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Abstract

Background: Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats
associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most
human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical
length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR) and consequently cell
cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism.
However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis
Congenita (DC) and its severe form Hoyeraal-Hreidarsson Syndrome (HHS) are genetic disorders mainly characterized by
telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and
immunodeficiency.

Methodology/Principal Findings: We studied the telomere phenotypes in a family affected with HHS, in which the genes
implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal.
Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in
length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped
state. In addition, the telomeric 39 overhangs are diminished in blood cells and fibroblasts derived from the patients,
consistent with a defect in telomere structure common to both cell types.

Conclusions/Significance: Altogether, these results suggest that the primary defect in these patients lies in the telomere
structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing
accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres. In addition, it activates
the DDR and impairs cell proliferation, even in cells with normal telomere length such as fibroblasts. This work demonstrates
a telomere length-independent pathway that contributes to a telomere dysfunction disease.
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Introduction

Telomeres are the protective ends of eukaryotic chromosomes

(reviewed in [1–3]). In most eukaryotes, telomeric DNA is

composed of short tandem repeats and it ends with a single-

strand 39 overhang. In mammals, a complex of proteins named

Shelterin binds the single- and double-stranded portions of the

telomeres [1]. Telomeres shorten with each round of DNA

replication, unless a specialized mechanism is present to

compensate for this loss. In most eukaryotes, this compensation

is carried out by the ribonucleoprotein (RNP) complex telomerase

(reviewed in [4]). The telomerase catalytic core essentially

comprises of an RNA moiety and a catalytic reverse transcriptase

(in human, hTR and hTERT, respectively); hTERT copies a short

template region within hTR onto the 39 end of the telomere,

thereby adding telomeric repeats. Telomerase activity and

telomere length are regulated in vivo by additional telomerase

subunits and by the Shelterin complex.

The 39 overhang is a conserved and essential feature of the

telomere [5]. This overhang, with the aid of the Shelterin proteins,

invades an internal position within the telomere, forming a

displacement-loop structure known as a T-loop [6]. The T-loop

structure and the Shelterin complex protect the chromosome ends

from nuclease degradation and suppress the DNA damage

response (DDR), functions generally termed ‘telomere capping’

(reviewed in [1,7,8]). Telomere shortening past a critical length,

shortening of the 39 overhang, or damage to the T-loop structure

or to the Shelterin complex all cause telomere uncapping,
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manifested by the activation of DDR, and cell-cycle arrest or

apoptosis [9–12].

While hTR is constitutively expressed in all human cells,

hTERT is barely expressed in somatic tissues. Even in highly

proliferating cells such as stem cells and stimulated lymphocytes,

which activate hTERT expression, the low levels of assembled

telomerase RNP complexes are normally insufficient to maintain

constant telomere length throughout life and only slow down the

rate of shortening. In this way, telomere length sets a limit to the

number of somatic cell divisions and provides a tumor-suppressing

mechanism. Indeed, most cancer cells activate hTERT expression

to high levels, which are sufficient to preserve constant telomere

length and enable unlimited cell proliferation [13].

Dyskeratosis Congenita (DC) is a genetic disorder associated

with accelerated telomere shortening (reviewed in [14–16]).

Autosomal dominant, autosomal recessive, and X-linked forms

of inheritance are known. DC has diverse clinical manifestations,

including nail dystrophy, reticulate skin pigmentation, mucosal

leukoplakia, and bone marrow failure (the main cause of

mortality). Pulmonary fibrosis and high risk of cancer have also

been associated with DC. Hoyeraal-Hreidarsson Syndrome (HHS)

is a severe variant of DC. In addition to the typical DC symptoms,

it is characterized by severe T+ B2 NK2 immunodeficiency

(depletion of B lymphocytes and NK cells, combined with normal

T lymphocytes counts), neurological developmental defects, and

mortality at an early age [17]. DC and HHS are considered

primarily telomerase-deficiency diseases, in which accelerated

telomere shortening causes telomere uncapping and impaired cell

proliferation. Indeed, tissues primarily exhibiting clinical symp-

toms are those with a high cell turnover, such as bone marrow and

blood lymphocytes, which rely on telomerase to replenish their

telomeres. Mutations in hTR, hTERT, and the box H/ACA

proteins dyskerin, Nop10, and Nhp2 – all integral components of

the telomerase RNP complex – were found in about half of the

classical DC cases [18–22]. Recently, mutations in the gene

encoding the Shelterin component Tin2 (TINF2) were also

implicated in DC [23,24]. In HHS, mostly mutations in the X-

linked dyskerin gene (DKC1) were found [25], though a few other

cases were reported with mutations in hTERT and TINF2 [19,24].

Nonetheless, the genetic defects in nearly half of DC and HHS

patients are still unidentified. All the described mutations, except

for those in Tin2, were shown to reduce the cellular level or

activity of telomerase, and thus cause telomere shortening.

Mutations in Tin2 are also associated with severe telomere

shortening [24].

Recently, a pathogenic dyskerin mutation was reported to cause

DC-like symptoms in mice [26]. Interestingly, although dyskerin is

a telomerase component, this mutation induced DDR and

impaired cell proliferation independent of telomere length.

Together with the recent identification of Tin2 mutations

[23,24,26], these findings suggest that failure to maintain telomere

integrity in DC may arise by more than one pathway [15].

However, no specific telomere defect other than length has been

reported in association with a human disease. In this report, we

describe a family affected by HHS. We excluded mutations in the

genes implicated so far in DC and HHS: DKC1, hTERT, hTR,

NOP10, NHP2, and TINF2. We performed a detailed investigation

of the telomeric phenotype in cells derived from the affected

siblings and found no evidence for reduced level or activity of the

telomerase catalytic core. Yet, telomeres in blood leukocytes were

severely short, consistent with the clinical diagnosis of HHS.

Surprisingly, telomeres in primary fibroblasts were normal in

length. However, despite their normal length, they formed

Telomere dysfunction-Induced Foci (TIFs), indicating a defect in

the integrity of the telomere cap. In addition, the telomeric 39

overhangs were found to be shortened in both blood leukocytes

and fibroblasts derived from the patients. We therefore propose

that the primary defect in this HHS-affected family is not telomere

shortening but, rather, an impaired structure of the telomere.

Results

Clinical symptoms revealed a classical case of Hoyeraal-
Hreidarsson syndrome

The subject of this study was a family with five children, four of

whom were diagnosed with HHS (Figure 1). The parents are

healthy European descendents with no known consanguinity. The

only known medical information that may be relevant is the death

of the brother of the paternal grandfather from pulmonary fibrosis

at the age of 58 (Figure 1: G3). The first sibling (S1), now 25 years

old, is healthy and has no abnormal features. The diagnosis of the

remaining siblings was based on typical clinical and laboratory

features (Table 1), revealing the classical symptoms common to

DC and HHS (nail dystrophy, leukoplakia, and bone marrow

failure) and the typical HHS symptoms (severe T+ B2 NK2

immunodeficiency, intrauterine growth retardation, growth retar-

dation, microcephaly, cerebellar hypoplasia, and esophageal

dysfunction) [25]. Three of the affected siblings died at ages 3–7.

S2, now 22 years old, underwent matched unrelated bone marrow

transplantation, and currently (over three years post-transplanta-

tion) displays normal blood counts and normal immunological

parameters.

Severely short telomeres in blood cells from the affected
siblings

DC and HHS are characterized by severely short telomeres and

impaired cell proliferation. We tested the average telomere length

in peripheral blood leukocytes collected from the family members

by Southern analysis of telomeric restriction fragments (Figure 2A).

Telomeres of the affected siblings S2, S4, and S5 (there was

insufficient S3 DNA for this analysis) were substantially shorter

and showed a wider distribution of telomere lengths compared to

those of the unaffected sibling S1, the paternal grandmother G2,

Figure 1. Genealogical tree of the HHS-affected family. Open
circles and squares represent unaffected females and males, respec-
tively. Black circles and squares represent affected females and males. A
gray square indicates a family member who died from pulmonary
fibrosis. Tilted lines indicate mortality, and the ages of mortality are
indicated underneath.
doi:10.1371/journal.pone.0005666.g001
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and unrelated individuals C1 and C2 used as controls (mean

telomere lengths of 4.4, 3.8, and 5.8 kb, compared to 6.6, 6.6, 9.3,

and 7.2 kb, respectively, as calculated by the computer program

MATELO [27]). Importantly, a significant portion of the S2, S4,

and S5 telomeres were below 3 kb, considered short enough to

trigger DDR and impair cell proliferation [3]. The telomeres of

the parents P1 and P2 and the grandfather G1 were also relatively

short (mean telomere lengths of 5.3, 5.6, and 5.8 kb, respectively)

and had a wide distribution of lengths, although these individuals

were healthy and bore no physical or laboratory abnormalities

attributable to HHS. While such moderately short telomeres may

fall within the variability in the population, they could, given the

short telomeres of their HHS-affected children, indicate the

genetic contribution of both parents to the disease. In particular,

the telomeres of P1, instead of being longer than those of his

parents (average telomere length in leukocytes is normally reduced

with age), are comparable to those of his father (G1) and clearly

shorter than those of his mother (G2), suggesting abnormal

telomere shortening in the clinically unaffected P1. The relatively

short telomeres of P1 and the case of pulmonary fibrosis in the

paternal grandfather’s family (Figure 1: G3) raised the possibility of

paternal transmission of a mutation associated with the disease

from G1 to P1 and to S2–5. We considered the possibility of

paternal autosomal-dominant inheritance accompanied by antic-

ipation – the aggravation of the disease phenotype in successive

generations due to progressively shortening telomeres – as

previously reported for DC [28]. According to this scenario, we

expected the telomeres in sperm cells of the father (P1) to be

shorter than normal. However, the telomeres in the sperm were

comparable to those of the control (data not shown), indicating

that the children did not inherit short telomeres from their father

(P1). Although we cannot exclude maternal autosomal-dominant

inheritance, the relatively short telomeres of both parents and the

apparently normal telomere length in paternal sperm are

consistent with recessive homozygous or compound heterozygous,

rather than dominant heterozygous, inheritance.

The average telomere length of the parents (5.6 and 5.3 kb) was

not dramatically longer than that of the affected siblings (4.4, 3.8,

and 5.8 kb; Figure 2A). Therefore, average telomere length, in and

of itself, cannot explain why the siblings were severely sick while the

parents did not present any clinical signs attributable to telomere

dysfunction (such as mild anemia or weakened immune response).

Since a few critically short telomeres within a cell are sufficient to

trigger DDR regardless of the average telomere length [29], it is

possible that the severely short telomeres (below 3 kb) present in the

affected siblings, but not in the healthy parents (Figure 2A) have a

causal role in the disease. Another possible explanation for the

difference between the healthy parents and the affected siblings is a

telomere defect other than length, which contributes to telomere

uncapping and to the pathology of the disease. Such a telomere

defect in the affected siblings is suggested below.

We next examined whether a few telomeres in the affected cells

are significantly shorter than others by telomere Fluorescent In

Situ Hybridization (FISH) using a fluorescent peptide-nucleic acid

(PNA) probe [30]. We used Epstein-Barr virus (EBV)-infected

lymphoblastoid cell lines (LCLs) prepared from S2 and from an

unrelated individual as a control. Both cultures were established

using the same method and grown for approximately the same

number of population doublings. The FISH procedure, micro-

scope visualization, and image processing were performed side by

side under the same conditions. The FISH signal corresponding to

the telomeres was clearly weaker in the affected cells, as compared

to the control (Figure 2C), indicating that most telomeres in the

affected cells, and not just a small subset of the population, were

significantly short. These results are consistent with a Southern

analysis performed on the same cultures, revealing severely short

telomeres (Figure 2B). Additional Southern analysis of several

independent S2 and control LCLs at different population

doublings showed that the telomeres in the S2 LCLs were severely

short and continued to shorten with cell divisions. In contrast, the

telomeres in the control LCLs were longer, and were stably

maintained or even elongated with cell divisions (data not shown),

as reported previously for LCLs in the pre-immortalized phase

[31]. Although LCLs are not primary cultures and their telomere

length does not necessarily represent the telomere length in the

primary tissue from which they were derived, the continuous

telomere shortening in the affected cells clearly indicates a defect

in telomere length maintenance.

Short telomeres could potentially activate DNA repair mech-

anisms, resulting in telomere fusion, breakage, and chromosomal

rearrangements. Indeed, high frequency of chromosomal aberra-

tions have been previously reported in DC cases [32]. However,

no such aberrations were observed in this case, whether by FISH

of the S2 LCLs (Figure 2C) or by karyotype analysis of metaphase-

chromosome spreads prepared from S2 and S4 primary

lymphocytes (over 50 cells each; data not shown). We thus

conclude that the disease is associated with short telomeres but

apparently not with significant chromosomal instability.

Proliferation of the HHS-affected cells in culture
As described above and shown in Figure 2, severely short

telomeres were found in S2, S4, and S5 blood leukocytes, and in

S2 LCLs. Since short telomeres that hinder cell proliferation are

believed to play a causal role in DC and HHS [33], we followed

the growth rate of three S2 LCLs in culture. Indeed, these cultures

grew two to three times slower than control cells (the growth of one

culture is shown as an example in Figure 3A). Furthermore, while

normal LCLs readily immortalize [31], the S2 LCLs stopped

growing after about 40–50 population doublings, indicating their

limited proliferative potential. We also examined the growth of S2

primary fibroblasts in culture. As reported previously for

fibroblasts derived from DC patients [32], the S2 fibroblasts were

Table 1. Clinical symptoms in the siblings of the HHS-
affected family.

Symptoms\Siblings S1 S2 S3 S4 S5

Skin pigmentation 2 +1 2 2 2

Nail dystrophy 2 + + + +

Leukoplakia 2 + + + +

Bone marrow failure 2 + + + +

T+ B2 NK2 immunodeficiency 2 + + + +

Intrauterine growth retardation 2 + + + 2

Growth retardation 2 2 + + +

Microcephaly 2 + + + +

Cerebellar hypoplasia/dysfunction 2 + + +2 +2

Pancytopenia 2 + + + +

Infections 2 + + + +

Esophageal atresia 2 + +3 +3 +3

1Mild pigmentation was observed.
2Cerebellar hypoplasia was confirmed by imaging.
3History of major difficulties in swallowing solid food; not confirmed by
imaging.

doi:10.1371/journal.pone.0005666.t001
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larger, grew much slower, and stopped growing earlier than

control fibroblasts (Figure 3B). Thus, impaired cell proliferation

may have a major role in the pathology of the disease. In contrast,

we observed normal proliferation of T lymphocytes taken from

patients S2, S4, and S5 in response to the mitogens concanavalin

A and phytohemagglutinin (data not shown), suggesting variable

expression of the defect in different cell lineages. These results are

consistent with the in vivo data showing T+ B2 NK2 type of

immunodeficiency observed in these patients (Table 1), which is

typical of HHS.

Figure 2. Severely short telomeres in the HHS patients. Genomic DNA was prepared from blood leukocytes (A) and EBV-infected
lymphoblastoid cells (B), digested with the restriction endonuclease HinfI, and analyzed by Southern with a telomeric probe. The identity of the HHS-
affected and unaffected individuals is indicated above the lanes by the same labels used in Figure 1. C1 and C2 indicate control samples taken from
healthy unrelated individuals. The ages at which the blood samples were taken for telomere length analysis were (years): C1, 0.5; S5, 4; C2, 6; G2, 66;
S1, 20; G1, 68; S4, 7; S2, 17; P2, 46; and P1, 46. The mean telomere length, calculated by the computer program MATELO [27], is indicated below the
lanes. (C) S2 and C3 (control) LCLs were analyzed by FISH with a telomeric PNA probe. Both cultures grew for about the same population doublings
and were processed side by side under the same conditions.
doi:10.1371/journal.pone.0005666.g002
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The disease is not caused by a mutation in genes
previously implicated in DC

Mutations causing DC were previously found in dyskerin,

hTERT, hTR, Nop10, and recently also in Nhp2 and Tin2; of

those, mutations in dyskerin, hTERT, and Tin2 were also found in

HHS [18–25]. The presence of two affected girls and the random

(normal) X inactivation pattern observed in blood cells taken from

the mother (I. Dokal, personal communication) excluded the X-

linked form of HHS and therefore a causal role for dyskerin.

Genetic linkage analysis of the hTR, hTERT, NOP10, NHP2, and

TINF2 gene loci in the family members (P1–2, and S1–5) using

microsatellite markers excluded the possibility that the siblings

inherited a common mutation in these loci. This analysis also

confirmed that the parents are not related. Additionally, hTR,

hTERT, and NOP10 were found to be normal in sequence (data

not shown; and I. Dokal, personal communication). The Shelterin

proteins Trf1, Trf2, Rap1, and Tpp1 were also excluded by

linkage analysis. Finally, the linkage map of the POT1 gene locus

revealed the inheritance of the same paternal and maternal alleles

by all the affected siblings but not by the unaffected one. However,

we did not find a homozygous mutation in the POT1 open

reading frame, nor any defect in the splicing pattern or expression

level of the POT1 mRNA. We only identified a heterozygous

single nucleotide polymorphism (SNP) in the paternal allele, which

results in an amino acid change of Glycine to Valine at position

404 of POT1. This SNP has previously been identified in the

population (dbSNP: rs35536751; average heterozygosity: 0.025),

and while it is not likely to cause the disease on its own, it may still

have a causal role by modifying the penetrance of another

mutation. Altogether, our findings suggest that a homozygous or

heterozygous disease-causing mutation is located in a gene or

genes not yet known to cause DC or HHS. This mutation is yet to

be identified.

Normal hTR levels in the HHS-affected cells
Mutations in dyskerin, Nop10, Nhp2, or the box H/ACA

domain in hTR (the dyskerin binding site), result in reduced hTR

levels and insufficient amount of assembled telomerase [21,34,35].

Although mutations in hTR, dyskerin, Nop10, and Nhp2 were

excluded in the investigated family, it was still possible that a

mutation in another unidentified gene impairs the expression or

stability of hTR and thereby causes the disease. To test this

possibility, we measured hTR levels in blood leukocytes and LCLs

using real-time reverse-transcription (RT)-PCR. In the affected S2,

S4, and S5 blood leukocytes and S2 LCLs we found hTR levels

similar to, or up to 2.5-fold higher than, those measured in control

cells (Figure 4A,B). These results exclude the possibility that

reduced hTR levels cause the disease.

The HHS-affected lymphoblastoid cells express hTERT
and assemble active telomerase

Reduced hTR levels being excluded as described above, we

investigated the ability of the affected cells to express hTERT and

assemble a catalytically active telomerase. Unlike hTR, which is

ubiquitously expressed in all human tissues, the expression of

hTERT is restricted mostly to germ cells, stem cells, and

stimulated lymphocytes. Following EBV infection, LCLs show

fluctuations in hTERT expression until they immortalize and

stably express relatively high levels of hTERT [31]. Therefore, a

normal level of expression is difficult to define in the pre-

immortalized phase. We measured the levels of hTERT mRNA in

different passages of an S2 LCL by TaqMan real-time RT-PCR.

The hTERT mRNA levels fluctuated between undetectable to

relatively high levels of expression in a similar pattern to that

observed for a pre-immortalized control LCL (data not shown),

indicating that the S2 cells are capable of inducing hTERT

expression at the mRNA level.

We next asked whether cultures expressing hTERT mRNA are

also able to assemble active telomerase. We prepared cell extracts

from the pre-immortalized LCLs and tested telomerase activity in

vitro by the Telomeric Repeat Amplification Protocol (TRAP). The

activity fluctuated between different passages of the same cultures,

and between different cultures, both in the affected and in the

control LCLs, correlating with the fluctuations in hTERT mRNA

expression (Figure 4C and data not shown). LCLs expressing the

hTERT gene, as indicated by the mRNA levels, were able to

assemble a telomerase RNP complex that is active in vitro, and this

ability was not compromised in the HHS-affected cells as

compared to the control (Figure 4C; two different passages are

shown for the S2 LCL). Importantly, despite the presence of active

telomerase, the telomeres in S2 LCLs were severely short

(Figure 2B,C) and continued to shorten until the cells stopped

dividing (Figure 3A and data not shown). Since we did not observe

any defect in the expression or in vitro activity of telomerase, we

hypothesized that the defect in telomere maintenance in these cells

lies not in the telomerase catalytic core, but rather in its

recruitment or activation at the telomeres.

Normal telomere length in the HHS-affected skin
fibroblasts

Short telomeres are considered the primary defect and a

hallmark of DC and HHS. Since telomeres in blood cells derived

from the patients were significantly short (Figure 2), and since

short telomeres had previously also been found in skin fibroblasts

of DC patients [33], we initially assumed that primary fibroblasts

derived from the HHS patients would also have short telomeres.

Surprisingly, however, the average telomere length in S2

fibroblasts was comparable to that in the control cells (Figures 5C

and 6A). Since both LCLs and primary skin fibroblasts showed

impaired cell proliferation, these results point to a defect other

than telomere length.

Formation of TIFs in the HHS-affected skin fibroblasts
Uncapped telomeres form TIFs, where they associate with

DDR factors such as the phosphorylated form of the histone

H2AX (c-H2AX) [12]. The formation of TIFs is considered an

important step in telomere uncapping-induced senescence. If a

Figure 3. Impaired proliferation of cell cultures prepared from
an HHS-affected patient. EBV-infected lymphoblastoid (A) and
primary fibroblast (B) cultures were grown as described in Materials
and Methods. The cumulative population doubling level (PDL) of the
HHS-affected (S2) and control (C) cultures is drawn as a function of days
in culture.
doi:10.1371/journal.pone.0005666.g003
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telomeric defect causes telomere uncapping in the HHS-affected

fibroblasts, we would expect the formation of TIFs in these cells.

We searched for TIFs by co-immunostaining S2 fibroblasts for c-

H2AX and for the telomeric protein TRF1 [1]. Interestingly,

about 40% of the S2 cells, as compared with 2% of the control

cells, contained at least five c-H2AX foci that colocalized with

telomeres (Figure 5A,B). These results imply that a telomeric

defect other than length elicits DDR in the affected fibroblasts,

which in turn likely hinders cell proliferation through the

activation of a DNA damage checkpoint and cell cycle arrest.

TIF formation at normal-length telomeres has been observed

upon genetic manipulations of Shelterin components such as

POT1 and TRF2 [12,36], or in mice with a pathogenic dyskerin

mutation [26]; however, such a phenomena has not yet been

reported in a human disease.

Short telomeric overhangs in the HHS-affected cells
Dysfunctional telomeres caused by genetic manipulations in

mouse and yeast were shown to be associated with abnormally

long telomeric 39 overhangs, generated by unregulated resection of

the 59 end [37,38]. Shortening of the 39 overhang has also been

reported following POT1 knockdown in human cells and in

association with replicative senescence caused by critically short

telomeres in primary fibroblasts grown in culture [9,11]. Since

changes in the length of the telomeric 39 overhang were associated

with dysfunctional telomeres regardless of their overall length, we

estimated the length of the overhang in S2 LCLs and fibroblasts by

in-gel hybridization of a telomeric C-rich probe to native

telomeres. The signal corresponding to the 39 overhang

(Figure 6A, native) was normalized to the overall telomeric

hybridization signal after denaturation of the same gel (Figure 6A,

Figure 4. The HHS-affected cells express normal hTR levels and assemble active telomerase. Total RNA was prepared from blood
leukocytes (A) and LCLs (B) derived from the affected siblings (red), unaffected parents (dark gray), or unaffected individuals (C – control; light gray).
(A,B) hTR levels were measured by SYBR-green real-time RT-PCR, normalized to the levels of the U93 small nucleolar RNA, and presented as values
relative to the controls. S2a indicates a later passage of the S2 LCL. Normalization to the levels of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA did not significantly change the results (data not shown). (C) Whole-cell extracts were prepared from LCLs and assayed for telomerase
activity by TRAP assay, as described in the Materials and Methods. The amounts of the extracts used in total protein were 10, 30, and 100 ng for the
left panel, and 100 ng for the right panel. The PDL of the LCLs at which the samples were taken are: S2a, 38; C, 40; P1, 20; P2, 28; and S2, 25.
doi:10.1371/journal.pone.0005666.g004
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denatured). We found that the overhang signal was decreased in

the fibroblasts and LCLs by about 30% and 40%, respectively,

suggesting a comparable decrease in the average overhang length

(Figure 6B).

To confirm this result and evaluate the distribution of overhang

lengths (which is impossible by the in-gel method), we employed a

recently published method that uses a duplex-specific nuclease

(DSN) to digest the double stranded DNA [39]. The remaining

single-stranded DNA is then separated by denaturing PAGE,

blotted, and hybridized with a telomeric probe (Figure 7). In

control leukocytes taken from a healthy person, we observed a

wide distribution of hybridization signal with the C-rich probe,

corresponding to lengths from 30 to above 1,000 nt. The signal

corresponding to lengths of about 70–1000 nt disappeared upon

the action of exonuclease I (Figure 7A), which specifically degrades

single-stranded DNA in the 39 to 59 direction, confirming that the

signal within this range represents telomeric 39 overhangs. We ran

a duplicated control sample digested with DSN and hybridized it

with the G-rich probe simultaneously and under the same

conditions as the C-rich probe hybridization (Figure 7A, G-rich

lane). This control revealed the existence of high molecular weight

DNA molecules with C-rich telomeric repeats. Since a signal in

this size range was also observed upon digestion with exonuclease I

and DSN and hybridization with the C-rich probe, we assume that

some double-stranded telomeric DNA is resistant to DSN

digestion and this signal does not represent telomeric overhangs.

Figure 5. TIF formation in HHS-affected fibroblasts with normal telomere length. (A) Control (C) and HHS-affected (S2) primary fibroblast
cultures (established at the ages of 30 and 17 years, and grown to PDL of 14 and 10, respectively) were immunostained for TRF1 (green) and c-H2AX
(red), and with DAPI for the nuclei (blue), as indicated above the images. The bottom panels show enlarged images that include several telomeres.
The images of the affected and control cells were obtained and processed in the same way, side by side. (B) The number of TIFs (defined as
colocalized TRF1 and c-H2AX foci) was counted in randomly-chosen 67 affected and 58 control cells. The graph shows the percentage of cells with at
least five such foci. (C) Genomic DNA was prepared from these cultures and the average length of telomeres estimated by Southern analysis.
doi:10.1371/journal.pone.0005666.g005
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Figure 6. Reduced telomeric overhang signal in the HHS-affected cells. (A) Genomic DNA samples prepared from S2 and control LCLs (PDL
of 44 and 50, respectively; 2 and 4 mg) or fibroblasts (PDL of 14 and 16 for S2 and C, respectively; 2 mg) were digested with MboI and AluI and
electrophoresed in a 0.7% agarose gel. The average length of the 39 overhang was estimated by in-gel hybridization of native DNA to a C-rich
telomeric probe (native panels). The DNA was subsequently denatured in situ and re-hybridized to the same probe to measure the total TTAGGG
repeat signal (denatured panels). (B) The histograms below the images represent the quantified native (overhang) signals normalized to the
denatured (total) signals and presented as percentage of the normalized overhang signals of the controls.
doi:10.1371/journal.pone.0005666.g006
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Interestingly, no hybridization signal with the G-rich probe was

detected in the lower range, suggesting that the signal observed

with the C-rich probe in the 30–70 nt range, although resistant to

exonuclease I, does represent G-rich single-stranded telomeric

sequence. It is possible that the 39 ends in this fraction of

overhangs are paired, for example in T-loop or quadruplex

structures, and therefore are not available for exonuclease I

digestion.

We examined the distribution of overhang lengths in three

DNA samples extracted side by side from blood leukocytes using

the same procedure. These samples were taken from the HHS

patient S2, an unaffected control, and an unrelated DC patient.

This DC patient was diagnosed at the age of 4 upon investigation

of thrombocytopenia and mild anemia associated with moderate

bone marrow hypoplasia. He displayed classical DC features and

severely shortened telomeres in blood leukocytes (mean telomere

length of 5.0 kb, as compared to 8.2 kb of his mother, calculated

by Southern analysis of telomere restriction fragments using the

computer program MATELO [27]; data not shown). The overhang

signal in the HHS patient was dramatically diminished in the size

range above 70 nt as compared to the unaffected individual, and

barely detectable in the range above 150 nt (Figure 7B: compare

S2 to C). Using the DSN method, we also observed diminished

overhangs in fibroblasts with normal telomere length and S2

LCLs, and in S3 blood leukocytes, but not in leukocytes derived

from the healthy sibling S1 (data not shown). Interestingly, the

unrelated DC patient displayed a normal range of overhang

lengths despite the dramatically short telomeres (Figure 7B: DC).

Altogether, these results are consistent with the in-gel hybridiza-

tion (Figure 6) and suggest that the diminished overhangs in the

HHS patients are not the result of the severely short telomeres, but

rather of another defect in telomere structure or composition that

is specific to this case of HHS.

Discussion

DC and its severe form, HHS, are inherited diseases associated

with accelerated telomere shortening (reviewed in [14,15,40]).

They have diverse clinical manifestations and variable age of

onset. Mutations implicated in HHS were identified mostly in

dyskerin, and recently also in hTERT and Tin2 [19,24,25].

Additional mutations in other telomerase subunits (Nop10, Nhp2,

and hTR) were found in DC patients only [20–22]. With the

exception of Tin2, these are integral components of the telomerase

holoenzyme complex. Therefore, DC and HHS have been

regarded primarily as telomerase-deficiency diseases, where

insufficient compensation for telomere shortening impairs cell

proliferation, and the disease manifests particularly in tissues with

a high turnover [33]. The known cases of Tin2 mutations were

also associated with severe telomere shortening [24] and so far

there has been no report of a telomere defect other than length.

Since most of the known mutations causing HHS are in

components of telomerase, we expected to find reduced levels or

impaired in vitro activity of telomerase. Surprisingly, however, hTR

levels in blood leukocytes and LCLs were normal or even elevated

(Figure 4A), suggesting that hTR expression and stability, and

probably also the box H/ACA protein complex, are not involved

in the disease pathogenesis. The elevated hTR levels could be

attributed to the activation of DDR at telomeres, as has previously

been reported for UV-irradiated cells [41]. Moreover, the affected

Figure 7. Diminished telomeric overhang length in the HHS-affected cells. (A) Four mg samples of genomic DNA prepared from control
(unaffected) primary skin fibroblasts were treated with DSN, electrophoresed side by side in a denaturing 4–8% gradient polyacrylamide gel, and
transferred onto a membrane, which was then cut and hybridized simultaneously with a G-rich and a C-rich probe. As controls we used one sample
that was treated with 80 units of exonuclease I overnight prior to the DSN digestion (ExoI), and 60 ng samples of DNA, treated or untreated with
exonuclease I but not with DSN. (B) Five mg samples of genomic DNA prepared from blood leukocytes taken from the HHS-affected patient (S2),
unaffected individual (C), and an unrelated DC patient (DC) were treated with DSN, electrophoresed alongside untreated samples of 200 ng DNA, and
blotted and hybridized with a C-rich probe as in (A).
doi:10.1371/journal.pone.0005666.g007
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LCLs express hTERT and assemble telomerase that is active in

vitro (Figure 4B,C). Hence, the ongoing telomere shortening in the

presence of active telomerase in the affected LCLs, suggest that the

cause for telomere shortening lies not in the telomerase catalytic

core but rather in its recruitment or activation.

An interesting finding of our study is the variation in telomere

length between different tissues taken from the same patient.

While telomeres in blood leukocytes are significantly short

(average length of 4.4 kb, Figure 2A), telomeres in fibroblasts

appear normal in length (average length of 6.6 kb after growth in

culture to PDL 10, Figure 5C). The formation of TIFs in these

fibroblasts indicates the activation of DDR at telomeres, a typical

consequence of telomere dysfunction [12]. Telomere capping has

two main functions: the recruitment of telomerase and the

suppression of DDR. In previously characterized DC and HHS

cases, reduced telomerase activity resulted in accelerated telomere

shortening to a critical length, which in turn activated DDR. In

contrast, here we show that the activation of DDR in the HHS-

affected primary fibroblasts is not caused by telomerase deficiency

(because telomerase is not normally expressed in fibroblasts) or by

short telomeres. Assuming the presence of the same telomere

defect in blood leucocytes, it is plausible that telomere shorting is

not the primary event causing the disease also in these cells. Since

the major clinical symptoms were found in the hematopoietic

system (Table 1), where short telomeres were observed, acceler-

ated telomere shortening may still be the main direct cause of the

clinical manifestation of the disease. We suggest that in the

etiological pathway, a primary defect in telomere structure

underlies the inability of the telomeres to both suppress DDR

and to recruit and/or activate telomerase.

Another indication for a telomere defect that is independent of

length was found in the telomeric 39 overhang. Changes in the

length of the telomeric overhang were shown to be associated with

uncapping of normal-length telomeres achieved by genetic

manipulation of Shelterin components [9,37,38]. However,

changes in overhang length have not yet been reported in

association with any human disease. Interestingly, we observed a

reduction in the average 39 overhang length in both LCLs and

primary fibroblasts (Figure 6A,B). In addition, we used a newly

developed method based on the degradation of double stranded

DNA by a duplex-specific nuclease, leaving the overhang intact

[39]. Using this method, we found a significant reduction in the 39

overhang lengths in blood leukocytes, LCLs, and primary

fibroblasts derived from the HHS patients, as compared with

those measured for normal individuals (Figure 7 and data not

shown). We next asked whether the diminished overhang length in

blood leukocytes was a result of short telomeres. We obtained a

blood sample from an unrelated DC patient and assayed the

overall telomere length and the length of the overhangs.

Interestingly, we found significantly longer overhangs in this DC

patient as compared to the HHS patient (S2), although the overall

telomere lengths were severely short in both patients (Figure 7B

and data not shown). The telomeric overhang is the binding site

for the POT1-TPP1 heterodimer, which is required for both

telomerase action and DDR suppression [42–44]. It is tempting to

speculate that the reduced overhang length impairs the ability of

the POT1-TPP1 heterodimer to suppress DDR at the telomere

ends. According to this hypothesis, it also impairs the ability of

POT1-TPP1 to recruit or activate telomerase in cell types with

high proliferation rates that express functional telomerase (such as

cells of the hematopoietic system). This may explain the difference

in telomere length between blood cells and fibroblasts, which is

consistent with the more severe manifestation of the disease in the

hematopoietic system than in the skin (Table 1).

Telomere shortening was suggested to be a ‘biological clock’ and

a tumor-suppressing mechanism. DC and HHS have been

considered primarily telomerase-deficiency diseases in which

accelerated telomere shortening reduces the proliferative potential

of cells. Here we report on a family diagnosed with HHS, in which

impaired telomere structure, rather than telomerase deficiency, is

the primary cause of the disease. We observed reduced telomeric

overhang lengths in the affected cells, providing an insight into the

molecular defect causing the disease in this family and possibly also

in other DC and HHS patients. Taken together with the mutations

found in telomerase subunits and in the Shelterin component Tin2,

this work demonstrates that multiple pathways can contribute to a

telomere dysfunction disease. Further mechanistic study of such

cases, where telomere dysfunction is uncoupled from telomere

length, will elucidate important implications of the telomere

structure in telomere synthesis and cell proliferation.

Materials and Methods

This study was approved by the Helsinki Committee for Human

Studies of Hadassah University Hospital. Informed written

consent was obtained from the participants in this study (or their

parents in cases of minors).

Cell culture
Dermal fibroblast cultures and EBV-infected lymphoblastoid

cell lines (LCLs) were established in the Department of Human

Genetics, Hadassah University Hospital, Ein Kerem, Jerusalem.

Primary skin fibroblasts were grown in BIO-AMF-complete media

or DMEM supplemented with 20% fetal calf serum, and LCLs

were grown in RPMI supplemented with 20% fetal calf serum. All

media and media supplements were purchased from Biological

Industries, Beit Haemek, Israel.

Microsatellite linkage analysis and DNA sequencing
Microsatellite linkage analysis, using the appropriate primers

chosen from the complete human linkage mapping set (Applied

Biosystems), and DNA sequencing, were done at the Center for

Genomic Technologies, The Hebrew University of Jerusalem.

Southern analysis of telomeric restriction fragments
Genomic DNA (2–5 mg) was digested overnight at 37uC with

HinfI restriction endonuclease. Fragments were separated on a

0.7% agarose gel, transferred to a Hybond N+ membrane (GE

Healthcare, life sciences), hybridized at 50uC with a telomeric

oligonucleotide probe [59 end-labeled (TTAGGG)4] according to

Church and Gilbert [45], washed for 5 min twice with 0.2 M wash

buffer (0.2 M Na2HPO4 pH 7.2, 1 mM EDTA, and 2% SDS) at

room temperature and once with 0.1 M wash buffer at 50uC, and

exposed to film. The mean telomere length was calculated by the

computer program MATELO [27]

Telomere FISH
Chromosome spreads of lymphoblastoid cells in metaphase were

prepared, hybridized to a fluorescent PNA probe (composed of the C

strand of three telomeric repeats and labeled with cy3) and stained

with DAPI as described in [30,46]. The chromosome spreads were

visualized using a Zeiss axioplan II fluorescence microscope.

In vitro telomerase activity
Cell extracts were prepared and analyzed for telomerase activity

by the telomeric repeat amplification protocol (TRAP), modified

from [47]. Briefly, cell extracts were prepared by the addition of

200 ml CHAPS buffer to a pellet of 1–26107 cells, incubation on
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ice for 30 min, and centrifugation at 14,0006rpm at 4uC for

30 min. The supernatant was stored at 270uC. Protein concen-

trations were determined by the Bradford method using protein

assay reagent (Bio-Rad Laboratories). Cell extracts (10–100 ng

total protein) were incubated with 0.1 mg of TS primer, dNTPs,

and 16 TRAP reaction buffer, as described [47]. Extension was

performed at 30uC for 1 h in a final volume of 47.5 ml. Then, 5

units of Taq polymerase (TaqZol; Tal-Ron Ltd, Rehovot, Israel),

0.2 ml of [a-32P]dCTP (10 mCi/ml, 3,000Ci/mMol), and 0.1 mg

of the ACX primer in a volume of 2.5 ml were added, and 29

cycles of PCR amplification (30 sec at 94uC, 30 sec at 50uC, and

1 min at 72uC) were performed. Products were analyzed by

electrophoresis in a native 12.5% polyacrylamide gel in 16TBE,

followed by gel drying and exposure to PhosphoImager or film.

Indirect immunofluorescence (IF)
TIFs were visualized by IF of primary fibroblasts with anti-c-

H2AX and anti-TRF1 antibodies (kindly supplied by T. de Lange)

as described in [9]. Slides were then visualized using a Zeiss

Axioplan II fluorescence microscope.

In-gel hybridization analysis of the telomeric 39 overhang
In-gel G-overhang assay was performed as described [9].

Following electrophoresis, the Southern gel was dried at 50uC,

prehybridized at 50uC for 1 h in 0.5 M Na2HPO4 pH 7.2, 1 mM

EDTA, 7% SDS, and 1% BSA, and hybridized overnight at 50uC
with a 59 end-labeled (CCCTAA)4 oligonucleotide probe. After

hybridization, the gel was washed three times with 46 SSC and

once with 46 SSC and 0.1% SDS at 50uC (30 min each wash),

and exposed to PhosphoImager or film. Following G-overhang

hybridization, gels were denatured by incubation in 0.5 M NaOH

and 1.5 M NaCl for 20 min, neutralized in 3 M NaCl and 0.5 M

Tris–HCl pH 7.0 for 20 min, rinsed with H2O, prehybridized,

hybridized, and washed as previously. To determine the relative

overhang signal, the signal intensity for each lane was determined

before and after denaturation using Image J software (http://rsb.

info.nih.gov/ij/). The overhang signal was normalized to the

signal after denaturation, and presented as percentage of the

normalized overhang signal in the control cells.

Telomeric 39 overhang analysis by duplex-specific
nuclease

The DSN reaction was performed as previously reported [39].

Briefly, 4–5 mg of genomic DNA were digested with 0.2 unit/mg

DNA of DSN in a 20 ml reaction volume at 37uC for 60 minutes.

The reaction was halted by adding 20 ml of formamide buffer

(90% formamide, 16 TBE, bromophenol blue) and immediately

transferred to 95uC for 5 min. The digested samples were resolved

in duplicates (to enable C- and G-strand specific hybridization in

parallel) on a gradient (4–8%) polyacrylamide gel containing 8 M

urea in 16TBE. The gel was semi-dry electroblotted in 0.56TBE

onto a Hybond N+ membrane (Amersham-GE), which was then

split for separate hybridization with a C-rich [(AACCCT)3] or a

G-rich [(AGGGTT)3] probe at 40uC, following Church and

Gilbert [45]. The membrane was washed in 0.2 M wash buffer

(0.2 M Na2HPO4 pH 7.2, 1 mM EDTA, and 2% SDS), twice at

room temperature and once at 40uC (5 min each wash), and

exposed to film.
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