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Prospective errors determine motor learning
Ken Takiyama1, Masaya Hirashima2 & Daichi Nozaki3

Diverse features of motor learning have been reported by numerous studies, but no

single theoretical framework concurrently accounts for these features. Here, we propose a

model for motor learning to explain these features in a unified way by extending a motor

primitive framework. The model assumes that the recruitment pattern of motor primitives is

determined by the predicted movement error of an upcoming movement (prospective error).

To validate this idea, we perform a behavioural experiment to examine the model’s novel

prediction: after experiencing an environment in which the movement error is more easily

predictable, subsequent motor learning should become faster. The experimental results

support our prediction, suggesting that the prospective error might be encoded in the motor

primitives. Furthermore, we demonstrate that this model has a strong explanatory power to

reproduce a wide variety of motor-learning-related phenomena that have been separately

explained by different computational models.
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D
iverse features of motor learning have been reported by
numerous experiments, but no single theoretical frame-
work concurrently accounts for all of these features. For

example, after learning in a novel visuomotor environment
followed by a washout phase, the learning speed in the relearning
phase is faster than that in the initial learning phase. This
acceleration of motor learning has been explained by the
incorporation of fast and slow components into the motor-
learning process1. However, it remains unclear how such a multi-
learning-rate model can be extended to explain the decrement of
learning speed with increased uncertainty of feedback
information. Although a standard Kalman filter2–4 successfully
explains this uncertainty effect, it cannot explain how motor
memory can be formed and maintained even when the
environment randomly varies from trial to trial (structural
learning)5–7. Several models have been proposed to explain
structural learning by assuming that subjects have already
acquired a priori knowledge regarding the tendency of
environmental variation8,9. However, to our knowledge, few
computational models can explain structural learning without
any a priori knowledge. Thus, a single framework that can explain
such a wide variety of phenomena is currently unavailable.

Here we propose a novel model for motor learning to explain a
wide variety of phenomena in a unified way by extending a
theoretical framework of motor primitives10–15. In the original
framework, activities of motor primitives determine motor
commands, and an appropriate set of motor primitives is
recruited according to the various features of the desired
movement, such as planned movement direction10,11. This
framework successfully reproduces the basic pattern of trial-
dependent changes in the movement error and how motor
learning is generalized when the kinematics (for example,
movement direction) change.

However, the manner in which the activities of motor primitives
are determined remains controversial. In contrast to the conven-
tional idea that the desired movement direction determines the
activities of motor primitives10–12, a recent study suggested the
possible involvement of the executed movement in determining
these activities13. The model we propose in the present study
assumes that the predicted movement error of an upcoming
movement, termed the prospective error (PE), also contributes to
determining the activities of the primitives. This assumption is
based on two components: (1) a theoretical consideration regarding
the formation and maintenance of motor memory from a
randomly changing environment, and (2) recent neurophysio-
logical findings16,17 showing that some motor-related neurons
encode the PE rather than the desired or executed movements.

In the present study, first, we analytically reveal that the
activities of motor primitives need to be determined based on the

PE such that the motor memory can be formed and maintained
in a randomly changing environment. Second, to validate the idea
of incorporating the PE into motor learning, we experimentally
demonstrate a novel motor-learning phenomenon that can be
predicted by our model: after experiencing an environment in
which the movement error is more easily predictable, subsequent
motor learning should become faster. Finally, using a computer
simulation, we show that our model can account for several
different and seemingly unrelated phenomena in motor learning,
such as structural learning5–7, modulation of the learning rate
because of uncertainty of error feedback3,4, savings after short
and long washout trials18–20, anterograde interference21,22 and
spontaneous recovery1,23,24. Although different conventional
models have separately explained these phenomena, our model
is unique in that it can explain them within a single framework.

Results
General framework. The present study used a task involving
reaching towards a single target in a horizontal plane (Fig. 1a).
The goal of the task was to move a cursor to the target accurately
in a situation where an executed movement is perturbed
by a change in the environment, p, for example, the external
force generated by a manipulandum25 (Fig. 1b) or visuomotor
transformation26 (Fig. 1c). The motor command, x, to
compensate for a perturbation, p, is modelled by the
summation of the activities of the motor primitives as
x¼WAT, where W¼ (W1, ..., WN), N is the total number of
motor primitives, Wi represents how the ith primitive contributes
to the production of the motor command, A¼ (A1, ..., AN), and Ai

is the activity of the ith primitive (we propose that this be
determined depending on the PE (details are provided in the
section Prospective error)). The movement error at the t-th trial
can thus be expressed as et ¼ pt � xt ¼ pt �W tAT

t . To minimize
the squared movement error, W is modified as

W tþ 1 ¼ lW t þ ZetAt ; ð1Þ

where l is the forgetting rate and Z is the learning rate, indicating
that the more activated the ith primitive, the more the Wi is
modified to minimize the squared movement error (the stronger
the motor memory is formed in the ith primitive). Similarly, if the
ith primitive is not activated at the t-th trial, Wi is not modified
(the motor memory embedded in the ith primitive can be kept).

Theoretical considerations in randomly changing environ-
ments. First, we analytically considered the problem of what
characteristics of the movement the primitives need to encode.
We focused on the problem of how a motor memory can be
formed within a randomly changing environment. Recent works
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Figure 1 | Model schematic. (a) A schematic representation of our model. Prospective error determines activities of motor primitives, the weighted sum of
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have illustrated the ability of the motor system to form motor
memories from randomly changing environments: the experience
of a randomly changing visuomotor rotation increased the speed
of the subsequent learning to a constant visuomotor rotation
(structural learning)5–7.

In our model described above, when the perturbation
randomly changes from trial to trial, the ensemble average for
Wt, Wtþ 1, Wtþ 2, ... across all possible realizations converges to

W ¼ ZE½pA�
1� lþ ZE½AAT � ð2Þ

after many trials, where E[ � ] represents the ensemble average
taken across different simulation runs (see the Theoretical
analysis section in Methods for a detailed analysis). When the
perturbation randomly changes around 0, E[p]¼ 0. If p and A are
independent, then the weighting parameter W¼ 0. This indicates
that motor primitives can form and maintain motor memory in a
randomly varying environment only when At encodes the
information of pt.

Prospective error. Notably, At cannot directly encode pt, because
the information for pt is only available after motor execution. A
possible solution is to assume that the motor-learning system
predicts a factor (factors) that contains the information of pt.
Because the goal of motor learning is to minimize movement
error, the motor-learning system uses a movement error, et, as a
learning signal. Here, we assumed that et is used not only as a
learning signal but also as a signal for predicting the PE (Fig. 1a),
which should contain the information regarding the perturbation.
Recent neurophysiological studies have suggested that some
neurons actually encode the PE, or the movement error predicted
to be observed in the near future for online movement
control16,17.

Specifically, we assume that the PE is predicted from both the
PE and the observed movement error in the previous (t� 1)-th
trial:

êt ¼ êt� 1þ a et� 1� êt� 1ð Þ; ð3Þ
where a is a parameter that determines the degree of update based
on the difference between the PE and the observed movement
error. This update rule is rational when movement error shows
trial-to-trial variability, as previously reported in an experimental
study27, and movement error is observed with a sensory noise
(detailed descriptions are given in the Update rule of PE section
in Methods).

We also assume that the primitives encode the PE following a
Gaussian: Ai êtð Þ ¼ expf� 1

2s2
i

êt � mið Þ2g (êt is the PE), where the
scaling parameter si¼ s is independent of i and miA(� 180�,
180�) is randomly sampled from a uniform distribution. The ith
primitive is maximally activated when the PE is equivalent to its
preferred PE mi. A summarized procedure for the computer
simulation is provided in the Summary of computer simulations
section in Methods.

Numerical simulation in randomly changing environments.
Here, we try to observe the behaviour of motor learning under a
stochastically changing environment. Our model predicts that
learning speed in the test phase can be increased when the per-
turbation randomly varies in every two or three trials during the
training trials (groups 2 and 3) (Fig. 2a,d). In contrast, learning
speed was not facilitated when the perturbation randomly varied
in every trial during the training trials (group 1). In group 2 (or
3), two (or three) consecutive identical perturbations make it
more reliable to predict the movement error, and the primitives
encoding the PE gradually acquire the knowledge to compensate

for the same movement error (for example, primitives for 30� PE
learn the 30� perturbation) (Fig. 2b and red dotted line in Fig. 2c).
In the test phase, the motor memory embedded in the primitives
for the positive PE is reactivated, which leads to an increase in
learning speed. In contrast, when the perturbation changes from
trial to trial (group 1), the PE does not have information
regarding the perturbation because it was completely
unpredictable (Fig. 2e and green dotted line in Fig. 2f), resulting
in the failure of motor memory formation.

Behavioural experiment. It should be noted that the difference
among groups 1, 2 and 3 described above is a novel prediction
that has never been predicted nor tested. Therefore, we performed
a behavioural experiment to validate this prediction. Notably, this
prediction contrasts with a conventional Bayesian framework
because, according to this framework, a more uncertain random
perturbation is associated with faster learning in a subsequent
adaptation to a constant perturbation3. In the present experiment,
subjects moved a manipulandum to control a cursor on a
horizontal screen towards a forward target. In training trials, the
cursor’s movement direction randomly rotated either in every
trial (group 1), in every two trials (group 2) or in every three trials
(group 3) by a certain amount sampled from a set of rotations
(� 45�, � 30�, � 15�, 0�, 15�, 30� and 45�) (Fig. 3a,b). Hand
movements during the training trials were always constrained
along a straight line from the starting position to the target by the
manipulandum (that is, force channel trial) (Fig. 3b), which
allowed us to differentiate the predictions of our model from
those of conventional models, as described below. After the
training phase, subjects experienced a constant amount of
visuomotor rotation (±30�) in test trials without the force
channel. The training and test trials were interleaved with
washout trials to rule out the possible effect of cursor movements
in the last training trial on the learning speed in the test trials.
Although this experimental setting was slightly different from the
conditions we simulated in Fig. 2, the predictions of our model
were invariant: learning speed in test trials was predicted to be
faster in groups 2 and 3 than in group 1 (Fig. 3c; in these
simulations, xt in training trials was always set to 0 with assuming
force channel trials).

We used the force channel trials as training trials because they
were useful to clarify the differences between our model and other
conventional models. Although the force channel trials seem
unnatural for an experimental setting, subjects can generate
forces to compensate for the observed movement error (Fig. 4a).
Because the force channel trials made identical target and hand-
movement directions throughout all of the training trials, the
same primitives were always activated according to the ideas from
conventional models10–13. Because the average value of the
movement error experienced by these primitives across many
trials would be 0, the conventional models predict that no
adaptation should occur. As several recent studies have suggested,
motor adaptation could be influenced by reward28–30. In our
experiment, however, the reward was likely to be almost identical
among groups 1, 2 and 3 (the success rate was 1/7 in all the
groups), suggesting no reward-associated difference in motor
adaptation among the three groups. In contrast, because the PE
was easily predicted in groups 2 and 3 compared with group 1,
our model predicted that subjects in groups 2 and 3 would show
faster adaptation during the test phase than those in group 1
(Fig. 3c).

The experimental results supported this prediction: in test
trials, subjects in groups 2 (12 subjects: 6 for þ 30� rotation, 6 for
� 30� rotation) and 3 (12 subjects: 6 for þ 30� rotation, 6 for
� 30� rotation) demonstrated faster adaptation than those in
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group 1 (12 subjects: 6 for þ 30� rotation, 6 for � 30� rotation),
and subjects in group 3 demonstrated faster adaptation than
those in group 2 (Fig. 4b). We fit an exponential function et¼ a
exp(� bt)þ c to the bootstrapped data and estimated the learning
speed b. The mean value of learning speed b was 0.1410 for group

1, 0.2845 for group 2 and 0.3037 for group 3 (Fig. 4c). Because
these differences were significant (Po0.0001, randomization
test), subjects in groups 2 and 3 were considered to adapt to
visuomotor rotation faster than those in group 1, which was
consistent with our model’s prediction.
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Figure 2 | Structural learning. We investigated whether our model could explain the entire structural learning process. Each pt was randomly sampled from

the subset s¼ (�45�, � 30�, � 15�, 0�, 15�, 30�, 45�) in the training trials. In groups 1, 2 and 3, the perturbation sequence varied in every trial, every two

trials and every three trials, respectively. Washout trials were inserted between the training and test trials. These washout trials excluded the possibility that

the movement error in the last training trial affects the learning speed in the test trials. During the test phase, a constant visuomotor rotation, p¼ (30�, ?,

30�), was imposed. (a) Trial-by-trial change of xt (thick line) and pt (thin line) in group 2. (b) Activity of each primitive in group 2, where a strong white

colour indicates high activity. The vertical axis shows the sorted preferred prospective error, mi, from �90� to 90�. The red line denotes the prospective

error. (c) Weighting parameters of each primitive in group 2. Blue and red colours indicate weighting parameters to compensate for perturbations of

positive and negative values, respectively. The red dotted line shows that motor primitives for a 30� PE learn the 30� perturbation in the training trials.

(d) Comparison of xt in the adaptation to the visuomotor rotation among the three groups. Each xt value is calculated by averaging across 100 simulations.

(e) Activities of each primitive in group 1. (f) Weighting parameters of each primitive in group 1. The green dotted line shows that motor primitives

for a 30� PE do not learn the 30� perturbation in the training trials.
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Furthermore, we fit our model to the data from group 1 and
tried to predict the data from groups 2 and 3 (details are provided
in the Fitting our model to data from our experiment section in
Methods). When we fit our model to the forces in force channel
trials and the movement angles in test trials, R2 was 0.9950 and
0.8638, respectively (Fig. 4a,b). The movement angles in the test
phase of groups 2 and 3 could be predicted with R2¼ 0.7967 and
R2¼ 0.7968 (Fig. 4b).

In addition, when our model was used to fit the data sets from
previous studies, the resulting R2 was higher than 0.8240 (Fig. 5,
details are provided in the Fitting our model to data sets from
previous studies section in Methods). These studies investigated
phenomena seemingly unrelated to structural learning and our
behavioural experiment, such as uncertainty effects31 or error size
effects on error modification32, which were separately reproduced
by different computational models, but our PE-based model
could be fit to the data sets. Thus, we expect that the PE-based
model will reproduce diverse features of motor learning in a
unified manner.

Reproduction of other phenomena. Here, we demonstrate that
our PE-based model can also reproduce diverse phenomena that
have previously been explained by different models. We used the
best-fit parameters for group 1 in the numerical simulations
described below.

Effect of uncertainty on learning speed. Motor learning is
hindered when the observed movement error includes uncer-
tainty. For instance, motor-learning speed decreases when the
end-point hand position is blurred3,4. In addition, increased
blurring of the end-point position (higher uncertainty) is
associated with slower learning speed. To explain this effect of
uncertainty, previous studies used a Kalman filter3,4. Because the
uncertainty in the observation of the movement decreases the
Kalman gain and learning rate, the framework using a Kalman
filter can explain how the uncertainty of the observation adversely
influences the motor-learning speed.

Our model also reproduced the detrimental influence of the
uncertainty of the error feedback on motor-learning performance
(Fig. 6). The influence of the uncertainty can be interpreted based on
a recursive equation of motor command (see the Recursive equation
of motor command section in Methods for a detailed analysis):

xtþ 1 ’ l 1� a2

s2
et � êtð Þ2

� �
xt þ ZetA êtð ÞAT êtþ 1ð Þ: ð4Þ

The learning rate is modulated by an inner product A(êt) AT(êtþ 1).
The inner product is maximal when êtþ 1¼ êt and minimal when
êtþ 1 is completely different from êt ; great inaccuracy of the
prediction of the PE (that is, greater uncertainty of error feedback) is
associated with reduced modulation of the learning rate.
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Savings. Savings is a phenomenon in which the adaptation to the
second exposure is faster than that to the first exposure, although
a washout is experienced after the first exposure1,19,23.

Figure 7a,d indicates the result of a simulation of an
experiment in which subjects experience a 30�-visuomotor

rotation (initial learning) followed by a � 30�-visuomotor
rotation (opposite learning) and then are exposed again to a
30�-visuomotor rotation (relearning). The � 30�-exposure
appears to eliminate motor memory, but the adaptation was
faster in the relearning phase than in the initial learning,
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indicating that our model reproduced the savings. Notably, in
contrast to previous models that adopt processes with multiple
time constants (that is, slow and fast1,2,20), our model did not
explicitly consider the presence of slow and fast states.

In our model, at the beginning of the initial learning phase, the
motor primitives with preferred PEs close to 30� are activated
(Fig. 7b) and the weighting parameters of these primitives are
modified to decrease the movement error of the 30� rotation
(Fig. 7c). However, as the adaptation proceeds, the movement
error and the PE decrease, and as a result, different primitives are
gradually involved in the decrement of the movement error
(Fig. 7b). Because the motor primitives activated at the beginning
of the initial learning phase are no longer activated during the
latter half of the initial learning phase nor in the opposite learning
phase, the weighting parameters of those primitives remain
unchanged. Thus, when a 30�-perturbation was re-imposed in the
relearning phase, the primitives maintaining the memory are
reactivated, which contributes to accelerating adaptation to the
30�-perturbation relative to the initial learning phase.

Previous studies19,20 have also noted that even the two-state
model comprising fast and slow processes, which was developed
to explain the savings, cannot explain the experimental result
that savings still exist even after a sufficient number of
washout trials following the initial learning phase. As shown in
Fig. 7e, even with a sufficiently long washout phase, our
model can still account for the savings effect when the
forgetting rate is close to 1.

Anterograde interference. Anterograde interference is a phe-
nomenon in which the adaptation to a novel environment (for
example, clockwise visuomotor rotation) interferes with the

subsequent adaptation to another novel environment (for
example, counter-clockwise visuomotor rotation)22,23.

Figures 8a, d demonstrate the results of a simulation in which
the subjects experienced a 30�-visuomotor rotation (initial
learning) followed by a � 30�-visuomotor rotation (opposite
learning). Adaptation was slower in the opposite learning phase
than in the initial learning phase, indicating that our model
reproduced anterograde interference. The motor primitives
whose preferred PEs were close to 0� were activated in the latter
part of the initial and opposite learning phases (Fig. 8b). The
weighting parameters of these primitives were modified to reduce
the positive movement error in the initial learning phase, but the
content of the motor memory of these primitives needed to be
reversed for the opposite learning phase (Fig. 8c). This reversal
may increase the number of trials needed for the adaptation in the
opposite learning phase. In fact, a longer initial learning phase
was associated with slower adaptation in the opposite learning
phase (Fig. 8e).

Spontaneous recovery. Motor memory is not easily eliminated
once it is formed. After a sufficient amount of force-field training,
a short exposure to the opposing force field appears to reverse the
motor output (that is, the motor memory content). However,
during the forgetting process of the motor memory, the motor
memory for the originally trained force field can be sponta-
neously recovered1. This phenomenon is called spontaneous
recovery1,23,24.

Figure 9a indicates the result of a simulation in which the
subjects experienced a 30�-visuomotor rotation (initial learning
phase) followed by a brief period of a � 30�-visuomotor rotation
(opposite learning phase) and finally a series of error-clamp trials
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prospective error, êt. Vertical dotted line is drawn at the trial at which the initial learning phase switches to the opposite learning phase. The horizontal

dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue and red colours indicate weighting parameters to compensate

for perturbations of positive and negative values, respectively. (d) Comparison of xt between the initial learning and opposite learning phases. In the

opposite learning phase, the negative part of xt is drawn (red line in a). (e) Trial-by-trial change of xt in the opposite learning phase. Each dotted line

denotes the dependence of xt on the length of the initial learning phase. (f) Previously reported savings by Sing and Smiath22 (reproduced from a previous

study22).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6925 ARTICLE

NATURE COMMUNICATIONS | 6:5925 | DOI: 10.1038/ncomms6925 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


in which the movement error was constrained to 0 (error-clamp
trials). At the end of the opposite learning phase, the motor
memory for the 30�-visuomotor rotation appeared to be
completely eliminated, but the motor memory re-emerged during
the error-clamp trials, indicating that our model successfully
reproduced spontaneous recovery.

A sufficient amount of initial training trials resulted in a PE of
almost 0, and almost all of the motor primitives involved in
compensating for the 30�-visuomotor rotation had preferred PEs
that were close to 0 (Fig. 9c). However, during the subsequent
opposite learning phase, the number of training trials was small
and the adaptation was accomplished while the PE did not
converge to 0. Thus, the motor primitives involved in the
opposite learning phase had PEs that were different from 0,
indicating that the motor memory formed in the initial learning
phase was not overwritten (Fig. 9d). In the error-clamp trials, the
PE gradually approached 0, which reactivated the motor memory
embedded in the motor primitives involved in the initial learning
phase, leading to a spontaneous recovery of the motor memory.

Discussion
We propose a novel motor-learning model based on motor
primitives. Our model assumes that each primitive is activated by
a PE, based on both theoretical consideration of how motor
memory can be formed and maintained in a randomly varying
environment and previous neurophysiological findings showing
that some neurons encode a PE for online movement control16,17.
To validate our model, we confirmed its novel prediction that
motor-learning speed in response to a constant amount of
perturbation is increased after experiencing the same movement

errors in two or three consecutive trials. This phenomenon
cannot be predicted by conventional computational models,
assuming that the recruitment of the motor primitives is
determined only by the planned movement direction10–12, by
Bayesian framework3 nor by reinforcement learning based on
‘reward’28–30. In addition, this facilitatory effect cannot be
explained by a previous model where an update of the motor
command depended on the executed movement directions13,
because the hand-movement direction in our experiment was
kept identical to the target direction using the force channel.
Although it is possibile that the update of the motor command
depends on the cursor movement directions (see Discussion in
Gonzalez-Castro et al.13), this framework cannot solely explain
why a blurred end-point position decreases the learning rate; if
movement error is linearly processed, the ensemble-averaged
movement errors are the same between blurred and non-blurred
conditions, E[etþ xt]¼ E[et], where xt denotes uncertainty. In
contrast, our behavioural experiment validated our novel
prediction (Fig. 4).

Our model also has strong power to explain a wide variety of
other motor-learning-related phenomena1–8,19,20,22,23. Although
different models have been conventionally proposed to explain
different types of phenomena, our model can explain these
phenomena in a unified manner (that is, in a single model with
the same parameters) (Figs 2 and 6–9).

To account for phenomena such as savings, anterograde
interference and spontaneous recovery, recent computational
studies have proposed that a motor memory has multiple time
constants (that is, fast and slow processes1,2,20,22,33). Conversely,
our model does not explicitly assume the presence of fast and
slow motor-learning processes. Nevertheless, our model was able
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to account for these motor-learning phenomena, in addition to
other types of phenomena that multiple timescale models cannot
explain, such as structural learning or the change in learning rates
due to uncertainty.

The explanatory power of our model is derived from the
determination of the recruitment pattern of motor primitives
based on the trial-by-trial variation of the PE. When the
movement error is positive in consecutive trials, the PE is also
predicted to be positive, and this positive PE activates a group of
motor primitives responsible for compensating for the positive
movement error. In these trials, a group of motor primitives
responsible for compensating for a negative movement error
remains inactivated and maintains the motor memory compen-
sating for a negative movement error (Figs 7a and 9a). In
contrast, a group of motor primitives for a near-zero PE is
activated in the latter part of the learning phase independent of
whether the movement error is positive or negative (Fig. 8a).
Therefore, the motor primitives for a large PE are recruited in a
task-dependent manner, but only at the beginning of the learning
phase, whereas those for a small PE are recruited in a task-
independent manner, but only in the latter part of the learning
phase. The PE-dependent recruitment pattern of motor primi-
tives explains why our model can reproduce savings, anterograde
interference and spontaneous recovery. Furthermore, simulated
relearning curves in Fig. 7d can be observed in an experiment in
which subjects can use cognitive strategy to correct errors34. Our
model indicates that cognitive strategy can be partly explained
from a mechanistic viewpoint.

Similarly, this recruitment feature can also explain why the
trial-dependent characteristics of the perturbation influence the
learning rate. When the perturbation changes from trial to trial,
the PE also randomly fluctuates, activating different sets of motor
primitives, which lead to a lower learning rate because the

formation of the motor memory is distributed across a large
portion of motor primitives. Conversely, when the perturbations
are more predictable, such as when identical perturbations are
repeated in consecutive trials, the PE can be more reliably
predicted. This predictability of the PE activates the same sets of
motor primitives, and thus the formation of the motor memory is
concentrated in a small portion of motor primitives, leading to a
higher learning rate. These results suggest a novel interpretation
for how the brain processes movement-error information; the
movement error is used both for motor learning and for
determining which primitives are recruited for that motor
learning.

It is well known that when a visuomotor rotation is abruptly
imposed, the amount of motor-command correction in the
subsequent trial is not proportional to the amount of rotation;
rather, it decreases with the amount of rotation32. This pheno-
menon was previously explained by a Bayesian framework32

in which a larger the visuomotor rotation was associated
with a larger difference between the planned cursor movement
direction and the executed hand-movement direction, resulting in
a decreased learning rate. However, when the amount of
visuomotor rotation is gradually increased, such a reduction in
the learning rate is not observed35. The different adaptation
behaviours between abrupt and gradual applications of
visuomotor rotation can also be explained by our model
framework. In the case of gradual visuomotor rotation, the
movement error is very small and the PE is reliably predictable.
Thus, the same group of motor primitives is always recruited,
indicating that the learning rate is not affected by the difference
between planned and executed movement directions. By contrast,
abrupt visuomotor rotation results in greater movement error
and the PE changes considerably, leading to a decrease in the
learning rate.
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We have theoretically shown that motor primitives should
encode the information of pt. In our model framework, however,
we assumed that the motor primitives encode the prediction of et

rather than the prediction of pt itself, because et contains some
information regarding pt. Interestingly, a model in which the PE
determines At has stronger explanatory power than a model in
which the predicted pt determines At (Fig. 10).

We also assumed that the PE is updated based on a simple
linear updating equation with a constant a (equation (3)), but
other candidates can be considered. An example is the Kalman
filter36, in which a can be modulated in each trial by uncertainty.
In addition, êt can be updated based not only on êt� 1, but also
êt� 2, êt� 3 or a longer history of ê. Although a simple linear
update of the PE is sufficient to reproduce many simulated
phenomena in this study, we expect that the Kalman filter and a
longer history will have stronger explanatory power than
equation (3). Further study is needed to investigate how the PE
is updated.

Our model was confirmed by an experiment involving only a
10-cm (ballistic) reaching movement. Thus, the current aspects
may or may not be applicable to more general movements such as
longer reaching movements and three-dimensional reaching.
Future studies will be necessary to answer this problem, but we
believe that the present ideas are also applicable to those
movements, considering that the aspects of motor learning
revealed by previous studies using the same experimental set-up
have been confirmed for the other movements such as saccadic
adaptation37 and locomotion38.

Furthermore, for simplicity, this study addressed with reaching
movements towards a single target. However, we need to expand
our model into one that can account for movement towards
multiple targets. Adaptation effects in a reaching movement
towards a single training target are generalized to movements
towards other spatially distributed targets10,11. The degree of
generalization depends on the angular difference between the
trained and tested target directions. To explain this generalization
effect, one possible idea is to extend from a univariate function
Ai(êt) to a bivariate function Ai(dt, êt), where dt is a target
direction. There are several candidates for these extensions.
For example, the PE and desired movement direction could be
either additively integrated, that is, Ai(dt, êt)¼ fi(dt)þ gi(êt) (f( � )
and g( � ) are functions), or multiplicatively integrated, that is,
Ai,t(dt, êt)¼ fi(dt)gi(êt). Although recent studies support the
multiplicative interaction as a strong candidate for the
integration of multiple variables14,15, this idea needs to be
validated by conducting additional experiments.

Methods
Theoretical analysis. The averaged update rule across all possible realizations can
be written as

E W tþ 1½ � ¼ lE W t½ � þ Z E ptAt½ � � E W tA
T
t At

� �� �
: ð5Þ

After many trials, E[Wtþ 1] and E[Wt] converge to W, and we obtain equation (2).
If pt is independent of At and E[pt]¼ 0, E[ptAt]¼ E[pt]E[At]¼ 0 and
E W tþ 1½ � ¼ E W t l� ZAT

t At
� �� �

¼ 0 because E[W0] is 0. Thus, motor primitives
can form and maintain motor memory in a randomly varying environment when
At is correlated to pt.

Update rule of PE. Prospective error is a predicted movement error based on the
current prediction and the prediction error between the current prediction and the
observed movement error. When the observed movement error is et and the true
(noiseless) movement error is gt, the observation process can be written as et¼
gtþ xt, where xt is the observation noise (sensory noise). Here, we assume a
Gaussian noise whose mean is 0 and variance is s2

0 as the observation noise. Recent
studies reported that, even when there is no perturbation, movement error shows
trial-to-trial variability27. If the variability of movement error is available in our
motor system (that is, our motor system can utilize a generative model of
movement error gtþ 1¼ gtþ zt (zt is a Gaussian noise whose mean is 0 and variance
is s2

g )), our motor system can optimally predict the movement error in the next

trial following

êtþ 1 ¼ êt þ
s2

g

s2
g þ s2

o

et � êtð Þ ð6Þ

to minimize the variance of prediction error. Equation (3) is thus an optimal

update of the PE when a ¼ s2
g

s2
g þs2

o
. Notably, this update rule is equivalent to a

Kalman filter36, but we did not assume any update of s2
o and s2

g for simplicity (see
Discussion).

Recursive equation of motor command. We can derive the recursive equation of
motor command (state-space representation of motor learning) when movement
error decreases gradually. In this case, A(êtþ 1)¼A(êtþ a(et� êt))CA(êt)þ
aA0(êt)(et� êt), where A0 is the derivative of A. When Ai is a Gaussian, multiplying
the update equation of Wt (equation (1)) by AT(êtþ 1) yields

xtþ 1 ’ l 1� a2

s2
ðet � êtÞ2

� �
xt þ ZetA êtð ÞAT êtþ 1ð Þ; ð7Þ

where the learning rate is modulated by the inner product A(êt)AT(êtþ 1).
The inner product can be further calculated as A êtð ÞAT êtþ 1ð Þ ¼

ffiffiffiffiffiffiffiffi
ps2
p

exp
� 1

4s2 êtþ 1 � êtð Þ2
� �

, where N-N and mA(�N,N) are assumed. The recursive
equation can be rewritten as:

xtþ 1 ’ l 1� a2

s2
et � êtð Þ2

� �
xt þ ~Z exp � a2

4s2
et � êtð Þ2

� �
et ; ð8Þ

where ~Z is
ffiffiffiffiffiffiffiffi
ps2
p

Z and both the forgetting and learning rate are modulated by
(et� êt)2. Therefore, a more predictable PE is associated with higher forgetting and
learning rates (slower forgetting and faster learning).

Summary of computer simulations. By setting ê0¼ e0¼ 0 and W0¼ 0, our
simulation consisted of the following four steps:

Determining activities of motor primitivesð Þ Ai êtð Þ

¼ exp � 1
2s2

êt �jið Þ2
� �

: ð9Þ

Generation of a motor commandð Þ xt ¼ W tA
T êtð Þ: ð10Þ

Observation of a movement errorð Þ et ¼ pt � xt : ð11Þ

Update of linear coefficientsð ÞW tþ 1 ¼ lW t þ Zet A êtð Þ: ð12Þ

Update of a prospective errorð Þ êtþ 1 ¼ êt þ a et � êtð Þ: ð13Þ

Fitting our model to data from our experiment. Our model has four parameters:
a forgetting rate l, a learning rate Z, an update rate of PE a and a width of motor
primitives s. First, assuming Wt¼ 0 and êt¼ 0, we determined a and s by fitting
the amount of error modification ftþ 1 ¼ et exp � a2

4s2 et � êtð Þ2
� �

(equation (8)) to
the data in training trials of group 1 (Fig. 4a, R2¼ 0.9950), because ftþ 1 is
uncorrelated to et only in group 1. The assumptions, Wt¼ 0 and êt¼ 0, can be
assumed only in data from group 1, because the average error in training trials of
group 1 is 0 as a result of completely random cursor movements. Because the data
were related to generated force and our model focused on movement direction, we
scaled the equation, mftþ 1þ n to fit for the data (m and n were best-fit para-
meters). This fitting yielded the best-fit s/a¼ 0.3586� (360/2p), that is, we could
not separate a and s based on this data fitting. Next, we searched the best-fit l, Z, a
and s for the learning curve for group 1 in test trials, resulting in l¼ 0.9586,
Z¼ 2.3913, a¼ 0.8 (we searched the best a by setting a¼ 0, 0.1, 0.2, ..., 0.9, or 1.0)
and s¼ 0.2868� (360/2p). Notably, we fit all of the parameters to the data from
group 1 (R2¼ 0.8638). However, our model can also predict the data from groups 2
and 3 (R2¼ 0.7967 and R2¼ 0.7968).

Fitting our model to data sets from previous studies. We fit our model to
conventional data in (http://crcns.org): data from Körding and Wolpert31, Wei and
Körding32 and Thoroughman and Taylor39. Parameters s and a were set to the
best-fit parameters for our experimental data, s/a¼ 0.3586� (360/2p) and a¼ 0.8.
The best-fit forgetting and learning rates l and Z were identified for each data set.

Data from Körding and Wolpert. When error feedback includes uncertainty,
the learning rate in our model is modulated by expð� a2

4s2ðet�êtþxt Þ2
Þ (equation (8)).

If this factor is averaged across all of the possible uncertainty values, xt, simple
calculations yield

ffiffiffiffiffiffiffiffiffiffi
b

bþ s2
G

q
exp ð� 1

2
1

bþ s2
G

et � êtð Þ2Þ; therefore, the amount of error

modification is �f ðetÞ ¼ et

ffiffiffiffiffiffiffiffiffiffi
b

bþ s2
G

q
exp ð� 1

2
1

bþ s2
G

et � êtð Þ2Þ. We scaled this equation,

m�f etð Þþ n, to fit the data of Körding and Wolpert31, assuming that êt¼ 0 (this
assumption is correct because the averaged error across all of the trials was almost
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zero), sG¼ (18�, 30�, 36� and 60�) in the s0, sM, sL and sN conditions, respectively
(Fig. 5a). Because our model focused on movement direction and their data focused
on movement deviation, this scaling was necessary. R2 was 0.9315, 0.9448, 0.9823
and 0.9786 for data of s0, sM, sL and sN, respectively.

Data from Wei and Körding. We calculated the relationship between motor
command at the (tþ 1)-th trial, x(tþ 1) and perturbation at the t-th trial, p(t), when
the perturbation in each trial was randomly sampled from p¼ (� 45�, � 30�, � 15�,
0�, 15�, 30�, 45�). This simulation was conducted for 30 simulation runs and 210 trials
in each simulation run (the weight parameter W was reset to 0 at the beginning of
each simulation run). When we compared the scaled motor commands mx(tþ 1)þ n
to the data of Wei and Körding32 (Fig. 5b), R2 was 0.8947.

Data from Thoroughman and Taylor. Data from Thoroughman and Taylor39

were related to adaptation to a curl force field with 16 targets. Because we did not
consider multiple targets in our model (see Discussion), we fit our model to their
data after moving average filtering. The size of the filter was 16 and weight was
uniform, that is, the filtered error at the t-th trial ēt was �et ¼ 1

16

P15
i¼0 etþ i, where et

represents movement error without the filtering. This filter can be expected to
minimize the effect of the generalization of learning effects across different target
directions. Figure 5c shows the filtered error. We scaled the movement error in our
model, me(t)þ n, to fit to their data. R2 was 0.8240.

Perturbation prediction model. We theoretically proved that At should encode
the information for perturbation pt. Here, we assumed a perturbation prediction
model in which At is determined by p̂t , where p̂t is a predicted perturbation and
updated by p̂t ¼ p̂t� 1 þ aðpt� 1 � p̂t� 1Þ. We compared the PE model and the
perturbation prediction model based on numerical simulations of spontaneous
recovery (Fig. 10). Because we are not sure how the subjects predicted pt in error-
clamp trials, p̂t was forcibly set to 0 or � 30 (perturbation just before the error-
clamp trials).

Behavioural experiment. Thirty-six healthy, right-handed volunteers (22 males, 14
females, aged 18–38 years) participated in this study and were paid for their time.
The participants were pseudo-randomly assigned to one of the six experimental
groups, group 1 CW, group 1 CCW, group 2 CW, group 2 CCW, group 3 CW or
group 3 CCW, where CW indicates clockwise rotation (� 30� rotation) and CCW
indicates counter-clockwise rotation (30� rotation). The numbers of females and
males were the same in group 1 CCW and in group 2 CCW (three males and three
females) and among group 1 CW, group 2 CW, group 3 CW and group 3 CCW
(four males and two females). The subjects had no cognitive or motor disorders and
were naı̈ve to the concept of visuomotor rotation and the purpose of the experi-
ment. All participants were clearly informed of the experimental procedures in
accordance with the Declaration of Helsinki and provided written informed consent
before the experiment began. All procedures were approved by the ethics committee
of the Graduate School of Education at the University of Tokyo.

Participants were asked to make pointing movements with their right arm while
holding the handle of the manipulandum (Phantom 1.5 HF; Geomagic, Rock Hill,
SC, USA). The handle position was displayed as a white cursor (a 6-mm circle) on
a black background on a horizontal screen located above their hand. The
movement of the handle was constrained to a virtual horizontal plane (10 cm below
the screen) that was implemented by a simulated spring (1.0 kN m� 1) and dumper
(0.1 N per (m s� 1)). A brace was used to reduce unwanted wrist movement. Upper
trunk motion was constrained by a harness. Before each trial, participants were
required to hold the cursor at its starting position (a 10-mm circle). After a 2-s
holding time, a grey target (a 10-mm circle) appeared. After an additional
randomly selected holding time (250–350 ms), the target colour changed to purple,
signalling the participant to initiate a pointing movement. Subjects were required
to move the handle with a peak velocity of 470±45 mm s� 1 (the target velocity
was calculated using the minimum-jerk theory with a movement amplitude of
10 cm and a duration of 0.4 s). A warning message appeared on the screen if the
movement velocity of the handle rose above (‘fast’) or fell below (‘slow’) this
threshold value. Subjects were also required to move the handle with an amplitude
of 10 cm. When the movement amplitude was 10 cm, the sound of an explosion
was produced. At the end of each trial, the handle was automatically moved back to
the starting position by the manipulandum.

In training trials (force channel trials), we used the ‘error-clamp’ method1,40,41.
During error-clamped trials, the trajectory of the handle was constrained to a
straight line towards the target by a virtual ‘channel’ in which any motion
perpendicular to the target direction was constrained by a one-dimensional spring
(2.5 kN m� 1) and damper (25 N/(m/s)).

Manipulandum motion data were recorded at a sampling rate of 500 Hz.
Motion data were low-pass filtered using a fourth-order Butterworth filter with a
10-Hz cutoff. Movement onset time was defined as the first time point during
which hand-movement velocity first exceeded 10% of its peak value for at least
50 ms.

For the second trial of the test trials with visuomotor rotation, one of the 12
subjects in group 2 showed an outlying behaviour. The mean movement angle in
group 2 at the trial m was 27.6944, the s.d. s was 11.6704 and the movement angle

of this subject in this trial was 62.8017, which is larger than mþ 3s. Thus, we
eliminated this outlying data point from our analysis. Notably, this elimination of
the outlier did not affect our results at all.

To determine whether learning speed was different among groups 1 (CCW and
CW), 2 (CCW and CW) and 3 (CCW and CW), we conducted a bootstrap
sampling and a randomization test. For bootstrap sampling, the learning speed was
sampled 3,000 times in each group, and we calculated the mean value of the 3,000
sampled learning speeds. To determine whether the mean values of each group
were significantly different, randomization tests were conducted. In each
randomization test, the bootstrap-sampled learning speeds in groups 1 and 2 (1
and 3, or 2 and 3) were intermingled and randomly divided into two groups. We
calculated the difference in the mean values of each randomized group and counted
how many times this difference was larger than the difference of the mean learning
speed (0.1410 for group 1, 0.2845 for group 2 and 0.3037 for group 3) to calculate
P-values for the randomization tests.
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