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Abstract: A significant portion of the variability in complex features, such as drug response, is likely
caused by human genetic diversity. One of the highly polymorphic pharmacogenes is CYP2D6, encod-
ing an enzyme involved in the metabolism of about 25% of commonly prescribed drugs. In a directed
search of the 1000 Genomes Phase III variation data, 86 single nucleotide polymorphisms (SNPs)
in the CYP2D6 gene were extracted from the genotypes of 2504 individuals from 26 populations,
and then used to reconstruct haplotypes. Analyses were performed using Haploview, Phase, and
Arlequin softwares. Haplotype and nucleotide diversity were high in all populations, but highest
in populations of African ancestry. Pairwise FST showed significant results for eleven SNPs, six
of which were characteristic of African populations, while four SNPs were most common in East
Asian populations. A principal component analysis of CYP2D6 haplotypes showed that African
populations form one cluster, Asian populations form another cluster with East and South Asian
populations separated, while European populations form the third cluster. Linkage disequilibrium
showed that all African populations have three or more haplotype blocks within the CYP2D6 gene,
while other world populations have one, except for Chinese Dai and Punjabi in Pakistan populations,
which have two.

Keywords: CYP2D6 gene; polymorphism; haplotype; star allele; pharmacogenetics; 1000 Genomes
populations

1. Introduction

Human CYP2D6 protein was purified in 1984 [1], and the gene was mapped to chro-
mosome 22q13 in 1987 [2]. Two years later, the CYP2D6 gene was cloned and sequenced [3],
and it was discovered that the gene locus contains two additional genes: a non-functional
CYP2D7 gene, and a CYP2D8 pseudogene. The CYP2D6 gene contains nine exons and is
highly polymorphic.

In 1996, a group of international experts in pharmacogenetics decided to systematize
allelic variants of the CYP2D6 by proposing a haplotype-based star (*) nomenclature
system [4]. Since then, more than 135 CYP2D6 star alleles have been described and are
available on the Pharmacogene Variation (PharmVar) Consortium website [5,6].

Genetic variations of the CYP2D6 affect the metabolizing activity of the CYP2D6
enzyme. Its activity can vary from complete absence to increased activity, and can be
grouped into four different drug-metabolism phenotypes: (1) poor metabolizer (PM—two
null activity alleles); (2) intermediate metabolizer (IM—one normal activity allele with one
null activity allele; or two reduced activity alleles); (3) extensive metabolizer (EM—two
normal activity alleles; or a combination of one increased activity allele with one allele of
reduced activity); and (4) ultra-rapid metabolizer (UM—one normal activity allele with one
increased activity allele) [7–10]. CYP2D6 is expressed in the human liver where it accounts
for only 2–4% of the total CYP content [11,12], but it is involved in the metabolism of up to
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25% of drugs commonly used in medicine, including antidepressants, a number of atypical
and typical antipsychotics, antineoplastic agents (e.g., tamoxifen), adrenergic antagonists
(e.g., metoprolol), and analgesics (e.g., codeine and tramadol) [13–19]. Variations in the
CYP2D6 gene have also been studied as a risk factor for a number of diseases: Parkin-
son’s disease [20–22], schizophrenia and other psychiatric diseases [16,23], Alzheimer’s
disease [24,25], as well as several forms of cancer [26,27].

Although CYP2D6′s role in the metabolism of naturally occurring xenobiotics has not
been researched extensively, it is well-known that this enzyme has a very high affinity for
alkaloids [28]. Therefore, alkaloid metabolism in food is assumed to have played a role in its
evolution. There is a theory that 10,000 to 20,000 years ago in Northwest Africa, due to food
shortages compared to population size, the number of plants that could provide usable food
increased as a result of selection that favored the survival of individuals capable of more
effective detoxification of plant toxins [29]. The best example of how dietary modifications
throughout human history have provoked selection pressure on the genes whose products
metabolize food molecules is N-acetyl-transferase 2 (e.g., [30]). The current patterns of
CYP2D6 genetic diversity, according to Fuselli (2010), are a result of the selective pressure
of new or more potent CYP2D6 substrates that emerged as food choices, particularly at the
start of the Neolithic transition, in response to worsening nutritional conditions and higher
disease burdens [31].

More genetic variation can be seen in genes encoding detoxification enzymes, which
shows that exposure to various substrates also aided in the evolution of genetic variants.
Detoxification enzymes really exhibit signs of positive selection, such as modifications of
the amino acid sequence that increase substrate selectivity [6,32]. Compared to any other
category of pharmacogenomically relevant genes in humans, a recent study revealed that
CYP genes that metabolize exogenous compounds have far higher frequencies of SNPs that
vary greatly between populations [33].

It has not yet been possible to pinpoint the selective factor that causes diet-related
patterns of evolution in the CYP2D6 gene (such as the presence or absence of a particular
substrate or a variable concentration of substrates) [34].

Although there are numerous papers on the world distribution of CYP2D6 variation,
most focus on the pharmacological consequences of different variants. The goal of this
paper was to identify which single nucleotide polymorphisms (SNPs) and haplotypes in
the CYP2D6 gene determine the genetic specificity of 26 world populations, and to test
intra- and inter-group differences in continental groups defined by ancestry. Furthermore,
we investigated the role of population differentiation in the definition of the CYP2D6
star alleles.

2. Materials and Methods

The investigated pharmacogene CYP2D6 is located on the reverse strand of chro-
mosome 22:42,126,499–42,130,865 (GRCh38). Using Data Slicer, a tool implemented on
the Ensembl website [35], data on 2504 individuals belonging to 26 world populations
from Phase 3 of the 1000 Genomes Project were extracted from Ensembl Release 107 [36].
The data file contained 279 polymorphic positions: 9 insertions/deletions (indels) and
270 single nucleotide polymorphisms (SNPs). Two positions were monomorphic, and in
182 positions the minor allele was found less than five times in the total sample. All indels,
monomorphic SNPs, and SNPs where the minor allele occurred less than five times in the
total sample were excluded from further analyses, leaving 86 SNPs.

Allele frequencies and the Hardy–Weinberg equilibrium were calculated separately for
each population using VCFtools [37]. VCF files were also used to create ped files for linkage
disequilibrium (LD) calculation and visualization, which was performed in Haploview soft-
ware [38]. Haplotype blocks were constructed using the confidence intervals algorithm [39],
and the informativeness of the block was further estimated by r2 measurement of LD
between SNPs defining the ends of haplotype blocks, both implemented in Haploview
software. The CYP2D6 haplotypes were inferred using Phase ver. 2.1 [40,41]. Haplotype
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frequencies were used for principal component analysis (PCA), performed using the sta-
tistical package SPSS Statistics 21.0 for Windows (SPSS Inc., Chicago, IL, USA). The most
common haplotypes were translated into the star allele nomenclature using data on the
PharmVar website [5].

Indices of intrapopulation molecular diversity (number of haplotypes, polymorphic
sites, transitions and transversions) and AMOVA, the statistical significance of which
was assessed by generating 100,000 random samples, were calculated using Arlequin 3.5
software [42].

3. Results

In order to capture most of the variability in the CYP2D6 gene, we investigated 86 SNPs
within the gene region (22:42,126,499–42,130,865), whose minor allele frequencies (MAF)
were higher than 0.1%. The allele frequencies of studied polymorphic sites in 26 world
populations from the 1000 Genomes database are shown in Supplementary Table S1. Phased
SNPs revealed 232 unique haplotypes.

Several diversity indices were calculated in order to see the intrapopulation variation,
and the findings are displayed in Table 1.

African populations had the highest number of polymorphic sites: the most poly-
morphisms (55) were found in the population of African ancestry in the Southwest USA, and
the least (46) in the Mende population in Sierra Leone. The lowest number of polymorphic
sites was found in East Asian populations ranging from 20 in the Japanese population to
30 in the Han Chinese population in Beijing and in the Kinh population in Vietnam. The
highest number of haplotypes were found in populations of African ancestry, ranging from
37 in the Gambian population to 31 haplotypes in the Yoruba population from Nigeria.
The lowest number of haplotypes of all 26 investigated populations was found in the
population of Japan (11), followed by the population of Peru (16) and the British population
from England and Scotland (17). Interestingly, although considered a genetically isolated
population, Finns did not have the lowest number of haplotypes.

Table 1. The diversity indices in 26 world populations from the 1000 Genomes database.

Sample Size No. of
Haplotypes

No. of
Polymorphic Sites

Haplotype
Diversity

Nucleotide
Diversity

African
Ancestry

ESN 198 36 50 0.935 0.113

GWD 226 37 49 0.918 0.114

MSL 170 32 46 0.933 0.113

YRI 216 31 48 0.926 0.109

LWK 198 35 48 0.936 0.113

ACB 192 36 48 0.933 0.115

ASW 122 36 55 0.908 0.109

American
Ancestry

CLM 188 26 44 0.813 0.106

MXL 128 23 36 0.764 0.092

PEL 170 16 34 0.602 0.086

PUR 208 32 56 0.875 0.113

European
Ancestry

CEU 198 21 38 0.847 0.112

FIN 198 19 36 0.778 0.102

GBR 182 17 35 0.834 0.112

IBS 214 27 47 0.851 0.110

TSI 214 22 41 0.845 0.113
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Table 1. Cont.

Sample Size No. of
Haplotypes

No. of
Polymorphic Sites

Haplotype
Diversity

Nucleotide
Diversity

South Asian
Ancestry

BEB 172 22 34 0.809 0.099

GIH 206 22 36 0.787 0.106

ITU 204 21 34 0.794 0.105

PJL 192 18 37 0.713 0.094

STU 204 28 38 0.784 0.102

East Asian
Ancestry

CDX 186 18 26 0.620 0.069

CHB 206 19 30 0.637 0.075

CHS 210 20 27 0.643 0.071

JPT 208 11 23 0.717 0.074

KHV 198 22 30 0.607 0.066

Population abbreviations: European ancestry: CEU (Utah residents with Northern and Western ancestry), FIN
(Finland), GBR (British in England and Scotland), IBS (Iberian population in Spain), TSI (Toscani in Italy); South
Asian ancestry: BEB (Bengali in Bangladesh), GIH (Gujarati Indian), ITU (Indian Telugu in the UK), PJL (Punjabi
in Lahore Pakistan), STU (Sri Lankan Tamil in the UK); African ancestry: ACB (African Caribbean in Barbados),
ASW (African Ancestry in South West USA), ESN (Esan in Nigeria), GWD (Gambian in Western Division), LWK
(Luhya in Webuye, Kenya), MSL (Mende in Sierra Leone), YRI (Yoruba in Ibadan, Nigeria); American ancestry:
CLM (Colombian in Medellin, Colombia), MXL (Mexico), PEL (Peruvian in Lima, Peru), PUR (Puerto Rican
in Puerto Rico); East Asian ancestry: CDX (Dai Chinese), CHB (Han Chinese in Beijing), CHS (Southern Han
Chinese), JPT (Japanese in Tokyo), KHV (Kinh in Ho Chi Minh City, Vietnam).

Overall, haplotype diversity and nucleotide diversity were high in all populations,
and highest in African populations where haplotype diversity ranged from 0.908 to 0.936.
The lowest haplotype diversity was observed in East Asian populations ranging from 0.607
(Vietnam) to 0.717 (Japan). The results of the nucleotide diversity analysis are also very
similar: the highest diversity was found in African populations, and the lowest in East
Asian populations. According to diversity indices, the Japanese population has the lowest
genetic variation.

In order to calculate the level of population differentiation, we performed AMOVA
analyses. Populations were joined in five continental groups based on shared common
ancestry. Approximately 8% of the variation was due to between-group differences
(FCT = 0.077), while the interpopulation variation was 9% (FST = 0.091). When we ex-
amined each continental group separately, we discovered that East Asian populations
showed the greatest differentiation (FST = 0.031), while European populations showed the
smallest (FST = 0.002).

To elucidate which of the 86 CYP2D6 gene SNPs mostly affected the population
differentiation, locus-by-locus AMOVA was conducted. Allelic variations at 11 SNPs
(rs75203276, rs59421388, rs61736512, rs16947, rs76327133, rs80262685, rs28371706, rs2267447,
rs1065852, rs2004511, and rs1081003) contribute to the inter-population differentiation
higher than 10%, with FST values ranging from 0.103 to 0.366 (Table 2).

Figure 1 shows the distribution of minor alleles in those 11 SNPs in 26 world pop-
ulations. Six SNPs are characteristic of African populations (rs75203276, rs59421388,
rs61736512, rs76327133, rs80262685, and rs28371706), with the population of African ances-
try in Southwest USA showing somewhat lower frequencies with values of 3–4% in five
SNPs. The remaining five SNPs are present in all world populations, with rs16947 being
most common in African populations (42–65%), least common in East Asian populations
(13–17%), and occurring in a range of 25–44% in the rest of the world population. The
SNPs rs2267447, rs1065852, rs2004511, and rs1081003 are the most common in East Asian
populations with frequencies in the range of 60–68%, while in the Japanese population
they were in the range of 36–39%. The most common SNPs for non-African and non-Asian
populations are rs16947, rs226744, rs106585, and rs200451.
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Table 2. List of 11 single nucleotide polymorphisms (SNPs) of the CYP2D6 gene which show inter-
population differentiation (FST) above 0.1. FCT defines the proportion of total genetic variability
among continental groups.

SNP Position FST p FCT p

rs1081003 42129754 0.366 <0.00001 0.343 0.00001

rs2004511 42127209 0.211 <0.00001 0.193 0.00001

rs1065852 42130692 0.209 <0.00001 0.188 <0.00001

rs2267447 42128694 0.204 <0.00001 0.187 <0.00001

rs28371706 42129770 0.197 <0.00001 0.163 0.0001

rs80262685 42128576 0.117 <0.00001 0.096 0.00015

rs76327133 42128668 0.115 <0.00001 0.094 0.00025

rs16947 42127941 0.111 <0.00001 0.099 <0.00001

rs61736512 42129132 0.105 <0.00001 0.085 0.00026

rs59421388 42127608 0.104 <0.00001 0.084 0.0002

rs75203276 42128499 0.103 <0.00001 0.081 0.00014

The distribution of haplotypes in all 26 investigated populations is shown in Figure 2.
Haplotypes 1 and 2 are present in all world populations with varying frequencies, and their
combined frequencies range from a minimum of 16% in the population of Sierra Leone to
a maximum of 82% in the Peru population. Haplotype 3 is distributed in all populations
except the Finnish population. However, it is most characteristic of East Asian populations,
with the lowest distribution of 36% in Japan, while other East Asian populations have
it in the range of 56–60%. This haplotype is found in some African populations with a
frequency of more than 5% (Nigeria, the African Caribbean and Gambia) and higher than
10% in Sierra Leone and Bangladesh. The distribution frequencies of haplotype 4 are
over 10% in all European populations (minimum 12% in Finland, maximum 19% in Great
Britain), and in populations of Puerto Rico and Colombia. Haplotype 5 is most common
in Southeast Asian populations, but has a frequency distribution of over 10% in Italian
and Central European populations. Haplotypes 6, 7, 8, and 10 are mainly characteristic of
African populations, where the frequency of distribution is generally higher than 5%. All
haplotypes which occurred less than five times were presented together (rest) in Figure 2.

All populations share the most common haplotype determining the star allele *1. The
eight most common haplotypes account for 74% of all haplotypes worldwide. Haplotype
11 translated into star allele *10 is typical for East Asian populations. The most common
haplotypes in Europe are *2 and *4. In South Asian populations, the most common haplo-
types are *2 and *41. African populations are the most specific: star alleles *1, *29, and *17
are predominantly found in these populations.

To compare world populations based on CYP2D6 haplotypes, we performed a prin-
cipal component analysis (PCA) (Figure 3). Its results showed that African populations
form one cluster, Asian populations another cluster with East and South Asian populations
separated, and European populations form a third cluster. South American populations
do not have a distinct cluster: Colombian and Puerto Rican populations overlap with
European populations, while Mexican and Peruvian populations are closer to Southeast
Asian populations.
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populations.
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Figure 2. Distribution of the CYP2D6 gene haplotypes in 26 world populations.

Linkage disequilibrium (LD) was calculated and visualized using Haploview 4.2
software, which constructs blocks based on D’ values. All African populations have three
or more haplotype blocks within the CYP2D6 gene, while other world populations have
one haplotype block, except Chinese Dai and Punjabi in Pakistan populations, which have
two. A large block of the Chinese Dai population (in the range rs1135840–rs28371702)
has an r2 of 0.888 and a large block of the Punjabi population in Pakistan (in the range
rs16947–rs1080995) has an r2 of 0.976, while both small blocks in these two populations
have an r2 below 0.8. In all African populations but Yoruba from Nigeria, we observed the
CYP2D6 gene haplotype block ranging from rs1081000 to rs1080995 (r2 > 0.8). All African
populations except the African ancestry in the southwest USA population share the same
haplotype block in the range rs1135840–rs27371730 (with r2 substantially below 0.8), and
ASW is the only African population to have all its blocks with r2 greater than 0.8. The
Yoruba in Ibadan (Nigeria) population has a total of four haplotype blocks, but only one
block is in complete LD (in the range rs75203276–rs61736512). The same haplotype block
occurs in the Mende in Sierra Leone population (r2 of 0.935) and the African Caribbean in
Barbados population (r2 of 1.0). In addition to the block in the range rs1081000–1065850,
the Luhya in Kenya population has another one that is in high LD (in the range rs75203276–
rs76327133, r2 of 0.902). The Gambian in Western Division-Mandinka population’s second
haplotype block in high LD is the one in range rs569421388–rs76327133, with an r2 of 0.868.

The haplotype block found In the European continental group, ranging from rs1135840
to rs1065852, in all five populations has r2 values substantially below 0.8. The same
haplotype block was also detected in three East Asian populations (Japanese and two
Han Chinese populations), in three South Asian populations (Indian Telugu, Bengali in
Bangladesh, and Sri Lankan Tamil in the UK), and in two American populations (Colombian
and Puerto Rican), also with r2 below 0.8. The only remaining East Asian population, Kinh
from Vietnam, has a haplotype block bit shorter than the one previously mentioned, ranging
from rs28371730 to rs1065852. In contrast, the population of Gujarati Indians in the USA,
the last remaining South Asian population, also has a shorter block ranging from rs1135840
to rs1080995, with both r2 below 0.8. The latter block, again with r2 < 0.8, was also found in
the Mexican Ancestry in Los Angeles and Peruvian populations.
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4. Discussion

Genetic polymorphisms are responsible for a substantial proportion of inter-individual
and inter-ethnic heterogeneity in drug response [43]. A number of studies investigated the
distribution of genetic variants responsible for heterogeneity in drug response in different
populations [44–46]. In this study, 86 polymorphic SNPs within the CYP2D6 gene were
analysed in 26 world populations from the 1000 Genomes database [36], in order to estimate
the influence of CYP2D6 haplotype diversity on population differentiation.

The estimated FST (0.07) indicates a moderate overall genetic differentiation level.
However, when continental population groups were examined separately, European popu-
lations showed more than 10 times lower interpopulation differentiaton than East Asian
populations, which showed the highest. Similar results were found in a study by Jay and
colleagues (2013), which showed that the lowest genetic variation of the ADME genes
was in Europe, followed by Asia, Africa, and the Americas. In general, the difference
between two European populations separated by 1000 km is far less than in other world
populations [47]. Geographical isolation together with various selection forces leads to an
increase in FST values among human populations [48].

Locus-by-locus AMOVA revealed 11 SNPs with FST values greater than 10%. After
calculating the MAFs of these 11 SNPs, we observed a clear clustering of SNPs in relation to
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the studied populations: four SNPs were present in all world populations, but the most fre-
quent in East Asian populations (rs2267447, rs1065852, rs2004511, and rs1081003), six SNPs
were almost exclusively found in African populations (rs75203276, rs59421388, rs61736512,
rs76327133, rs80262685, and rs28371706), while rs16947 was found in all world populations.

Four SNPs of the CYP2D6 gene characteristic of East Asian populations occur in Viet-
namese and three Chinese populations with a frequency in the range of 60–68%, and the
Japanese population in the range of 36–39%. The finding that the Japanese population has
frequencies that deviate from the rest of the group is not surprising since Japan regularly
diverges due to their relative isolation throughout history. The rs1081003, a synonymous
variant (Phe112Phe), showed the highest overall FST value of 0.37, and due to its substan-
tially higher frequency in East Asian populations, it can be considered a typical East Asian
variant. In addition, this SNP’s minor A allele was also found to be the major allele in some
South East Asian populations [49]. The Pharmacogene Variation (PharmVar) Consortium
database defines rs1081003 as a suballele of numerous star alleles (*2, *4, *10, *36, *37, etc.).

SNP rs2004511, an intron variant with an overall FST value of 0.21, is also predominant
in East Asian populations. In 2018, the association of a minor C allele with response
to Tramadol was recorded in the ClinVar archive. The PharmVar defines that this SNP
determines suballeles for a number of star alleles (*4, *10, *36, *39, etc.).

SNP rs1065852 in East Asian populations (except Japan) has frequencies of its A allele
over 60%, making the G allele a minor allele in these populations. In addition to the four
East Asian populations represented in the 1000 Genomes, its high frequency was also
noticed in populations of Lisu [50] and Wa, both from Yunnan Province of China [51].
According to the PharmGKB, the A allele which causes a missense variant is associated
with decreased clearance of alpha-hydroxymetoprolol in healthy individuals compared
to the G allele. It is also associated with S-didesmethyl-citalopram plasma concentrations
when treated with citalopram or escitalopram in people with depressive disorder. The
GG genotype of rs1065852 is associated with a prolonged QTc interval when treating
individuals with schizophrenia with iloperidone. Lee et al. (2016), analyzing the association
between CYP polymorphisms and blood concentrations of hydroxychloroquine (HCQ)
and its metabolite N-desethyl HCQ (DHCQ) in Korean patients with lupus, observed that
patients with the GG genotype of allele *10 had the highest [DHCQ]/[HCQ] ratio, while
patients with genotype AA had the lowest ratio [52]. López-García et al. (2017) found that
this SNP, as it is included in the star allele *4, can affect the effectiveness of antiepileptic
drugs [53]. Together with the SNP rs1081003, rs1065852 is in high LD in the populations of
the Philippines, Thailand, Vietnam and Laos, and mutations in these key SNPs that define
the star alleles *10 and *54 cause reduced CYP2D6 enzyme activity [49]. This SNP is part of
the core of numerous star alleles (*10, *36, *37, etc.). The fourth SNP typical for East Asia
is rs2267447, whose minor C allele causes change in the intron variant and is associated
with response to Tramadol. According to the PharmVar, this SNP defines suballeles for
numerous star alleles (*4, *10, *36, *39, etc.).

SNPs characteristic for the African group of populations were almost completely
absent in other populations. rs28371706, whose minor A allele causes a missense vari-
ant, is the core SNP for defining star alleles *17, *40, *58, *64, *82, *141, and *154. The
CYP2D6*17 star allele occurs in at least 30% of Africans [54,55], and is associated with
reduced enzyme activity-individuals carrying the *17 allele that are classified as interme-
diate metabolizers (IM). According to ClinVar, rs28371706 is associated with response to
Tamoxifen and Deutetrabenazine.

The remaining five SNPs characteristic for the African populations have very similar
MAF frequencies within each population. In PharmVar, SNPs rs80262685 (T > C, intron
variant) and rs76327133 (G > A, intron variant) are associated with suballeles *2, *29, *146,
*149, *155, *156, and *157, while the intron variant rs75203276 (C > T) is associated with
suballeles *29, *155, *156, and *157. SNPs rs61736512 and rs59421388 (both C > T, missense
variants) define the core of several star alleles; both define alleles *29, *70, *149, *155, *156,
and *157, while rs61736512 also defines allele *107, and rs59421388 defines allele *109. Those
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two variants are significantly associated with the decreased metabolism of debrisoquine,
according to the PharmaGKB.

The distribution of rs16947 is the most intriguing. If we exclude the population of
African ancestry from the Southwest USA where MAF was 42%, its MAF ranged from
50–65% in African populations, to 13–17% in East Asian populations. Muaymbo et al. (2022)
found that this SNP had a significantly lower MAF among Africans in Southern Africa
(12%) compared to their counterparts in West (65%) and East (56%) Africa [56]. The MAF
of rs16947 in Southern Africans is lower than in any other world population, but is closest
to the frequencies in East Asian populations. The rs16947 mutation (G > A), causing a
missense variant which can result in decreased CYP2D6 enzyme activity, is one of the major
mutations that distinguish star alleles *10A and *54 [49]. In the ClinVar archive, this SNP is
associated with the Tamoxifen response, the Deitetrabenazine response, and the ultrarapid
metabolism of Debrisoquine. The PharmVar defines that this SNP determines a number of
core alleles.

The distribution of MAFs of the 11 SNP variants distinguishes African and East Asian
populations from others. Haplotype-based PCA analyses showed separate clusters of
African and East Asian populations, while South Asian, European and American popula-
tions were much less separated. Separation of African populations follows their genetic
history and is visible in different genetic studies as well [57,58]. The clustering of East
Asian populations is also evident from studies of other pharmacogenes. Li et al. demon-
strated that ADME genes exhibit distinct patterns of population differentiation in a global
and regional context. While some genes are conserved (e.g., SLC04C1 and NAT1), others
(e.g., CYP3A5) exhibit high levels of world population differentiation. On the other hand,
the global diversity of some genes primarily reflects differentiation within a particular
geographical region, such as Africa, Europe, or East Asia [59]. The genomic diversity of
modern populations reflects former demographic and evolutionary changes. In isolated
populations with minimal gene exchange, genetic distinctiveness is especially evident
(e.g., Jewish populations, Saami, Roma, Basque), which can also be seen in pharmacogene
research [60–66].

Population variation has been studied through patterns of haplotype blocks. African
populations have the most diverse block pattern, while it is the most homogeneous in
Europe, followed by the Americas, and South and East Asia. The investigated haplotype
blocks, based on confidence intervals [39], encompass the region of SNPs with strong LD
as a consequence of lack of recombination. The largest number of blocks present in African
populations is consistent with their genetic history. The African population has had a
relatively large effective population size over a long period of time, allowing recombination
events to leave their mark on the haplotype block structure. The significant correlation
between SNPs defining the ends of haplotype blocks further supports their informativeness
in the African population.

Haplotypes containing functional/associated variants are more likely to determine
clinical drug metabolism phenotypes than a single independent SNP [67]. Among the
present investigated haplotypes translated into star alleles nomenclature, haplotype 1 de-
fines *1 allele, which is a normal metabolizer and is the most common haplotype in all
populations outside of East Asia, where it is the second most common. Haplotype 2 defines
*2 allele and is the second most abundant in European, South Asian, and American popula-
tions. Haplotype 3 defines *10 allele and is very characteristic of East Asian populations.
Haplotype 4 defines *4 allele and appears in European and American populations. Haplo-
type 5 defines *41 allele and occurs in South Asian and European populations. Haplotypes
6 (*29), 7 (*1), and 8 (*17) occur only in African populations.

Sistonen and colleagues demonstrated different distributions of the CYP2D6 slow
(i.e., *9, *10, *17, *29, *45–46) and null-function (i.e., *4, *5, *6) alleles on different conti-
nents, probably caused by demographic events [68]. Decreased function CYP2D6 enzymes
are characterized by substrate-dependent catalytic properties (gene variants *10, *17, and
*29) and enzyme inhibitor affinities (*10, *17), which contribute to a broader spectrum
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of metabolic responses [69–71]. Individuals defined as poor (slow) metabolizers may
metabolize certain classes of chemical compounds better (or worse), which should not
necessarily be unfavorable. For example, if toxic compounds were activated through
CYP2D6-mediated metabolism, slow metabolizers could be at reduced risk of adverse
effects [31]. Many widely used therapeutic medications, drugs of abuse, exogenous chemi-
cals such as alkaloids, herbicides, and some endogenous molecules such as progesterone,
estrogen, and many other substances are substrates for the human CYP2D6 enzyme [72].

5. Conclusions

African populations showed the highest variability of the CYP2D6 haplotypes, which
is consistent with all known studies of genetic variability in humans. However, the greatest
differentiation is found among East Asian populations due to extreme homogeneity of
the Japanese population and the specific distribution of haplotypes among the Chinese
population. The greatest continental homogeneity is found in Europe, followed by South
Asia and the Americas.

Locus-by-locus analyses revealed 11 SNP loci affecting inter-population differenti-
ation, six of which are specific to African, four to East Asian populations, while one is
present globally. Five of these SNPs (rs2004511, rs1065852, rs2267447, rs28371706, and
rs16947) contribute to the known pharmacogenomic effects on clinical outcomes of drugs
metabolized by CYP2D6.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Genomes database.
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