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A large-scale dataset for mitotic 
figure assessment on whole slide 
images of canine cutaneous mast 
cell tumor
Christof A. Bertram1,3, Marc Aubreville   2,3*, Christian Marzahl2, Andreas Maier   2 & 
Robert Klopfleisch   1

We introduce a novel, large-scale dataset for microscopy cell annotations. The dataset includes 32 
whole slide images (WSI) of canine cutaneous mast cell tumors, selected to include both low grade 
cases as well as high grade cases. The slides have been completely annotated for mitotic figures and 
we provide secondary annotations for neoplastic mast cells, inflammatory granulocytes, and mitotic 
figure look-alikes. Additionally to a blinded two-expert manual annotation with consensus, we provide 
an algorithm-aided dataset, where potentially missed mitotic figures were detected by a deep neural 
network and subsequently assessed by two human experts. We included 262,481 annotations in 
total, out of which 44,880 represent mitotic figures. For algorithmic validation, we used a customized 
RetinaNet approach, followed by a cell classification network. We find F1-Scores of 0.786 and 0.820 for 
the manually labelled and the algorithm-aided dataset, respectively. The dataset provides, for the first 
time, WSIs completely annotated for mitotic figures and thus enables assessment of mitosis detection 
algorithms on complete WSIs as well as region of interest detection algorithms.

Background & Summary
Microscopy image recognition has seen vast advances in recent years, fostered by the availability of high quality 
datasets as well as by the application of sophisticated deep learning pipelines. One of the most important topics in 
the field of microscopy imaging is the classification of cells, typically stained with hematoxylin and eosin (H&E) 
dye. In this area, one particularly challenging task is the detection of mitotic figures, i.e. cells undergoing division, 
in tumor tissue. It is commonly accepted that the quantity of mitotic figures is one of the most powerful prognos-
ticators of biological behavior for many tumor types, both in humans1,2 and animals3–5. In the field of automatic 
detection of those mitotic figures, there have been a number of competitions in recent years, e.g. the TUPAC16 
challenge6, the ICPR MITOS-20127 and ICPR MITOS-ATYPIA-2014 challenge8.

Mitotic figures are defined histologically by the lack of a nuclear membrane and the presence of hairy projec-
tions of the chromosomes (nuclear material)9. A common method for quantification is the mitotic count (MC), 
which means counting mitotic figures in a standard-sized area located where the tumor is assumed to have the 
highest mitotic density. The method is widely used, as it can be obtained easily on standard H&E stained sec-
tions without additional costs10. Regardless, reproducibility is currently hampered by high inter- and intra-rater 
variability11,12 due to the difficulty of identifying mitotic figures and the variable distribution of mitotic fig-
ures throughout the tumor section13. Identification of individual mitotic figures has only moderate agreement 
between trained pathologists as they include a wide range of morphological variants depending on the phase of 
cell division and tissue properties as well as atypical morphologies. Previous studies have identified inter-rater 
disagreement of 17.0–34.0% in distinguishing individual mitotic figures from other cell structures in canine mast 
cell tumors (CCMCT) and human breast cancer12–14. Yet, even if results are typically more stable, algorithmic 
approaches have not reached human performance in this task. Identifying the area with the highest mitotic den-
sity – as requested for the MC – is complicated by a patchy mitotic distribution13. In contrast to human observers, 
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machine learning-based algorithms can quickly evaluate entire whole slide images (WSI) and propose the area 
with the highest density. A previous study has shown that algorithms can outperform human observers in this 
task and pose a very promising method to overcome this challenge15.

CCMCT are among the most common skin tumors in dogs16. Tumors compose of round to polygonal neo-
plastic mast cells with variable amounts of faintly stained intracytoplasmic granules, which contain different 
substances such as eosinophilic chemotactic factors. Due to these substances, aggregation of non-neoplastic 
eosinophilic granulocytes – a small immune cell containing eosinophilic granules – is additionally found in most 
CCMCT17. Biological behavior is highly variable: CCMCT are considered potentially malignant. Whereas the 
majority of cases will have a benign behavior, others may develop fatal metastatic diseases. Therefore, accurate 
prognostication of the biological behavior such as by quantification of mitotic figures is essential in order to 
select an appropriate therapeutic approach16. It has been determined that the MC has good prognostic value for 
CCMCT as a solitary parameter3,4 and as part of a grading system18.

Given the importance of quantifying mitotic figures in various tumor types of animals and humans, it is at 
first glance surprising that none of the available datasets provide labels for complete WSI. Manual annotation 
of such large areas, however, is a labor-intense and tedious task. In this work, we present a dataset consisting of 
32 fully-annotated WSI of CCMCT with a total of 44,880 mitotic figure annotations. Potential mitotic figures 
have been identified by one veterinary pathologist [CB] and subsequently by a deep learning-based pipeline. 
Two experts [CB, RK] classified the annotations in a blinded manner and reviewed the disagreed labels to find 
common consensus on the label class. This collection19 represents the currently largest data set in number of 
annotated mitotic figures and annotated tumor area. Therefore it provides researchers with new opportunities 
for the development and refinement of data-driven algorithms for mitotic figure identification on entire whole 
slide images.

Methods
Selection and preparation of specimen.  Histological specimens of CCMCT cases were obtained from 
the author’s institute diagnostic archive. 32 Cases with high tissue quality were selected retrospectively in such a 
way that the dataset includes cases with variable density of mitotic figures ranging from low to very high MCs. 
One representative tissue block (formalin-fixed and paraffin-embedded) was chosen per case. New tissue sec-
tions were produced at a thickness of approximately 1 μm and stained with H&E by a tissue stainer (ST5010 
Autostainer XL, Leica, Germany). Whole slide scanning was performed by a linear scanner (ScanScope CS2, 
Leica, Germany) in one focal plane by default settings at a magnification of 400x (image resolution: 0.25 μm/
pixel), using an Olympus UPlanSAPO 20x lens (field number = 26.5, numerical aperture = 0.75).

Manually expert labelled (MEL) dataset.  Primary annotations were carried out by two experts trained 
in the field of veterinary pathology [CB, RK]. For this, we used an open source software solution made available 
by our research group20. This software provides two modes specifically designed for this task: Firstly, an expert 
can screen a WSI for specific structures (in this case mitotic cells) at highest magnification. For this, the software 
detects tissue presence in the image and shows partially overlapping tissue segments to the expert for assessment. 
This ensures that no region of the WSI is left out for assessment. The first expert on each dataset classified cells 
into the following groups (see also Fig. 1):

	 1.	 Mitotic figure.
	 2.	 Non-mitotic, neoplastic mast cells.
	 3.	 Non-mitotic, ambiguous cells.
	 4.	 Eosinophilic granulocytes.

The group of ambiguous cells plays a special role, here, as it is non-disjunct to the other groups besides mitotic 
cell. This group was initially used to account for cells that are not mitotic figures, but also not clearly attributed to 
other cells.

The first assessment of a WSI was always carried out twice by the first expert (see Fig. 2). The second expert 
was blinded to the cell class decisions of the first expert, but not to the positions where cells were annotated. We 

Non-mitotic, neoplastic mast cells

Eosinophilic granulocytes

Mitotic figure look-alikes

Mitotic figures

Fig. 1  Examples for various cell types annotated in the data set. Not shown are ambiguous cells. Due to their 
count, only for the class of mitotic figures a complete list of cells is provided.
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followed this procedure, because we assumed the risk to miss rare mitotic events on WSIs to be greater than the 
potential bias introduced when having to judge an already available cell annotation of unknown class. The anno-
tation software20 provides a mode for this blinded annotation, in which one or multiple unassigned annotations 
are presented without any class labels. After selection of the respective classes, the next random annotation(s) 
would be presented.

It is well known, that the concordance of different experts w.r.t. mitotic figure assessment is not perfect. All 
cases, where both experts did not agree on the same class, and additionally a number of doubtful candidates 
found by the first reviewer, were re-evaluated by both experts in order to find agreement on the label class, result-
ing in the manually expert labelled (MEL) data set variant. Naturally, manual screening of large images introduces 
the risk of missing candidates for annotation, which we perceive as one of the main risks for data quality. Due to 
this, we employed an algorithm-aided pipeline.

Augmented dataset for mitotic figures.  In order to improve the quality of our dataset, we made use of 
deep learning techniques, trained on the manually, expert-labelled (MEL) data set. We derive two data set variants:

Hard-example augmented expert labelled dataset variant (HEAEL).  In this dataset variant, our primary aim 
was to split up the group of non-mitotic figures and ambiguous cells into mitotic figure-lookalikes and other 
cells. It has been shown that determination of hard examples is helpful for faster convergence of the classification 
approaches21.

For cell classification, we used a standard CNN network architecture based on ResNet-1822 as backbone. 
We trained this network using image crops of 128 px × 128 px around annotated cells of the dataset. The cases 
where this cell classifier network predicted a high certainty mitotic figure were reviewed again by both experts, to 
account for potentially misclassified cells (see Fig. 3).

Object-detection augmented expert labelled dataset variant (ODAEL).  In order to counteract bias encountered 
due to one or both experts missing candidates of the (relatively rare) mitotic figures, we shifted towards an aug-
mented dataset generation technique. In this approach, a deep network would propose additional potential 
mitotic figure candidates, and the human experts would have to rate and assign to the different groups of our 
dataset (see Fig. 4). With this mechanism, we generated, additionally to the missed mitotic figures, also a list 
of hard negative samples, i.e. examples that a model or even a human expert could potentially misjudge for 
true mitotic figures. By definition, hard negative mitotic figure lookalikes were cells where the model classified a 
mitotic figure, but the consensus of human experts neglected this to be the correct label.

First, based on a three-fold split, a custom RetinaNet23 model was trained for each fold. We used an input size 
of 512 × 512 for the model, and fed images that would typically contain at least one mitotic figure to the model. 
RetinaNet uses focal loss to account for class imbalance, which is especially important in our case due to the 

Fig. 2  Creation of the manually expert labelled (MEL) dataset variant, which is the base for all other data 
set variants. Every WSI was screened for mitotic figures by the first expert. The second expert was able to see 
annotations but not class labels, and was additionally able to set new annotations, if needed. Disagreed cells 
were re-assigned to both experts for a common consensus.

Fig. 3  Algorithm-aided division of the ambiguous class non-mitotic cells, resulting in the hard-example 
augmented expert labelled (HEAEL) dataset variant. A ResNet1822-based classifier was used to sort ambiguous 
cells into more or less likely mitotic figure candidates, which were subsequently presented to both experts.
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foreground (mitotic figure) class being less prevalent than the background class. As network backbone, we used 
a ResNet-1822 topology, pre-trained on ImageNet24. We trained the model for 6 cycles, each with 50,000 random 
image crops.

Li et al.25 have shown that a dual stage approach improves performance significantly over a single stage object 
detection approach. Motivated by this, we introduce a second stage cell classifier after the initial object detection/
cell localization stage. We use the previously trained (for hard-example classification) network for this purpose.

Data Records
We provide the 32 original WSI in the Aperio SVS format on figshare19. All slides have been fully anonymized and 
label images have been removed. Each described variant of the dataset is made available as database file (SQLite3 
format). The database format provides for each annotation:

•	 The slide on which the cell was annotated.
•	 The coordinates (x, y) of the cell.
•	 The agreed class (by all experts) of the cell.
•	 Two or more individual class labels. For each label, it is known who assigned the label, be it expert 1, expert 

2, both experts (consensus vote), or, for the augmented dataset the object detection algorithm. The unique 
numeric identifier of each label also represents the order in which the labels were given to the annotation.

Table 1 gives an overview about all three dataset variants. Slides are sorted by number of annotated mitotic 
figures. There was a large spread in the total count, reflecting also differences in tumor proliferation. To ease 
comparison of results on the dataset, we assigned slides randomly to be part of the training or test dataset. 
The number of mitotic figure look-alikes greatly increased from the hard-example-augmented dataset to the 
object-detection-augmented dataset. The reason for this is that all non-mitotic cells that were given a probability 
of above 0.5 for mitosis by the dual stage classifier were added to this class.

Getting started.  To reconstruct the experiments, the first step is to clone the GitHub repository (an over-
view is given in Table 2). It includes a jupyter notebook (Setup.ipynb) that downloads all individual slides 
and the database file from figshare. After this initial setup was run, all required data is available to run the other 
notebooks. Training of the networks is conducted in the notebooks RetinaNet-CCMCT-<variant>.
ipynb, where <variant> is one of the data set variants (MEL, HEAEL, ODAEL). Trained networks are stored 
as RetinaNet-<variant>-export.pth in the main folder. Also in the main folder, there is a script to 
run the models on the test set (Inference-Retinanet.py) and the evaluation scripts to calculate the F1 
score. In the subfolder 2nd_stage, all scripts and notebooks are provided to train and evaluate the 2nd stage 
ResNet-18 classifier. First, patches need to be extracted (exportDataset_<variant>.py), and later the 
classifier is trained (CellClassification-<variant>.ipynb). For inference, there is a third script 
(Inference-CellClassifier.py) available. Evaluation of both stages and all variants is performed in the 
notebook Evaluation.ipynb in the root folder.

Technical Validation
Our technical validation of the dataset is two-fold: First, we assessed the quality of assigned labels by conducting 
a classification experiment of mitotic figures versus other cells. Secondly, we performed a detection task on the 
complete WSIs of the test set. Both are informative for distinctive questions: While the first test can yield infor-
mation as to how well separation of classes is possible and thus indirectly assesses label class quality, the latter also 
assesses the coverage of mitotic figures on the WSI.

Fig. 4  Algorithm-aided labelling of potentially missed mitotic cells, resulting in the object-detection 
augmented expert labelled (ODAEL) dataset variant. We used a customized RetinaNet23 object detector for 
mitotic figure candidate extraction from WSI, subsequently filtered out known cells and performed a refining 
classification. Results of which were presented to two experts to extend the database with potentially missed 
mitotic figures.
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Classification of preselected cells.  For this validation task, 128 × 128 px patches with single cells of 
all classes besides ambiguous cells at their respective center (mitotic figure, mitotic figure lookalike, neoplas-
tic mast cells and granulocyte) have been extracted from the ODAEL variant of the dataset. We used a stand-
ard state-of-the-art classification CNN classification network, based on a ResNet-18 stem22 pre-trained on 
ImageNet24. The network was trained for 1 cycle of 10 epochs using the super-convergence scheme26 with a max-
imum learning rate of 10−2 and the Adam optimizer27. With this approach, we reach an accuracy of 91.390% on 
the test set. As shown in Table 3, the main confusion is between mitotic figures and mitotic figure-lookalikes, 
while all other cell types were separated well by the classifier. This result also is consistent with the high intra- and 
inter-rater variance in this task by human experts.

Detection of mitotic figures on WSI.  This task was performed to give a baseline for mitotic figure detec-
tion on our dataset. We trained one model for each of the dataset variants. For this, we chose RetinaNet23 as a 
state-of-the-art object detection approach, because implementations are available for all major machine learning 
frameworks currently in use in the scientific community. A similar approach was also followed by Li et al. in their 
DeepMitosis framework25. RetinaNet introduced the focal loss, which is very suitable for mitotic figure detection, 
because it assigns greater weight to decisions that were hard for the network, and thus an explicit hard example 
mining as a training strategy can be avoided.

We feed 256 × 256 px image patches to our model, which is build on a ResNet-1822 stem pre-trained on 
ImageNet24 with spatial pyramid features for the network, and two customized heads, one for bounding box 
detection and one for mitotic figure/background classification. The heads are based on the lowest feature pyramid 
layer at the highest (16 × 16) spatial resolution.

We used a customized sampling scheme to ensure and speed up model convergence. For each training batch, 
50% of the images would contain at least one mitotic figure, 40% would contain a mitotic figure look-alike (hard 
example) and 10% of images were picked completely at random from the slide. In the MEL dataset variant where 

Slide name Tumor area Mitotic figures
Mitotic figure 
look-alikes Granulocytes

Normal tumor 
cells set Set

2f2591b840e83a4b4358.svs 144.79 mm2 3/1/1 48/2/0 2213/2213/2213 1149/1113/1113 train

ce949341ba99845813ac.svs 13.94 mm2 4/1/1 30/2/0 35/35/35 1200/1197/1197 train

91a8e57ea1f9cb0aeb63.svs 25.24 mm2 6/2/2 16/3/0 573/573/573 1916/1903/1903 train

9374efe6ac06388cc877.svs 35.63 mm2 7/6/6 17/4/0 1531/1531/1531 1567/1534/1534 train

0e56fd11a762be0983f0.svs 25.63 mm2 8/4/4 262/17/0 239/239/239 1620/1089/1089 train

dd6dd0d54b81ebc59c77.svs 62.25 mm2 11/5/5 57/15/0 1230/1230/1230 1830/1733/1733 train

be10fa37ad6e88e1f406.svs 14.87 mm2 12/3/3 55/2/0 124/124/124 1354/1351/1351 test

2e611073cff18d503cea.svs 81.64 mm2 18/11/11 137/2/0 2556/2556/2556 1136/1111/1111 train

066c94c4c161224077a9.svs 115.49 mm2 19/19/19 54/10/0 1742/1742/1742 1035/1001/1001 train

285f74bb6be025a676b6.svs 83.07 mm2 19/14/14 48/4/0 2895/2895/2895 1837/1807/1807 train

f3741e764d39ccc4d114.svs 39.23 mm2 37/28/28 115/9/0 724/724/724 1932/1903/1903 test

c86cd41f96331adf3856.svs 189.02 mm2 56/39/39 75/2/0 2412/2412/2412 1593/1548/1548 test

2efb541724b5c017c503.svs 21.27 mm2 66/66/66 24/14/0 645/645/645 621/557/557 train

70ed18cd5f806cf396f0.svs 88.30 mm2 85/68/4 880/267/0 1913/1913/1913 578/543/543 train

552c51bfb88fd3e65ffe.svs 185.63 mm2 119/68/68 670/9/0 1688/1688/1688 2074/2050/2050 test

3f2e034c75840cb901e6.svs 103.25 mm2 571/547/543 350/79/0 1434/1434/1434 1913/1547/1547 train

8c9f9618fcaca747b7c3.svs 312.96 mm2 715/675/675 1212/546/0 28/28/28 3077/2974/2974 test

c91a842257ed2add5134.svs 160.25 mm2 759/716/716 690/128/0 2327/2327/2327 1719/1584/1584 test

dd4246ab756f6479c841.svs 238.22 mm2 777/731/729 525/84/0 2703/2703/2703 2986/1917/1917 test

8bebdd1f04140ed89426.svs 213.66 mm2 1000/976/958 534/276/0 1563/1563/1563 2196/1791/1791 train

2f17d43b3f9e7dacf24c.svs 87.86 mm2 1157/1097/1097 477/49/0 2719/2719/2719 1625/1593/1593 train

a0c8b612fe0655eab3ce.svs 261.85 mm2 1279/1210/1210 1407/110/0 2118/2118/2118 1556/1522/1522 train

ac1168b2c893d2acad38.svs 346.26 mm2 1329/1316/1310 474/288/0 613/613/613 4354/2427/2427 train

fff27b79894fe0157b08.svs 256.29 mm2 1744/1545/1544 1466/166/0 5774/5774/5774 2279/1805/1805 train

34eb28ce68c1106b2bac.svs 190.18 mm2 2279/1879/1878 1297/47/0 2054/2054/2054 1540/1532/1532 train

f26e9fcef24609b988be.svs 136.58 mm2 2380/2341/2341 459/168/0 2447/2447/2447 1807/1655/1655 test

96274538c93980aad8d6.svs 188.35 mm2 3068/2978/2975 3762/733/0 1170/1170/1170 4297/1703/1703 test

add0a9bbc53d1d9bac4c.svs 242.71 mm2 3569/3393/3387 1759/477/0 415/415/414 2198/1977/1977 test

39ecf7f94ed96824405d.svs 220.56 mm2 3689/3516/3508 3412/767/0 1572/1572/1572 1931/1678/1678 train

20c0753af38303691b27.svs 269.48 mm2 4343/4048/4037 2024/343/0 1772/1772/1772 3835/1668/1668 train

c3eb4b8382b470dd63a9.svs 149.74 mm2 4767/4705/4696 1326/564/0 140/140/140 9461/9383/9383 train

1018715d369dd0df2fc0.svs 337.88 mm2 10984/10599/10590 4303/912/0 2070/2070/2070 3135/2137/2137 test

Table 1.  Overview of the dataset and all its variants: Numbers given per cell category are for the variant where 
expert labels were given after object detection/hard example classification/only manual observation. Not shown 
in this table are ambiguous cells.
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no hard examples were available, we used the ambiguous cells instead in the scheme. For training, only the upper 
half of each WSI was used, for validation, we used the lower half. The test set was never used during training and 
algorithmic optimization.

Due to the high number of potential images to be extracted from the WSI, we perceive the classical definition 
of epochs in deep learning (i.e. the entire training set being seen in back-propagation at least once) to be not sen-
sible any more. We thus consider pseudo-epochs of 5,000 (each time randomly selected) images for our training.

After initial training for a single pseudo-epoch, the heads of the networks were trained using the 
super-convergence scheme of Smith and Topin26 with Adam as optimizer27 for 3 cycles of 10 pseudo-epochs 
using a maximum learning rate of 10−4. After this convergence, the complete network was fine-tuned for 2 × 30 
pseudo-epochs for which an early stopping paradigm was applied to retrieve the model with highest validation 
performance. As per the validation loss, we did not find the model to overfit the data, which is not surprising due 
to the huge amount of image material in the data set. The sampling scheme used by us leads to an overestimation 
of likelihood for mitotic figures by the model. Due to this, we optimize the threshold for object detection by pro-
cessing the complete WSIs of the training and validation set after the model was trained. Again, we used the patch 
classifier trained in the previous step as second stage for the mitotic figure detection.

Not surprisingly, we find an influence of the dataset variant on the F1 score (see Table 4). Since the ODAEL 
variant is expected to be thorough in the identification of all present mitotic figures, it is in line with expectations 
that the ODAEL variant archived the highest F1 scores for all models. Overall, the influence of the dataset variant 
on the F1 score is above 3 percentage points, underlining the sensibility of the applied method.

Ablation study.  One of the most interesting questions for a dataset of this size is, how strongly it benefits 
from the increased size over previous approaches. The predominant approach in current datasets is to annotate 
a subset of a size of ten contiguous high power fields (HPF). We follow the definition of Meuten10, who defined 
the area of a single HPF to be 0.237 mm2. To investigate, how a restriction in size impacts the detection results, 
we thus derived small subsets with an area of 5, 10 and 50 HPF, taken from our best performing ODAEL dataset 
variant. We asked a senior pathology expert to determine the most mitotically active part of the tumor as he 
would do for manual mitotic counts. This procedure is consistent with the one described by Veta et al. for the 
TUPAC16 dataset6.

To compare against the existing data sets, we focus in the following on the data set reduced to 10 HPF area (see 
Table 5 for the other cases). Using an aspect ratio of 4:3, the resulting images were 7,017 px in width and 5263 px 
in height. The resulting (to an area of 10 HPF reduced) dataset consists of 7,617 cell annotations, including 1041 
mitotic figures. Regardless having a slightly higher number of cases, it includes a quite similar number of mitotic 
figures than the AMIDA13 dataset (cf. Table 6). We trained the same pipeline as for the complete dataset, however 
for a shorter amount of iterations to avoid over-fitting due to the much smaller dataset variance: The RetinaNet 
object detector was trained for a single cycle of 10 pseudo-epochs using super-convergence, and for another 60 
iterations with normal adaptive learning rate based on Adam. During this last period, we used early stopping and 
chose the model with highest validation performance. As shown in Fig. 5, the performance of the model increases 
significantly with the amount of annotated area and the number of available WSI. The data shows, however, that a 
plateau is reached for the number of WSI, and doubling the number of training WSI from 12 to all (21) increased 
performance only slightly.

Root folder Description

RetinaNet-CCMCT-ODAEL.ipynb Training of RetinaNet on the ODAEL data set variant.

Inference-RetinaNet.py Inference script to test all RetinaNet models.

Evaluation.ipynb Evaluation notebook for all RetinaNet models (1st and 2nd stage).

AblationStudy_Evaluation.ipynb Evaluation of the ablation study.

Setup.ipynb Download of all databases and WSIs from figshare.

Folder 2nd_stage Description

CellClassification-ODAEL.ipynb Training of a 2nd stage cell classifier on the ODAEL data set variant

Inference-CellClassifier.py Inference script to test the 2nd stage classifier on results of the 1st stage

exportDataset_ODAEL.py Script to export image patches of the ODAEL data set (needed for classifier training)

Table 2.  Excerpt from the GitHub file list. Only main files are being discussed, and only the ODAEL data set 
variant, however all results discussed in this work are available in the repository.

Actual
pred. 
mitotic fig.

pred. mitotic 
fig. look-alike

pred. 
granulocyte

pred. 
tumor cell

Mitotic figure 19478 2985 10 3

Mitotic figure look-alike 2942 10582 57 44

Granulocyte 1 66 16011 30

Tumor cell 3 92 53 20651

Table 3.  Confusion matrix: Classification results of a ResNet-18-based CNN classifier on patches with a certain 
cell type in the center (accuracy on test set is 91.390%).
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Usage Notes
Annotations are provided in the SlideRunner database format20, which can be also used to view the WSIs with all 
annotations, but also in the popular MS COCO format. Be aware that the latter does not provide the possibility 
to annotate an object with multiple expert labels, thus the data format is of reduced information content. We 
encourage to view and process the data based on the SlideRunner database format.

Model

RetinaNet
RetinaNet + 2nd stage 
(ResNet-18)

MEL 
as test

HEAEL 
as test

ODAEL 
as test

MEL 
as test

HEAEL 
as test

ODAEL 
as test

MEL as train 0.610 0.607 0.616 0.786 0.786 0.795

HEAEL as train 0.615 0.615 0.625 0.755 0.755 0.764

ODAEL as train 0.620 0.620 0.628 0.810 0.810 0.820

Table 4.  Performance assessment (F1 score) on the different variants of the dataset.

Area 
covered Image size

Mitotic 
figures

Mitotic figure 
lookalikes

Total cell 
annotations

5 HPF 4962 × 3721 526 219 3,497

10 HPF 7017 × 5263 1,041 435 7,617

50 HPF 15692 × 11769 3,916 1,850 27,177

Table 5.  Ablation study dataset subsets. Areas have been selected as areas around the center of a 10 HPF 
spanning reference area selected by a senior pathology expert as area with highest mitotic activity.

Dataset Annotations
Mitotic 
figures

Mitotic figure 
look-alikes

Tumor 
cases

Annotated 
tumor area

MITOS 20127 226 226 0 5 13.11 mm2

MICCAI AMIDA 1329 1,083 1,083 0 23 151.500 mm2

MITOS-ATYPIA 2014 (training set)8 3,633 749 2,884 11 153.16 mm2

TUPAC 2016 (training set)6 1,552 1,552 0 73 251.500 mm2

MITOS_WSI_CCMCT_MEL 238,340 42,465 0 32 4,842.062 mm2

MITOS_WSI_CCMCT_HEAEL 238,339 42,607 6,099 32 4,842.062 mm2

MITOS_WSI_CCMCT_ODAEL 262,481 44,880 27,965 32 4,842.062 mm2

Table 6.  Comparison of our dataset and its variants to other datasets with mitotic figure annotations. For the 
more recent datasets MITOS 2014 and TUPAC2016, only training sets are available. AMIDA13 is no longer 
available, but is part of the TUPAC16 dataset.

Fig. 5  Results of the ablation study using the dual stage detector. In panel a, the results of using varying training 
area sizes around an expert-selected most mitotically active part of tumor are given. In panel b we show the 
results of using only a subset of the slides for training.
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Code availability
All code used in the experiments described in the manuscript was written in Python 3 and is available through 
our GitHub repository (https://github.com/maubreville/MITOS_WSI_CCMCT/). We provide all necessary 
libraries as well as Jupyter Notebooks allowing tracing of our results. The code is based on fast.ai and OpenSlide28 
and provides some custom data loaders for use of the dataset.
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