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Abstract

Distinguishing pathogenic variants from non-pathogenic ones remains a major challenge in clinical genetic testing of primary
immunodeficiency (PID) patients. Most of the existing mutation pathogenicity prediction tools treat all mutations as homogeneous
entities, ignoring the differences in characteristics of different genes, and use the same model for genes in different diseases. In
this study, we developed a single nucleotide variant (SNV) pathogenicity prediction tool, Variant Impact Predictor for PIDs (VIPPID;
https://mylab.shinyapps.io/VIPPID/), which was tailored for PIDs genes and used a specific model for each of the most prevalent PID
known genes. It employed a Conditional Inference Forest model and utilized information of 85 features of SNVs and scores from
20 existing prediction tools. Evaluation of VIPPID showed that it had superior performance (area under the curve = 0.91) over non-
specific conventional tools. In addition, we also showed that the gene-specific model outperformed the non-gene-specific models.
Our study demonstrated that disease-specific and gene-specific models can improve SNV pathogenicity prediction performance. This
observation supports the notion that each feature of mutations in the model can be potentially used, in a new algorithm, to investigate
the characteristics and function of the encoded proteins.

Keywords: inborn errors of immunity (IEI), primary immunodeficiency (PID), genetic mutation, variant prediction, machine learning,
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Introduction
Primary immunodeficiencies (PIDs) refer to a group
of >450 inherited diseases characterized by abnormal
innate or adaptive immunity, and its prevalence is
estimated to be in the excess of 1/1000 in the general
population [1]. PIDs lead to increased susceptibility
to infections, immune dysregulation and cancers and
result in a significant burden to the society as well
as the patients’ families. Most PIDs are caused by
monogenic mutations [2–4], and genetic testing has
been widely used for the diagnosis, treatment and
prevention of PIDs. For instance, newborn screening of
severe combined immune deficiency (SCID) can lead
to life-saving interventions before the occurrence of
infections [5]. Accurate identification of disease-causing
mutations can also facilitate earlier diagnosis and better

management of the disease [6, 7]. Moreover, accurate
genetic testing allows better family planning and carrier
detection in the patient’s family members [8].

One of the challenges in genetic testing is to distin-
guish pathogenic variants from non-pathogenic ones.
Whole-genome sequencing and whole-exome sequenc-
ing usually identify a large number of rare variants, many
of which are variants of unknown significance [9]. Out
of hundreds of thousands of variants in an exome or
genome profile, there is only one or very few which
are pathogenic. Separating pathogenic disease-causing
mutations from benign ones is a critical and challenging
task in genetic testing.

Numerous tools have been developed to predict the
pathogenicity of variants, including Sorting Intolerant
from Tolerant [10], Polymorphism Phenotyping v2
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[11], Combined Annotation-Dependent Depletion [12],
MutationTaster [13], MutationAssessor [14] and many
others. Most existing tools are using a non-disease-
specific approach, thus employing the same model for all
diseases. A few existing tools employ a disease-specific
approach, for somatic mutations in cancers [15–18],
or predict the new pathogenic variants by employing
possible association with known pathogenic variants
[19, 20]. Genes causing a specific disease or a group of
similar diseases tend to be involved in common biological
processes, and we hypothesize that they have a higher
probability of sharing common characteristics [21].
For instance, many genes associated with Alzheimer’s
disease and some other neurodegenerative diseases,
including amyotrophic lateral sclerosis, Parkinson’s
disease and Huntington’s disease, are all involved in
shared pathways with similar protein structures and
molecular properties [22]. Moreover, disease-specific
variant classifiers have been proved to outperform
the state-of-the-art genome-wide tools in inherited
cardiac conditions [23] and inherited retinal dystrophies
[24]. Therefore, a mutation pathogenicity prediction
model tailored for a specific disease or a group of
similar diseases would be expected to achieve a better
performance also in immune disorders.

The functional impact of non-synonymous single
nucleotide variants (SNVs) can be influenced by features
of the resulting amino acid substitution, including
the change in their size, hydrophobicity, charge, the
properties of their context and other molecular prop-
erties. Most of the existing tools use a similar model
to predict the pathogenicity of mutations in different
genes, which can limit the accuracy of the model since
different genes can have different characteristics. For
instance, one or more types of forces of hydrogen
bonding, hydrophobic interactions, ionic bonding and
disulfide bridges [25, 26] can be critical in maintaining
the three-dimensional (3D) structure of proteins. Thus,
the structure of different proteins may rely on different
types of forces, and mutations with different properties
can exert an influence on their function. The gene-
specific thresholds of impact cutoff values may improve
the accuracy of existing genome-wide classifiers [27].
Gene-specific mutation pathogenicity prediction models
could, therefore, account for the differences in gene
properties and its pathogenic variants and have the
potential to improve its accuracy by targeted machine
learning. Most of the existing tools also select different
features and use different algorithms for prediction and
thus each of them has its own strengths and limitations.
The combination of results from different existing tools
has the possibility to overcome the limitation within a
single algorithm and the selection of a specific set of
features.

Herein, we developed a disease-specific tool to predict
the pathogenicity of SNVs for PIDs, Variant Impact Pre-
dictor for PIDs (VIPPID), using a gene-specific approach
by training sub-models for each of common PID genes.

This method can be used to predict the functional con-
sequences of SNVs in PID genes with improved accuracy
in comparison with the existing tools. In this study, to
predict their pathogenicity, we used the information of
85 features of SNVs, which comprehensively describe the
properties of the mutations. In our tool, scores from dif-
ferent existing pathogenicity prediction tools were also
incorporated to enable our model to utilize a most com-
prehensive set of information. To our knowledge, this is
the first genomic functional consequence prediction tool
that is solely designed for PIDs.

Methods
Selection of the training data set for the
prediction model
Data of mutations with known pathogenicity for PIDs
were collected from the Resource of Asian Primary
Immunodeficiency Diseases (RAPID) database [28],
Human Gene Mutation Database (HGMD) [29] and
Clinical significance variants (ClinVar) [30] to generate
a comprehensive PID genomic variant data set. All
single nucleotide variants from the RAPID database
were selected. Pathogenic variants or likely disease-
causing mutations of 46 common PIDs known genes
(29 very frequent and 17 frequent diseases, Table 1)
based on our current knowledge were retrieved from
HGMD (marked as ‘disease mutation’ or ‘likely disease-
causing mutations’) and ClinVar (marked as ‘pathogenic’
or ‘likely pathogenic’ germline mutations). Both lists of
mutations collected from HGMD and ClinVar databases
were manually curated to exclude those that are
associated with conditions unrelated to PIDs. Finally,
PID mutations collected from RAPID, HGMD and ClinVar
were merged and duplicated entries were removed and
subsequently used as the training data set.

To collect non-PID pathogenic mutation set for
training, SNVs in PID genes from the exome samples
of the Genome Aggregation Database (gnomAD, version
r2.1.1) [31] were downloaded and annotated by the
Variant Effect Predictor [32]. Among the SNVs from the
gnomAD database, only those absent in the collected PID
mutation data set and reported as ‘benign’ or ‘uncertain
significance’ in the ClinVar database (version 2021-02-
21) [33] were selected. Exome data from gnomAD were
used because it is the collection of mutations from
125 748 persons, containing a large number of rare
mutations, which can reduce the risk of overestimating
the performance of the model caused by only using
high-frequency mutations as non-PID mutations in the
training model. We also filtered out the mutations with
an allele frequency ≥ 0.01 in the gnomAD database; we
only kept the mutations with an alternative allele count
≥1 and used them as non-PID mutations for training.

Mutation annotation
To acquire information about different features of
SNVs, ‘SNVBox’ [34] was used for annotation. The tool
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Table 1. The statistic of SNVs used as a training data set for machine learning

Gene No. of PID
SNVs

No. of non-PID
SNVs

Disease IUIS classification Inheritance OMIM

AIRE 57 68 APECED (APS-1), autoimmune
polyendocrinopathy with
candidiasis and ectodermal
dystrophy

Immune dysregulation AR or AD 240300

ATM 149 178 Ataxia-telangiectasia Syndromic combined
immunodeficiencies

AR 607585

BTK 317 62 BTK deficiency, X-linked
agammaglobulinemia

Predominantly antibody
deficiencies

XL 300300

C3 69 82 C3 deficiency (LOF) Complement defects AR 120700
C3 GOF AD GOF

CD40LG 69 46 CD40 ligand (CD154) deficiency Combined immunodeficiencies XL 308230
CFH 173 207 Factor H deficiency Complement defects AR or AD 134370
CFTR 679 510 Cystic fibrosis Phagocytic defects AR 602421
CYBB 177 101 Macrophage gp91 phox deficiency Phagocytic defects XL 300645
ELANE 143 128 Elastase deficiency (Severe

congential neutropenia 1)
Phagocytic defects AD 130130

FANCA 113 135 Fanconi anemia type A Syndromic combined
immunodeficiencies

AR 227650

FAS 59 70 ALPS-FAS Immune dysregulation AD or AR 134637
FOXP3 48 57 IPEX, immune dysregulation,

polyendocrinopathy, enteropathy
X-linked

Immune dysregulation XL 300292

IL2RG 103 92 γ c deficiency (common gamma
chain SCID, CD132 deficiency)

Combined immunodeficiencies XL 308380

ITGB2 48 57 Leukocyte adhesion deficiency
type 1

Phagocytic defects AR 600065

KMT2D 137 164 Kabuki syndrome (types 1 and 2) Syndromic combined
immunodeficiencies

AD 602113

MEFV 157 188 Familial Mediterranean fever Autoinflammatory disorders AR LOF 249100
AD 134610

MVK 120 144 Mevalonate kinase deficiency
(Hyper IgD syndrome)

Autoinflammatory disorders AR 260920

NLRP3 125 150 Muckle–Wells syndrome Autoinflammatory disorders AD GOF 191900
NOD2 99 118 Blau syndrome Autoinflammatory disorders AD 186580
PRF1 130 156 Perforin deficiency (FHL2) Immune dysregulation AR 170280
RAG1 127 152 RAG deficiency Combined immunodeficiencies AR 179615
RAG2 49 58 RAG deficiency Combined immunodeficiencies AR 179616
SERPING1 199 201 C1 inhibitor deficiency Complement defects AD 606860
STAT1 115 109 STAT1 deficiency Innate immune deficiencies AD LOF 614892

AR LOF 600555
STAT3 140 135 AD-HIES STAT3 deficiency (Job

syndrome)
Syndromic combined
immunodeficiencies

AD LOF 147060

STAT3 GOF mutation AD GOF 102582
TAZ 70 64 Barth syndrome

(3-Methylglutaconic aciduria type
II)

Phagocytic defects XL 300394

TNFRSF1A 96 115 TNF receptor-associated periodic
syndrome

Autoinflammatory disorders AD 142680

UNC13D 80 96 UNC13D/Munc13–4 deficiency
(FHL3)

Immune dysregulation AR 608897

WAS 120 112 Wiskott–Aldrich syndrome (WAS
LOF)

Syndromic combined
immunodeficiencies

XL 300392

X-linked
neutropenia/myelodysplasia

XL GOF 300299

Others 897 482
Total 4865 4237

IUIS, International Union of Immunological Societies; LOF, loss of function; GOF, gain of function; AD, autosomal dominant; AR, autosomal recessive; XL, X-linked;
OMIM, Online Mendelian Inheritance in Man; APS-1: Autoimmune polyglandular syndrome type 1; ALPS-FAS, autoimmune lymphoproliferative syndrome (ALPS)
with FAS mutation; FHL2, familial hemophagocytic lymphohistiocytosis type 2; HIES, hyper IgE syndromes; TNF, tumor necrosis factor receptor; and IPEX,
immunodysregulation polyendocrinopathy enteropathy X-linked. Gene abbreviations: AIRE, autoimmune regulator; ATM, ATM serine/threonine kinase; BTK,
Bruton tyrosine kinase; C3, Complement Component 3; CD40LG, CD40 ligand; CFH, complement factor H; CFTR, CF transmembrane conductance regulator;
CYBB, cytochrome b-245 beta chain; ELANE, elastase, neutrophil expressed; FANCA, FA complementation group A; FAS, Fas cell surface death receptor; FOXP3,
forkhead box P3; IL2RG, interleukin 2 receptor subunit gamma; ITGB2, integrin subunit beta 2; KMT2D lysine methyltransferase 2D; MEFV, MEFV innate immuity
regulator, pyrin; MVK, mevalonate kinase; NLRP3, NLR family pyrin domain containing 3; NOD2, nucleotide binding oligomerization domain containing 2; PRF1,
perforin 1; RAG1, recombination activating 1; RAG2, recombination activating 2; SERPING1, serpin family G member 1; STAT1, signal transducer and activator
of transcription 1; STAT3 signal transducer and activator of transcription 3; TAZ tafazzin, phospholipid-lysophospholipid transacylase; TNFRSF1A, TNF receptor
superfamily member 1A; UNC13D, unc-13 homolog D; WAS, WASP actin nucleation promoting factor.
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provided information on the properties of amino acid
substitution, properties of the mutation in an exonic con-
text, evolutionary conservation and properties of muta-
tions in a 3D structure context and properties from the
Universal Protein Resource (UniProt) database [35]. In
addition, all SNVs in the training data set were also
annotated by ‘VarCards’ [36], an integrated annotation
engine. Scores from 20 existing genomic variation
functional consequences prediction tools were extracted
and used as features of SNVs in our VIPPID model.
As there are significantly more non-PID pathogenic
mutations than PID mutations in most genes, which can
cause a class imbalance in machine learning and thus,
to balance the two classes, we ensured that the ratio
of non-PID to PID mutations was ≤ 1.2, by randomly
selected non-PID mutations if they exceed this ratio.

Machine learning and calculation of feature
importance
Data were processed with Perl version 5.22 and R version
3.4.4. The VIPPID was trained as a Conditional Inference
Forest machine learning model using the R package
‘caret’. Function ‘Boruta’ in R package ‘Boruta’ was
used for feature selection with maxRuns = 50 to select
candidate features that most likely contribute to the
accuracy of the model and remove redundant features.
Features were assigned as either ‘Confirmed’, ‘Rejected’
or ‘Tentative’ by ‘Boruta’ in its final decision based
on comparison with shadow features, and features
assigned as ‘Confirmed’ or ‘Tentative’ were selected and
used for model training. Besides, a score to indicate
the importance of the feature was also calculated
for each feature by ‘Boruta’. Function ‘tuneRF’ in R
package ‘randomForest’ was used for model tuning with
‘stepFactor’ = 2.0, ‘improve’ = 1e−5 and ‘ntree’ = 500. The
‘mtry’ parameter, which is the number of predictors
sampled for splitting at each node, was selected by
choosing the one with the least out-of-bag error, and
an upper limit of 20 was set for ‘mtry’ to reduce the
risk of overfitting. Then, ‘Conditional Inference Forest’
was trained using function ‘cforest’ in package ‘party’.
‘Conditional Inference Forest’ was used instead of
‘Random Forest’ as the latter has been shown to have
selection bias [37], which is in favor of variables that
are continuous or have a higher number of categories.
To evaluate the performance of the model, the model
was trained and tested using nonoverlapping data sets
(cross-validation). To reduce potential bias in evaluation,
10 times cross-validation was performed. Receiver
operating characteristic (ROC) curves were used for
the quantification of the model’s performance and the
comparison with other models. R package ‘pROC’ was
used for ROC curves generation and area under the curve
(AUC) values calculation.

In the gene-specific model, a sub-model, which is an
independent Conditional Inference Forest model, was
trained separately for each of the genes with 45 or more
reported pathogenic SNVs (very frequent PID, n = 29,

Table 1). In the gene-specific model, mutations from all
genes were used for training, but mutations from target
genes were assigned with weights = 3.0 and mutations
from other genes were assigned with weights of 1.0,
by setting the ‘weights’ argument in ‘train’ function in
‘caret’ package. This weighting approach was used as it
can make the model learning focus on the target genes
but not lose the generality of common PID mutation
characteristics. In prediction, SNVs from genes where
sub-models were available would be predicted by the
sub-model; otherwise, for SNVs from genes without a
sub-model, the non-gene-specific model would be used
for prediction.

We also built a non-gene-specific model for compar-
ison with our gene-specific model. In the non-gene-
specific model, all PID genes were trained together in
a common model with identical weights and mutations
in all PID genes that shared the same parameters in the
model. All mutations in PID were predicted by this model.

R package ‘umap’ and ‘Rtsne’ was used for uniform
manifold approximation and projection (UMAP) and
t-distributed stochastic neighbor embedding (t-SNE),
respectively, and package ‘ggplot2’ was used for visu-
alization of the UMAP and t-SNE results. The median of
feature importance values of each gene was calculated
and used for UMAP and t-SNE analysis, and the feature
importance value of −Inf (minus infinity) was assigned
as zero in the analysis.

Verification of machine learning algorithms
To further evaluate the performance of our newly devel-
oped model, it was applied on an independent muta-
tion set of 26 reviewed pathogenic or likely-pathogenic
variants of known PID pathogenic genes from a large
unselected PID cohort of 1318 patients [38] and 39 val-
idated in-house PID pathogenic variants. For sensitivity
and specificity calculation, the benign variants were ran-
domly selected using the same method as used in the
training set.

Results
Mutation data statistic
A total of 11 677 unique pathogenic variants in 175
genes from the RAPID, HGMD and ClinVar databases were
collected, and pathogenicity scores predicted by existing
tools and feature information from SNVbox were avail-
able for 4865 of them from 146 genes, which were used as
PID mutations in the machine learning training data set.
While 4237 SNVs from gnomAD from the same gene sets
were annotated as ‘benign’ or ‘uncertain significance’ in
the ClinVar database and have allele frequency < 0.01,
they were used as non-PID mutations in the training
data set (Table 1). High-frequency variants were excluded
from the non-PID group as the mutations in the PID group
were mostly rare mutations, which can reduce the risk of
model performance overestimation caused by different
distribution of allele frequencies in two mutation groups.
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Among these 146 genes in the training data set, 29 had
over 45 PID SNVs, and they were trained by gene-specific
models (Table 1).

Mutation annotation and pathogenicity
prediction by other tools
Eighty-five features of SNVs were investigated (Table S1,
see Supplementary Data available online at https://
academic.oup.com/bib, and Figure S1, see Supplemen-
tary Data available online at https://academic.oup.
com/bib), and a score to quantify each feature of each
SNV was calculated. These features include amino
acid substitution features, exonic features which were
based on mutations and evolutionary conservation in
multi-species alignment, features based on 3D structure
of the translated protein, features based on amino
acid composition in the surrounding regions, features
based on multiple sequences alignment of homologous
proteins and features from UniProt databases.

Twenty existing SNV pathogenicity prediction tools
(Table S2, see Supplementary Data available online at
https://academic.oup.com/bib) were used to predict the
effects of SNVs in the training set. Prediction scores from
existing tools, along with 85 feature scores, were used for
VIPPID model training.

Performance of the model
At first, we used a non-gene specific approach, which
treated all PID genes as homogenous entities and trained
all the genes together in a single Conditional Inference
Forest model using 85 features scores and 20 impact
scores from other existing prediction tools.

As different genes have distinct characteristics and
different features can influence the impact of mutations
on them, it is reasonable to train the model for each
gene separately. Therefore, we trained an independent
Conditional Inference Forest sub-model separately for
each gene that has 45 or more reported pathogenic PIDs
in the training data set. For the gene-specific model,
mutations from all PID genes were used for training,
but mutations from the target genes were assigned
higher weights than mutations from other genes. This
approach was used as it made the model mainly learn
the characteristics of target genes, but did not lose the
general characteristic across all mutations, it reduced the
risk of overfitting caused by a small training sample size.
For all the remaining genes with less than 45 mutations,
we trained a common sub-model using mutations from
all genes with equal weights. When we predicted the
pathogenicity of new SNVs in PID genes, they were
predicted by the gene-specific model when it was
available.

In addition, the performance of VIPPID and other exist-
ing tools or algorithms was evaluated and compared.
Among the 20 existing SNVs effect prediction tools,
VEST3 showed the best performance for PID documented
mutations, and it had an AUC value of 0.84 in ROC in
10 times cross-validations. It was followed by REVEL,

which had an AUC value of 0.82. Our non-gene specific
modeling provided in VIPPID achieved an AUC value
of 0.89, showing superior accuracy over all existing
tools. When the model was trained in a gene-specific
manner, it achieved a superior accuracy of an AUC of
0.91 (Figure 1A).

To further evaluate the performance of our model, we
applied it on a completely independent mutation set.
The prediction also showed the superior performance of
VIPPID over existing tools (Figure 1B).

Important features of SNVs in PID genes
The function of different genes can be impacted by muta-
tions with distinct types of features, and the machine
learning algorithm calculated a score for each feature.
Features with high importance are those that can better
separate pathogenic variants from non-pathogenic vari-
ants. Meanwhile, they are also more likely to be features
that have a high impact on the function of the gene
products.

We used a feature selection algorithm based on the
‘Random Forest model’ to select features of SNVs that are
most important for each gene. Twenty-four to 30 features
were assigned as ‘Confirmed’ or ‘Tentative’ features by
the algorithm, which were selected as important features
and used in different sub-models. These important
features included multi-46-way alignment positional
conservation (MGAPHC), entropy (MGAEntropy, MGARe-
lEntropy, ExonSnpDensity and ExonConservation), and
their counterpart with hidden Markov model (HMM) and
conservation scores (HMMPHC, HMMEntropy and HMM-
RelEntropy) (Figure 2 and Figure S2, see Supplementary
Data available online at https://academic.oup.com/bib).
This implied that a high evolutionary constraint and
construction similarity were applied to a functional
critical set of immune-related genes.

Other features that were also important for the
function of proteins included the probability of whether
the wild-type backbone residue is stiff or flexible,
and its accessibility residue is buried or exposed
(PredBFactorF, PredRSAE, PredRSAB, PredBFactorM and
PredBFactorS). This underscores the importance of the
impact of mutations in a 3D structural context. Scores
describing the probability of amino acid substitution
from different matrices (AAPAM250, AAEx, AAMJ and
AAGrantham) also provided useful information for
the pathogenicity prediction of SNVs associated with
PID.

We also looked into the pattern of feature importance
of SNVs in PID gene by applying UMAP and t-SNE. Both
showed that SNVs in pathogenic genes that belong to
the same phenotypic classification of inborn errors of
immunity (IEI) somewhat tend to cluster together, such
as SNVs in TAZ, CYBB, ELANE, CFTR and ITGB2 that are
associated with Phagocytic defects and SNVs in PRF1,
FAS, FOXP3, AIRE and UNC13D that caused immune
dysregulation are exhibit analogous characteristics.
However, SNVs in MVF showed the most distinct pattern

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac176#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac176#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac176#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac176#supplementary-data
https://academic.oup.com/bib
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Figure 1. (A) Receiver operating characteristic curve for predictions from VIPPID model and existing SNV effect prediction tools and (B) model
performance (AUC) comparison for VIPPID and other classifiers in the independent data set. Gene-specific VIPPID model (solid red line) and non-gene-
specific VIPPID model (solid blue line) had superior accuracy compared with the existing prediction tools (non-solid lines). The numbers in parentheses
were AUC values.

from other genes (MEFV, TNFRSF1A, NOD2 and NLRP3)
that caused autoinflammatory disorders (Figure 3 and
Figure S3, see Supplementary Data available online at
https://academic.oup.com/bib). This may indicate the
relationship between important properties of these
proteins and their functional similarities.

When looking into individual features, interestingly,
amino acid hydrophobicity plays an important role in

ATM, CFTR, CYBB, FANCA, FOXP3, NOD2, RAG1, SERPING1,
TAZ and TNFRSF1A, but exert only a minor impact on the
pathogenicity of SNVs in other genes.

Discussion
Many existing tools attempt to predict the functional
consequence of non-synonymous SNVs, while very few

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac176#supplementary-data
https://academic.oup.com/bib
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Figure 2. Boxplot of feature importance of SNVs in top 9 frequently mutated PID genes. Importance of features in the top 9 common PID genes (left
columns in each figure) and in the remaining other PID genes (the 9th or 10th column in each figure) in the gene-specific model, features were ordered
by their importance in all PID genes in the non-gene-specific model (last column). A different gene has shown a unique profile of feature importance.

of them are designed to predict mutations related to
one specific disease or one specific group of diseases.
In this work, we developed a tool to distinguish PIDs
related mutations from non-disease-causing mutations
and showed its superior performance over existing tools.
One of the reasons for its superiority can be that a
disease-specific approach may be better tailored for dif-
ferent etiologies of the diseases. Another reason is its

ability to utilize information from 85 different features of
SNVs and combining results of other SNVs pathogenic-
ity prediction tools. Although these existing tools are
not designed to be disease-specific, they use different
algorithms and possess individual strengths and limi-
tations. Machine learning is powerful at selecting infor-
mation that is most relevant to the classification task
[39, 40]. Therefore, it could select features that are most
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Figure 3. UMAP plot depicting the feature importance of SNVs in 29
PID genes with more than 45 distinct pathogenic mutations. SNVs in
pathogenic genes that belong to the same phenotypic classification of
IEI somewhat tend to cluster together.

relevant to immune-related genes with similar functions
and structure from various sources of information to
make a better prediction.

One of the significant advantages of our tool is that it
has one sub-model tailored for each common PID gene.
In this study, we present that features in different genes
have distinct contributions to its pathogenicity, gene-
specific and a non-gene-specific approach could result
in utilizing a very different set of features for prediction
(Figure 2). We presume that one explanation is that their
influence was compensated by other features that can
better represent the pathogenicity of the SNVs. Although
in the independent validation set, VIPPID showed some-
what weaker performance compared with the perfor-
mance at the cross-validations stage; we also noticed
that the performance of other tools was also reduced.
This may be caused by the differences in the pathogenic-
ity distribution of the two variant sets, as the disease vari-
ants used in the cross-validations were discovered earlier,
while the variants in the independent validation set were
mostly discovered recently, this means that the former
may have clearer disease association and higher variant
pathogenicity which made discovery easier. However, we
should not exclude the possibility of overfitting of VIPPID
and existing tools, as existing tools may also use some of
those variants in their training data set.

We propose that, in general, a unified model that
assigns a feature of equal importance in all genes
cannot yield the best predictive performance. With the
rapid development of sequencing technology, numerous
pathogenic and non-pathogenic variants are being
discovered, and with these data, building a model in
a gene-specific manner should be one of the future
directions for mutation pathogenicity prediction tool
development. We would benefit from this approach since

different genes may have very distinct properties in
sequence, structure and function. In addition, models
tailored for their uniqueness can achieve an improved
performance.

By studying the importance of each feature in a gene, it
is possible to gain a better insight into the characteristics
of the gene as well as the encoded protein. For instance,
we found marked importance of hydrophobicity of the
SNVs in RAG1, and this may be due to their ability to
destabilize the hydrophobic core of the protein, which is
essential to maintain its 3D structure. The RAG1–RAG2
interface is also enriched with hydrophobic interactions
[41], and the change in hydrophobicity of their amino
acids can probably have a dramatic impact on the for-
mation of this important complex. This algorithm may
provide a new approach to investigate the characteristics
of a gene and its mutations. With the increasing avail-
ability of a vast amount of genomic variation data, the
newly established approach will be capable to take full
advantage of the machine learning technologies. As a
result, our understanding of the proteins’ characteristics
can be improved by revealing the quantitative contri-
bution of each attribute of variation to the function of
the protein. Furthermore, the proposed approach also
provides knowledge for the application of various other
data mining techniques.

In our studies, a total of 85 features were used to
describe SNVs. However, we believe that if we can find
more features to describe mutations precisely, it can
make this approach even more powerful and more
insights would thus be gained.

It should also be noted that our model is trained with
PID variants specifically, so the prediction of variants for
other diseases is not likely to lead to optimal results.
To apply our model to other diseases, retraining with
the corresponding variants, and possibly tuning some
parameters, will be needed. In addition, as it has been
found in previous studies, in some patients, a genetic
diagnosis could not be made or phenotypic heterogeneity
could not be explained by known genetic variants, which
indicates the possible existence of modifying variants
or variants with small effects. Our model is based on
the training set of two groups, PID-pathogenic and non-
pathogenic genes, which contain few variants with a
mild clinical effect, so the prediction of a small effect
or modifying variants should be compromised. Limited
by the size of the training data set and the similarity of
characteristics between PID variants and variants caus-
ing other diseases, training a model to distinguish PID
variants from variants of other diseases is still challeng-
ing. However, with the continuous discovery of more PID
mutations and the increase of the training data size,
building such model may be possible.

Conclusion
We developed an SNVs pathogenicity prediction tool
explicitly designed for PIDs and built in a gene-specific
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approach, which utilized information of 85 features
of SNVs and scores from 20 existing prediction tools.
Our evaluation showed that its performance on IEI
pathogenic variants was superior to the existing tools.
In addition, we also suggest that the disease- and gene-
specific approach can result in a more tailored model
and can be extended to the pathogenicity prediction of
other diseases. Investigating the importance of different
features of genomic mutations for their pathogenicity
will provide a new approach to gain new insight into the
characteristics of the studied genes.
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