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Traumatic brain injury (TBI) can result in acute cognitive deficits and diffuse axonal

injury reflected in white matter brain network alterations, which may, or may not, later

recover. Our objective is to first characterize the ways in which brain networks change

after TBI and, second, investigate if those changes are associated with recovery of

cognitive deficits. We aim to make initial progress in discerning the relationships between

brain network changes, and their (dys)functional correlates. We analyze longitudinally

acquired MRI from 23 TBI patients (two time points: 6 days, 12 months post-injury) and

cross-sectional data from 28 controls to construct white matter brain networks. Cognitive

assessment was also performed. Graph theory and regression analysis were applied to

identify changed brain network metrics after injury that are associated with subsequent

improvements in cognitive function. Sixteen brain network metrics were found to be

discriminative of different post-injury phases. Eleven of those explain 90% (adjusted R2)

of the variability observed in cognitive recovery following TBI. Brain network metrics that

had a high contribution to the explained variance were found in frontal and temporal

cortex, additional to the anterior cingulate cortex. Our preliminary study suggests that

network reorganization may be related to recovery of impaired cognitive function in the

first year after a TBI.
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INTRODUCTION

Traumatic brain injury (TBI), which frequently involves white matter connectivity damage, is the
leading cause of morbidity, death among children, and individuals under the age of 45 (1, 2). Every
year in England and Wales, around 1.4 million patients attend hospital after sustaining a recent
head injury, which represents 10% of all emergency admissions (3). Although, mild TBI (mTBI)
patients usually make good recoveries, a significant proportion experience persistent cognitive
deficits (4).

Diffuse axonal injury (DAI), one of the most common pathologies in TBI (5, 6), is triggered
by mechanical disruption of axons, resulting in complex, and diverse effects on brain function
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(7). Diffusion tensor imaging (DTI) is particularly suited to the
study of DAI and has been used to investigate white matter
brain connectivity changes after TBI (8, 9). To understand how
widespread DAI lesions affect brain function, it may be necessary
to analyze the global impact of these lesions on the whole-brain
network (9).

Interpreting widespread network changes is challenging.
Network neuroscience techniques (e.g., graph theory) allow the
description and analysis of human brain network properties and
have successfully been applied in cognitive neuroscience (9–11).
Those techniques used anatomically defined gray matter regions
as nodes and a measure of association (e.g., number of tracts,
mean diffusion along tracts, etc.) between pairs of nodes based
on the white matter tracts or edges connecting them (12). Those
tracts can be estimated from tractography techniques or extracted
from white matter atlases. All pairwise associations between
regions are compiled in a connectivity matrix. The approach
offers alternative analysis of how brain network changes may lead
to cognitive variability over time.

Despite the importance of understanding temporal variability,
most TBI studies are cross-sectional in design, which has limited
value in understanding longitudinal recovery (13). Since TBI is
a heterogeneous disorder with a dynamic behavior, longitudinal
studies are vital to capture brain changes over time, and establish
longitudinal relationships (13, 14).

In this study, we identified brain network properties that
change over the first 12 months after a TBI using longitudinally
acquired data and investigated if these properties relate to
changes in cognitive functioning.

MATERIALS AND METHODS

Data Acquisition and Subjects
Twenty-three TBI patients were scanned twice on a 3T
MRI scanner (Phillips Achieva MRI) initially a mean of 6

TABLE 1 | Clinical data of controls and patients with mild or moderate TBI.

Clinical data Controls Mild TBI patients Moderate TBI patients All TBI patients Controls vs. patients

GCS - Med = 14 Med = 12 Med = 14 -

IQR = 14–15 IQR = 10–12 IQR = 13.5–15

LOC (min) - Med = 1 Med = 3 Med = 1 -

IQR = 0–4.5 IQR = 1–10 IQR = 0–5

PTA (h) - Med = 0 Med = 4 Med = 0.5 -

IQR = 0–1.75 IQR = 1–240 IQR = 0–3

NART Med = 112.5 Med = 105.5 Med = 105 Med = 105 p = 0.053

IRQ = 106.8–115 IQR = 92.5–116 IQR = 105–105 IQR = 93–105

Age Med = 37.5 Med = 35.5 Med = 38 Med = 36 p = 0.933

IRQ = 27.25–51 IQR = 26.8–48.5 IQR = 24–53 IQR = 25–51

Level of education Med = 10 Med = 9 Med = 9 Med = 9 p = 0.868

IRQ = 9–14 IQR = 9–14 IQR = 9–14 IQR = 9–14

Sex 22 (M) 15 (M) 3 (M) 18 (M) p = 1

6 (F) 3 (F) 2 (F) 5 (F)

The p-values of the statistical tests to compare if both groups (controls vs. patients) matched in NART, age, level of education, or gender are presented in the last column. p-value at an

alpha value of 0.05. Additional abbreviations to those defined in the main paper: LOC, Loss of Consciousness; PTA, Post-Traumatic Amnesia.

days after injury (early phase) and again 1 year later (late
phase). The study protocol consisted of structural T1-weighted
sequences [magnetization-prepared rapid-acquisition gradient
echo, repetition time (TR) = 8.1ms, echo time (TE) = 4.6ms,
matrix size 240 × 216 × 180, isotropic 1mm resolution] and
diffusion-weighted images (TR/TE = 2,524/71ms; 24 slices;
b = 0; 1000 s mm–2; 16 diffusion directions; 2 × 2 × 6
mm3 resolution), and it was consistent across all sessions.
Acquisition methods have been described previously, as has the
effect of injury on the basic DTI-derived metrics in these same
participants (15). Patients were classified as mild or moderate
TBI based on Glasgow Coma Scale (GCS). Five patients had
moderate TBI [Glasgow Comma Sale (GCS): median = 12, IQR
= 10–12] and 18 had a mild TBI (GCS: median = 14, IQR
= 14–15) (Table 1). Twenty-eight healthy controls matched for
age, gender, level of education, and National Adult Reading Test
(NART, a proxy for pre-injury educational status) were scanned
once. Detailed description of imaging protocols and subject’s
clinical data (e.g., age, gender, level of education, NART, injury
mechanism, Glasgow coma scale, loss of consciousness, and
post-traumatic amnesia) can be found in Croall et al. (15) and
Extended Data (Tables S1, S2, S3).

DTI Data Processing
Fiber orientation reconstruction was carried out using FMRIB
Diffusion Toolbox to create fractional anisotropic (FA) images.
FA images were then normalized to standard space by a
combination of linear and non-linear transformations (Figure 1)
(16). All registrations were visually inspected. In standard space,
tracts from the recently published structural connectome atlas
space were projected to each individuals’ FA image using DSI
Studio (http://dsi-studio.labsolver.org) (17). This atlas contains
550,000 white-matter tracts verified manually by experienced
neuroanatomists (17). Mean FA along the paths between each of
the 90 regions of the AAL atlas were computed and saved in a
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FIGURE 1 | Processing pipeline. (A) Input data comprise FA and T1-weighted images and neuropsychological tests. (B) Connectome and AAL atlases were mapped

to each individual FA image in ICBM-152 space. Mean FA along the tracts of the connectome atlas between the AAL regions was computed to create a connectivity

matrix for each individual. (C) Network metrics were calculated from those matrices. (D) Statistical tests and genetic algorithm based random forest method (GARF)

were used to classify patients in different TBI post-injury phases and, thus, identify the network metrics assessing changes following TBI. The change over time of

those metrics, 1X, were further investigated to explain changes in cognitive function, 1Y, using regression models. The change in cognitive function, 1Y, represents

the change of the principal components obtained after applying PCA to the neuropsychological tests.

connectivity matrix for each individual. This approach is inspired
by a previous TBI study (18).

Network metrics were estimated from the connectivity
matrices to quantify network integration, segregation, centrality,
and resilience to perturbations (19). A detailed description of
all network metrics is available in Table S4 in the Extended

Data. Network integration and segregationmeasures describe the
ability of a network to integrate information from distributed
regions and the ability for local specialized information
processing, respectively. Examples of those metrics are strength
(the sum of all connection strengths to a given region), local
clustering coefficient (measure the connectedness of neighbors
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of a region), local efficiency (the inverse of the average shortest
path length of a node to their nodes), local assortativity (measure
the contribution of a region to maintain the integration of
information in the network after disruption), eigenvector and
page rank centrality (measure the influence of a region has on
a network), betweenness centrality (measure how often a region
is traversed by the shortest paths in the network), and closeness
centrality (measure the average shortest path of a region to all
other regions in the network). More detailed descriptions are
provided in references (19).

Lesions Probability Map
Lesion masks were manually drawn for 19 patients by a
neurosurgeon on the baseline scans, as described in Aribisala et
al. (20). Lesion masks are defined as a binary mask where the
lesioned voxels are labeled as 1 and the remaining voxels are
labeled as 0. The masks include any visible contusion, hematoma,
or edema. Visible lesions were not present for the remaining
four patients. Lesion masks were then co-registered to the
MNI-152 space using the warp fields of T1-MRI registration to
standard space, which was conducted with linear and non-linear
transformations in FSL (16).

To create a probability map, lesion masks were summed, and
normalized to 0–100% range with 100% (0%) indicating the
presence of a lesion in all (no) patients. Due to the heterogeneity
of TBI, we applied a threshold to keep the most prevalent lesions
and remove more sporadic ones. Therefore, only the lesions
observed in at least three patients were considered.

We additionally calculated the Sørensen–Dice similarity
coefficient to measure the overlap/similarity ratio of the Lesions
Probability Map as an ROI with each AAL ROIs. This allowed
us to inspect the impact of injuries to the observed changes in
network metrics at a region level in our cohort.

Components of Cognitive Function
Patients and controls underwent a full battery of standardized
neuropsychological tests sensitive to cognitive impairments

in mild TBI at each time of scanning. The tests included
assessments of attention, memory, executive functions, and
semantic knowledge. Due to missing data for some follow-up
assessments, we restricted our analysis to the following tests:
Speed of Information Processing (SOIP), Paced-Auditory-Serial-
Addition Test (PASAT), D-KEFS Color-Word-Interference Test
(CWIT), and List Learning (21–23). Early and late post-injury
neuropsychological scores were compared with controls by
inferential tests with false discovery rate (FDR) correction.

Following Irimia et al. (24) and Kuceyeski et al. (25), principal
component analysis (PCA) was used to combine multiple
cognitive scores in a set of principal components that maximize
the variance of the neuropsychological tests and represent main
cognitive functions. Since PCA is sensitive to skewness (26),
cognitive scores with z-skewness higher than 1.96 were prior
transformed using Box-Cox transformation (27).

Network Metrics Selection and Association
With Cognitive Function
We conducted a two-step feature selection to identify the most
discriminative network metrics between different TBI phases
using R (http://caret.r-forge.r-project.org/). This allowed us to
identify a set of network metrics that changed over time and
we interpreted as being causally related to the injury. Since the
two-step feature selection was a cross-sectional analysis, a sample
size of 46 was used (i.e., 23 samples for each TBI phase/time point
or class).

Finally, using a regression model, we investigate how changes
in those network metrics may be predictive of cognitive function
over time.

Connectivity Metrics of MTBI
Initially, we used inferential tests to rank standardized network
metrics that differed significantly between mTBI patients in the
early and late post-injury phases. Following Thatcher et al. (28),
Barik et al. (29), and Haury et al. (30), correction for multiple
comparison was considered not relevant as the goal of this

FIGURE 2 | Network metrics that showed strongest power in discriminating between early and late post-injury time phases: strength in left posterior and right

cingulum, Eigenvector centrality in left middle temporal; Page Ranks centrality in left inferior temporal and left orbital medial frontal; Local Assortativity in right pallidum,

left rectus, left orbital superior frontal, left olfactory, and left medial superior frontal; Clustering Coefficient in right orbital superior frontal; Betweenness Centrality in right

thalamus and left medial superior frontal; Local Efficiency in right anterior cingulum and left medial superior frontal and Closeness Centrality in left medial superior

frontal. Colors illustrate the network metrics identified in each region. L, Left Side; R, Right Side.
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step was to reduce the number of features by separating the
most significant metrics from the less significant and not draw
inferential conclusion.

In the second step, a cross-sectional and multivariate
study was conducted to select combinations of the previously
selected metrics that best discriminate between patients in
early or late post-injury time phases. To that end, a 5-fold
cross-validation with genetic algorithm random forest (GARF)
approach was used to classify patients in the different TBI phases.
Although classification algorithms are often used to generate
predictive models, our main intention was to identify the most
discriminative network metrics between TBI phases. We opted
to use GARF as it boosts the Random Forests performance
while reducing considerably the number of metrics needed for
classification (31).

Longitudinal Analysis
After identifying network metrics discriminating between
different TBI phases, we investigated their association with
cognitive score. This was achieved by a linear regression model,
as described in the following equation:

1Y = β0 + β11X1 + β21X2 + · · · + βN1XN (1)

where 1 represents the difference between late and early post-
injury data for the N standardized network metrics (X) and the
new neuropsychological score obtained by PCA (Y). The fitting
of the linear regression model was achieved using stats package
in R, which uses the least-squares method to minimize the sum of
the squares of residuals. Initially, we included all selected network
metrics in the linear regression model. However, to overcome
multicollinearity and remove unnecessary metrics, we discarded,
at each round, the metric with the highest p-value, until the
regression model and its coefficients were statistically significant.

Experimental Design and Statistical
Analysis
Inferential statistical tests were used to compare
neuropsychological scores, PCA components, and network
metrics for both groups. Depending on whether parametric
assumptions were satisfied, paired t-test or Wilcoxon signed-
rank and independent t or Mann–Whitney U were used at
a significance level of 5%. In multiple comparisons, FDR
correction was applied at a significance level of 5%.

The regression model was evaluated by normalized root mean
square error (nRMSE), adjusted R2, and residuals inspection. To
verify whether some of the underlying assumptions of regression
had been violated, variance inflation factor (VIF) was used to
identify multicollinearity among regression network metrics, and
the inspection of residuals included the analysis of the scatter
plot of residuals vs. predicted scores, lag, and normal probability
plots of residuals. F test was used to test the null hypothesis that
the fitting either using intercept-only model or our proposed
regression model is the same. The rejection of the null hypothesis
suggests a better fitting by the proposed model and its predictors.

The final regression model was investigated to examine
the presence of bias, overfitting, and the significance of the

network metrics selected by GARF. The former was achieved
by randomly selecting 20 patients for training and three for
testing. We ran this analysis 1,000 times and tested different
split sizes (20–3, 18–5, 19–4, etc.). The significance of the
network metrics selected by GARF was assessed by random
selection of metrics followed by fitting of a linear regression
model to predict changes in new neuropsychological score.
The network metrics were selected from the set obtained
in the first step of feature selection. We ran this analysis
1,000 times and, for each run, computed the nRMSE, and
adjusted R2.

Data Accessibility
Data and code will be made available after acceptance of
the manuscript.

RESULTS

Network-Based Metrics of MTBI
The GARFmodel selected a total of 16 network metrics involving
12 brain regions and showed a 5-fold cross-validation accuracy
of 83.3%, confirming robust discrimination between early and
late post-injury time phases. Figure 2 shows the brain regions
and properties that were selected by the model, with a majority
located in the fronto-temporal cortex.

FIGURE 3 | Cognitive function component (CFC) for all subjects. The light

gray lines display the change of CFC between early and late post-injury

phases display for each patient. Significant differences were found between

early post-injury CFC and both controls (p-value = 0.001) and late post-injury

CFC (p-value < 0.001). As expected, no significant difference was observed

between controls and late post-injury CFC (p-value = 0.268), due to the

recovery of most patients.
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Cognitive Function Assessment
Inferential statistics were used to compare cognitive functioning

between patients in early or late post-injury phase along with
controls (Figure 3). Cognitive functioning was assessed by
PCA to reduce Type 1 errors commonly found in multiple

statistical comparisons. This approach resulted in one main
component, explaining 62.3% of the variance. PASAT and

CWIT showed the highest weightings/contributions to the first

PCA component, supporting the interpretation that the first
PCA component predominantly represents executive functions.

For ease of interpretation, we will refer to the first PCA
component as cognitive function component (CFC). In our

recent study, CFC showed to be correlated with a multivariate
measure for intrinsic injury severity (32). An increase over

time in CFC suggests an overall improvement of cognitive

function. A total of 18 patients showed an increase in cognitive

functioning at 12 months, four showed a low decay, while
one did not show change in its cognitive functioning over
1 year.

Patients did not show significant differences in the
CWIT inhibition trial when compared with controls. In
contrast, they showed significant disability in reading and
naming colored patches, as quantified by the baseline
trials of CWIT. Since reading and naming also involve
cognitive pathways (33, 34), we include those measures in
the PCA.

Longitudinal Relationships Between
Network-Based Metrics of MTBI and
Cognitive Functions
After identifying the network metrics associated with mTBI,
we performed a longitudinal analysis to investigate associated

FIGURE 4 | Changed network metrics associated with cognitive improvement. Colors in (A) illustrate the network metrics identified in each region and the circles’

radius indicates the importance for prediction based on the standardized coefficients of regression model. The list of network changes associated with changes in

cognitive function were strength in right cingulum; eigenvector centrality in left middle temporal; page ranks centrality in left orbital medial frontal; local assortativity in

right pallidum, left rectus, left orbital superior frontal, left olfactory, and left medial superior frontal; clustering coefficient in right orbital superior frontal; betweenness

centrality in left medial superior frontal; and local efficiency in left medial superior frontal cortices. Red circles in (B) represent regions in which an increase in their

network metrics is negatively correlated with recovery. Possible justifications to these changes are secondary brain injuries, inability to recover after the trauma, or

brain maladaptation. Green circles in (B) illustrate the regions in which an increase in their network metrics over 1 year is positively correlated with improvement,

therefore suggesting brain adaptation or recovery. L, Left Side; R, Right Side.
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FIGURE 5 | Regression model of changed network metrics explains changes

in cognitive function. (A) Bootstrap line (blue) closely approximates to the ideal

line in red (adjusted R2
= 76%), when observed and expected responses are

equal. The vertical lines indicate the prediction standard deviation for each

patient across 1,000 runs. (B) Bootstrap analysis: for each different split size,

we saved the mean predictions after 1,000 runs and repeated this process 10

times. The vertical lines indicate the standard deviation of the adjusted R2 and

nRMSE after repeating the bootstrap analysis 10 times. (C) Distribution of

adjusted R2 and nRMSE by taking random selection of different sets of

discriminative network metrics between early and late post-injury stages

1,000 times.

changes in cognitive performance, namely, in CFC. A significant
multiple linear regression equation (F test: p < 0.0001) was
achieved by a total of 11 significant network metrics between
nine brain regions. All metrics had an acceptable (35) VIF
lower than 10. Figure 4A shows the 11 network metrics with
the greatest power in explaining changes in cognitive function
and their correlation sign with recovery (Figure 4B). The
importance of these 11 features to explain changes in cognitive

function is ranked based on the standardized coefficients
of the regression model, which are available in Table S5 in
Extended Data. From the 11 network metrics identified by
the model, 45% measured local assortativity, and the most
important network change to explain changes in cognitive
function was local assortativity in left medial superior frontal.
For most of the network metrics, late post-injury patients in
our study showed higher or lower median values than controls.
However, an increase on the network metrics was observed
early after the injury in anterior cingulate cortex (ACC) and
gyrus rectus (GR), followed by a normalization to controls
values in the late post-injury phase. The most common of the
network metrics assesses local assortativity. Global assortativity
quantifies the tendency of regions to be connected to regions
with similar strength. A network with positive assortativity
is likely to maintain its ability to integrate information after
disruption (i.e., it is more resilient to insults), as it may contain
interconnected high-strength regions (19). Local assortativity
measures the contribution of each node to network global
assortativity (36).

The linear regression equation proposed in this study showed
an adjusted R2 of 90% and nRMSE of 0.06. These results indicate
that the model explains 90% of the variability found in the CFC
over time in patients. Figure 5A shows the bootstrap line close
to the ideal line, when the observed and expected responses are
equal. This result implies consistency of our model performance
and no presence of overfitting. Similar results were achieved with
different split sizes (Figure 5B). Figure 5C shows the distribution
of nRMSE and adjusted R2 by taking random selections of
different sets of 11 network metrics after the first feature selection
step. The vertical lines correspond to the results of the significant
regression equation. The low p-values suggest that network
metrics in Figure 4A are associated with changes following TBI
and not random variability.

Figure 6A shows the Dice overlap of the AAL regions
assessed by the 11 network metrics with the Probability Map of
Lesions (Table S5; Extended Data). Although most of the areas
showed overlap, frontal brain areas were particularly affected
(Figure 6B).

DISCUSSION

In this preliminary study of 23 patients, we investigated
the existence of longitudinal relationships between changes
in structural connectivity and changes in cognitive function
following TBI. Using graph theory and a regression model,
we identified 11 changes in structural connectivity explaining
90% of the observed variability in cognitive function change
over 1 year. The observed brain reorganization suggests possible
involvement of frontal regions and the anterior cingulate cortex
in cognitive function recovery. The regression model also
combines information from other brain regions, emphasizing
the value of graph-theoretical network-wide perspectives in
cognitive neuroscience.

Limitations of our work include the relatively small size
of our dataset, which reflects the challenges of recruiting

Frontiers in Neurology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 369

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Moreira da Silva et al. Network Reorganization in Traumatic Brain Injury

FIGURE 6 | Lesions overlap with (A) regions associated with cognitive function component (CFC) change and (B) across patients. (A) Dice overlap between Lesions

Probability Map in (B) and AAL regions found to be predictive of changes in cognitive function. Node radius indicates the amount of Dice overlap for the predictive

AAL regions, which can be found in extended data (Figure 4). (B) Lesions Probability Map for different Z voxel coordinates of MNI space, showing the visible

overlapping amount across patients. The lesions are found mainly in the frontal lobe, temporal lobe, and slightly in the anterior cingulate cortex. The colormap ranges

between an overlap of 16 and 32% patients.

large longitudinal cohorts with repeated clinical and imaging
data. Furthermore, the patient imaging and psychological data
were acquired at only two time points, within days of injury
and a year later, so we could not establish the starting and
stopping point for each different reorganization pattern or its
causality. Another limitation in this study is the resolution
of DTI images, which could negatively affect fiber tracking.
We overcome it by a two-step co-registration followed by
quantification of FA values along a connectome atlas. The
pathways comprised in this atlas were manually examined and
labeled by experienced neuroanatomists (17). A similar approach
has also been used in previous severe TBI studies (18). Finally,
our dataset comprises patients with both mild and moderate
TBI, which could potentially prejudice our understanding about
recovery in mild TBI. Using the same dataset, Croall et al.
(15) did not observe any significant differences between patients
with mild or moderate TBI in any diffusion metrics. Since
only one moderate patient had a GCS lower than 10 and
the majority had 12, the moderate group is close to the
milder end of injuries. As in Croall et al. (15), we assume

that these patients have microstructural changes similar to
mild injuries.

Areas Associated With Cognitive Function
The regions identified by our regression model are consistent
with previous cognitive function localization literature (37–42).
For instance, Zhou et al. (43) found WM volume loss in the
left and right rostral anterior cingulum to be correlated with
changes in memory and attention. Furthermore, left medial
superior frontal cortex (MSFC), gyrus rectus (GR), and middle
temporal cortex (MTC) are known to be associated with
specific tasks involved in the neuropsychological tests assessed
in this study, such as auditory verbal attention, scores on
sequencing, semantic retrieval, semantic memory, and semantic
control (44–47). Changes in the left olfactory cortex (OC)
also contributed to the prediction model: to our knowledge,
no cognitive functions are directly supported by it. Although
two patients lost sense of smell, the OC has connections to
both orbitofrontal cortex and basal ganglia and is implicated in
executive function pathways.
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FIGURE 7 | Effect on local disassortativity by changes in regions’ strength. (A,B) indicate some possible mechanisms of local disassortativity change. (A) Local

disassortativity of the red region decreases when the strength differences between red regions and its neighboring regions is reduced. This reduction may occur by

strengthening or weakening of internal connections. When disassortativity decreases, the red region is more assortative. (B) Similarly, local disassortativity decreases

with peripheral weakening or peripheral strengthening. When the red region is connected to other regions with lower strength, disassortativity may decrease by

strengthening of its low-strength neighbors. However, when connected to regions with higher strength, strengthening of those neighbors will increase disassortativity.

(C) Examples on how to calculate local disassortativity for regions colored in red.
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Network Topology Changes Over Time
After MTBI
The network metric changes observed in MTC, pallidum, and
OC showed a positive correlation with 1CFC (Figure 4B).
Those changes suggest strengthening to regions that are highly
connected, which may be a brain response to improve or
establish a “rich-club organization” for information integration
(9), either due to local lesions or disruptions in cognitive
subnetworks. Since the pallidum is highly connected to other
high-connected regions in the brain (39), the increase in
local assortativity suggests that it connects to other similar
regions, preferably high-strength regions (Figure 7A). Similarly,
a positive correlation between an increase of local assortativity
in OC and 1CFC may indicate a strengthening of its
neighbors’ connections involved in executive function circuits,
such as orbitofrontal and basal ganglia (Figures 7B,C) (40).
Some possible explanations for network metric changes, which
are negatively correlated with 1CFC, may be continuous
deterioration, incapacity to recover, maladaptive plasticity, or
compensatory pathways recruitment, which are no longer
required after brain recovery. Increased local assortativity in
MSFC was observed to be negatively correlated with 1CFC
(Figure 4B). Since the MSFC is highly susceptible to injury
(41), internal disconnections may contribute to the reduction in
the average strength differences, which leads to increased local
assortativity (Figures 7A,C).

We observed an increase in early post-injury phase in anterior
cingulate cortex strength and gyrus rectus local assortativity,
followed by a decrease in 1 year. This is in agreement with a
longitudinal study by five, who also observed increased structural
connectivity in a subnetwork within 7 days post-injury in mTBI
patients, including pathways from or to anterior cingulate cortex,
and gyrus rectus.

Conclusion
Our findings demonstrate a longitudinal relationship between
changes in structural brain connectivity and changes in cognitive
functions following TBI. The detailed graph theoretical analysis
suggests that a combination of different network metrics in
distinct brain regions captures most of the longitudinal variance
in cognitive performance.

Future longitudinal investigations should assess patients’
cognitive outcome and brain networks at more time points

to enable personalized predictions of optimal rehabilitation
strategies based on network metrics changes at higher
temporal resolution.
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