with PC [145–151]. *e forkhead
box O (FoxO) pathway modulates stem cell-like and tu-
morigenic properties, metastatic potential, anchorage-in-
dependent growth capacity, and EMT of PC cells, and the
loss of its expression is associated with carcinogenesis, large
tumor mass, tumor invasion and metastasis, and shorter
survival time of patients with PC [152–156]. *e hypoxia-
inducible factor-1 alpha (HIF-1α) pathway is a crucial
regulator of cellular adaptation of PC cells to hypoxia, and its
abnormal activity may induce tumorigenesis and develop-
ment of PC by promoting uncontrolled survival and growth,
metabolic reprogramming, desmoplasia, immune evasion,
autophagy, EMT, invasion and metastasis, stem-like tu-
morigenicity, angiogenesis, and radioresistance and che-
moresistance of PC cells [157, 158]. *e IL-17 pathway

accelerates tumorigenic and metastatic potential, and its
activity serves as a predictor of PC prognosis and the efficacy
of anticancer agents [159–162]. *e Janus kinase (JAK)/
STAT pathway is involved in carcinogenesis, development,
growth, metastatic and angiogenic behaviors, immune
surveillance, growth, stemness, anoikis resistance, EMT,
treatment resistance, and invasion andmigration of PC cells,
while its activation is related to the reduced survival of
patients with PC [115–121, 163, 164]. Dysregulation of the
nuclear factor kappa B (NF-κB) pathway is associated with
reduced survival of patients with PC, and it has been
considered as a promising target to suppress carcinogenicity,
angiogenesis, malignant inflammation, metastasis, growth
and proliferation, stem cell-like characteristics, and thera-
peutic resistance phenotypes of PC cells [165–167]. *e
genetic, epigenetic, transcriptional, translational, and post-
translational loss of function of the tumor-suppressor p53
pathway may induce diverse cancerous cellular phenotypes
of PC cells such as oncogenesis, metastasis, invasion, mi-
gration, EMT, proliferation, cell adaptation, and plasticity,
and its functional restoration and activation not only inhibit
the aforementioned pro-tumorigenic cellular processes but
also induce antitumorigenic senescence and cell cycle and
growth arrest of PC cells [119, 168–172]. Furthermore, the
p53 pathway may have clinical significance because of its
potential role as an indicator of progression, recurrence,
and survival of patients with PC [127–129]. *e pro-
grammed death-1 (PD-1)/programmed cell death ligand 1
(PD-L1) pathway is the primary site of cancer immuno-
therapy, and its activity and expression may predict
prognosis, treatment sensitivity, immune response, inva-
sion, metastasis to lymph nodes and distant sites, and
appearance of adverse events and cancer symptoms of PC
[173–177]. *e TNF pathway contributes to not only the
cancer-promoting inflammation of PC cells but also to
their metastasis, immune surveillance, treatment resistant
capacity, and angiogenic activities, and its expression and
activation profiles are related to the risk of cancer in-
duction, prognosis, metastasis, and cancer severity in pa-
tients with PC [122–126]. *e toll-like receptor pathway
participates in the coordination of cancerous cellular
processes, including angiogenesis, stromal inflammation,
tumorigenesis, proliferation, invasion, migration, angio-
genesis, survival, and death of PC cells, and its signaling
components are associated with the prognostic survival of
patients with PC [178–183]. *e VEGF pathway is the key
target for antiangiogenic therapeutic strategies for PC
treatment because of its potent protumorigenic angiogenic
and metastatic properties [130–134].

*e active phytochemical components of FDY003 have
been previously shown to have potent anti-PC pharmaco-
logical roles. Chrysoeriol exerts pro-apoptotic effects on PC
cells by targeting the survival-promoting protein B-cell
lymphoma 2 (Bcl-2) [184]. Cordycepin inhibits the growth
and survival of PC cells by modulating fibroblast growth
factor receptor 2 (FGFR2), extracellular signal-regulated
kinase (ERK), and mitochondrial signaling [185, 186].
Eriodyctiol (flavanone) inactivates theMAPK, FAK, and Akt
pathways to induce cell cycle arrest and apoptosis of PC cells
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[187]. Isorhamnetin possesses antiproliferative, growth-arrest
promoting, and antimigratory capabilities that are mediated by
the regulation of the Ras/MAPK pathway in PC cells [188].
Kaempferol plays a crucial role in the regulation of the activities
of Akt/mTOR, EGFR, ERK, Src, Bcl-2, caspase, PARP, TGM2,
and ROS cascades, which leads to the suppression of survival,
chemoresistance, and migration abilities of PC cells [189–192].
Luteolin induces apoptosis and chemosensitization but sup-
presses EMT, invasiveness, and angiogenesis of PC cells by
targeting EGFR, Ras, GSK3-beta, IL-6, NF-κB, STAT3, DPYD,
VEGF, MMP, MMP, caspase, Bcl-2, PARP, and mitochondrial
pathways [193–198]. Quercetin facilitates growth suppression,
apoptosis, and chemosensitivity while inhibiting self-renewal
ability, stemness, angiogenesis, metastasis, migration, invasion,
proliferation, and EMT of PC cells, which are coordinated
through the modulation of EGFR, RAGE/PI3K/Akt/mTOR,
NF-κB, ALDH1, EGFR, IL-6, STAT3, SHH, TGF-beta1,
Smad2/3, Snail, and p-glycoprotein cascades [198–204]. β-Si-
tosterol targets NF-κB, Bcl-2, and Akt/GSK3-beta pathways,
and this effect downregulates EMT, growth, proliferation, cell
cycle progression, and survival of PC cells [205].

5. Conclusion

In summary, our network pharmacology study provides a
comprehensive understanding of the systematic mecha-
nisms underlying the anti-PC effects of FDY003. FDY003
decreased the viability of human PC cells and strengthened
their pharmacological responses to chemotherapeutic
agents. Network pharmacological analysis of FDY003
revealed its active phytochemical components and their
targeted genes, proteins, and PC-associated pathways, as
well as the polypharmacological molecular mechanisms of
the herbal drug. Further research is needed to determine the
therapeutic role of FDY003 in key protumorigenic cellular
processes such as cancer cell metastasis, angiogenesis, and
self-renewal stemness potential to enlarge the application of
herbal drugs as cancer therapeutics.
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