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Abstract: An array of low-cost sensors was assembled and tested in a chamber environment wherein
several pollutant mixtures were generated. The four classes of sources that were simulated were
mobile emissions, biomass burning, natural gas emissions, and gasoline vapors. A two-step regression
and classification method was developed and applied to the sensor data from this array. We first
applied regression models to estimate the concentrations of several compounds and then classification
models trained to use those estimates to identify the presence of each of those sources. The regression
models that were used included forms of multiple linear regression, random forests, Gaussian
process regression, and neural networks. The regression models with human-interpretable outputs
were investigated to understand the utility of each sensor signal. The classification models that
were trained included logistic regression, random forests, support vector machines, and neural
networks. The best combination of models was determined by maximizing the F1 score on ten-fold
cross-validation data. The highest F1 score, as calculated on testing data, was 0.72 and was produced
by the combination of a multiple linear regression model utilizing the full array of sensors and a
random forest classification model.
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1. Introduction

Understanding the causes of degraded air quality at a local scale is a challenging but important
task. Making the task especially difficult is the complexity of possible sources of pollutants, each of
which produce a wide variety of chemical species. These pollutant mixtures often include a component
of volatile organic compounds (VOCs), which are important because of both direct toxicological health
impacts as well as the impacts caused by secondary products. Examples of mechanisms that result
in secondary products from VOC emission include condensation into particulate matter (PM) and
reaction with other compounds that result in increased tropospheric ozone. There is also no single
instrument that can fully quantify the complex and dynamic changes of ambient air composition
needed to identify local sources, and communities directly affected by air quality problems often do
not have the resources to mount an extensive measurement campaign needed to identify likely sources.
Quantifying the impact of and identifying these sources at a higher resolution than is currently possible
would contribute to regulatory, scientific, and public health goals.

Regulators could benefit from this type of information by both understanding what types of
sources to target in order to address specific problems and by understanding what industries are likely
to be affected by regulations targeting specific compounds. For example, a critical piece of legislation
that governs toxic air pollutants is the list of Hazardous Air Pollutants (HAPs), which was produced
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and has been updated by the US Environmental Protection Agency (EPA) [1]. When determining
whether a specific HAP is likely to affect a community, it is important to understand the nature of
sources on a broad range of scales because some compounds only affect communities near to their
source, while others can have global effects. California’s recent state bill, AB 617, is an example of the
regulatory application of a low-cost measurement approach to understanding VOC sources. The bill is
intended to address local air quality problems by both supporting community-based monitoring of
air toxics and using the data gathered by those monitors to address important sources of hazardous
compounds [2].

From a scientific perspective, the location and nature of emission sources can provide important
information for atmospheric chemistry models. These models are used to understand the production of
important secondary products including forms of particulate matter (PM), ozone, and other compounds
with health and environmental impacts. Currently, these models use some combination of emission
factors, measurement campaigns, and back-propagation modeling to estimate emissions from important
sources within urban areas. Although continuous measurements that are used as inputs to these
models are often spaced on the order of tens to hundreds of kilometers apart, it has been shown that the
concentration of chemically important compounds vary on the scale of single to tens of meters in urban
environments [3,4]. Dense, continuous measurements of air quality within cities could provide insights
into small-scale variations on a real-time basis that are difficult to capture using current techniques.
For example, several studies have demonstrated the ability of dense networks or mobile platforms
with low-cost sensors to quantify the variation of pollutants like NO2, CO, O3, and PM within urban
locales [5–8].

From a public health perspective, networks of low-cost sensors may provide the ability to
understand real-life exposures for individuals to categories of compounds with suspected health
impacts. The first examples of these studies using low-cost sensors have included some combination
of small, portable measurement devices or dense networks and GPS locations of the individual.
Once continuous and highly specific exposure data becomes available, it may be possible to couple
that data with health outcomes to better understand the relation between exposures and outcomes at
typical, ambient exposures (as opposed to workplace data, where exposure levels are typically much
higher). Developing affordable methods to study air quality at local scales is important as it may help
identify and address environmental justice problems that may contribute to higher disease burden in
vulnerable communities [9].

The work presented here provides a proof-of-concept for low-cost analytical tools to accomplish
this goal on a more accessible scale. In our proposed methodology, analytical methods were applied to
low-cost sensors in order to estimate the concentrations of important compounds and to predict the
“class” of source that is emitting those compounds. Using this methodology, community members
could have a “first pass” estimate of what they are being exposed to and what the likely source(s) of
those compounds are. With these more human-readable outputs, community groups would be better
able to make decisions such as when and where to take air samples, what pollutant species to focus on,
or what part of their local government to reach out to for a follow-up measurement campaign with
possible regulatory implications.

Previous studies have addressed components of the work entailed here but have not addressed
the full scope of complex mixtures, ambient concentrations, and the prediction of realistic pollutant
sources. For example, De Vito et al. have used arrays of low-cost sensors to detect and separate tertiary
mixtures of compounds [10,11], and others have applied similar approaches to develop “e-noses” that
can identify specific mixtures of a few compounds [12–14]. The primary difference between these
studies and our own is that we have focused on identifying the likely source of the pollutants rather
than attempting to identify individual compounds.

This study was also partially motivated by the problems understanding the outputs of low-cost
sensors in the context of their increased noise and cross sensitivities relative to regulatory-grade
instruments [15]. Our own field experience and recent papers from the low-cost air quality instrument
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community have consistently encountered difficulties understanding and interpreting the outputs of
low-cost sensors, especially when communicating results to individuals who may not have a highly
technical understanding of the instruments and/or atmospheric chemistry [16,17]. This study attempted
to address some of these issues by providing an initial interpretation of the sensor outputs that can be
produced in near real-time and are output in a way that a user could understand: the likelihood that a
type of source is or is not affecting the measured air quality.

2. Materials and Methods

The methodology presented here was designed to accomplish two key goals. The first was
to establish a system that is capable of detecting several compounds that are important air quality
indicators. The second function of the system was to take those estimates and use them to identify
likely source(s) of those pollutants. Specifically, this study aimed to develop a system that could
identify pollutant sources that are often associated with VOC emissions. Note that the system here
would not be more specific than a “class” of source like traffic, natural gas leaks, etc.

This can be understood to be similar to a typical measurement campaign intended to
identify VOC sources. In these studies, researchers would sample for several compounds of
interest using research-grade instruments. Using those measurements, the researchers would then
attempt to determine the likely sources based on their knowledge of typical emission factors and
co-emitted compounds.

To develop a preliminary low-cost source attribution tool, we assembled an array of diverse,
low-cost sensors. We installed the array in an environmental test chamber and exposed it to simulated
pollutant mixtures in a temperature- and humidity-controlled environment. We then adopted a
two-step data analysis technique that would investigate the ability of the array to detect pollution
and address source attribution. The first step of this process was a regression model that estimated
the concentration of pollutant species using the sensor array signal as input. We investigated several
regression models; these are discussed in the next section. The estimated concentrations were then
used as the inputs to classification models that were trained to identify the source that was being
simulated. Again, we investigated a diverse selection of classification models and compared the
accuracy of source identification produced by each combination of regression and classification model.

2.1. Sensor Array Design

In order to detect a variety of gaseous compounds for inferring the presence of a local pollution
source, it was necessary to develop an array of sensing elements that were sensitive to a varied
mix of pollutants at relevant concentrations. This was accomplished by modifying the existing
sensor platform, the Y-Pod [18,19]. The Y-Pod is an Arduino-based open-source platform that is
typically configured to include nondispersive infrared (NDIR), photoionization detector (PID), metal
oxide (MOx), and electrochemical types of low-cost sensors for gaseous compounds (see Figure 1).
Two external boards with additional electrochemical and metal oxide sensors were added to the
baseline Y-Pod configuration (see Figure 2). Two Y-Pods with this new configuration of multiple boards
were tested with some of the sensors varying between the two Y-Pods. The sensors included on each
board are listed in Table 1, and the data streams from both pods were combined and analyzed as if
they were one large array.
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Figure 2. (a) Image of the additional boards that were used for electrochemical sensors and (b) the 

external board with additional metal oxide (MOx) sensors. The four-wire connections labeled “I2C 

Bus” contained both I2C communications and electrical power for the boards. 

It has been shown that changes in how sensors are operated and manufactured influence how 

those same sensors react to changes in gas concentrations and other environmental factors [20–25]. 

With this in mind, sensors were selected from multiple manufacturers and with different target gases 

to maximize the variance of sensor signal dependence to different gases between individual sensors. 

One important aspect underlying the differences between sensors is the presence of non-specific 

cross-sensitivities that affect sensor signals when exposed to non-target gases [5,7,26–31]. When 

attempting to quantify a single compound, these interferences are treated as an issue that must be 

corrected for, but it is proposed here that a high-dimensionality array of sensors could produce 

estimates of gases that are not the intended target of any single sensor. Some authors have 

investigated these cross-sensitivities and their usefulness when used in combination, but this field is 

still an area of active investigation [32]. 

Specific sensor models selected for use in this study (see Table 1) were determined after 

reviewing the literature to determine the sensitivity and usefulness of different models, as 

Figure 1. Image of a typical Y-Pod with important components labeled. The connector that is labeled
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Figure 2. (a) Image of the additional boards that were used for electrochemical sensors and (b) the
external board with additional metal oxide (MOx) sensors. The four-wire connections labeled “I2C
Bus” contained both I2C communications and electrical power for the boards.

It has been shown that changes in how sensors are operated and manufactured influence how those
same sensors react to changes in gas concentrations and other environmental factors [20–25]. With this
in mind, sensors were selected from multiple manufacturers and with different target gases to maximize
the variance of sensor signal dependence to different gases between individual sensors. One important
aspect underlying the differences between sensors is the presence of non-specific cross-sensitivities
that affect sensor signals when exposed to non-target gases [5,7,26–31]. When attempting to quantify
a single compound, these interferences are treated as an issue that must be corrected for, but it is
proposed here that a high-dimensionality array of sensors could produce estimates of gases that are
not the intended target of any single sensor. Some authors have investigated these cross-sensitivities
and their usefulness when used in combination, but this field is still an area of active investigation [32].

Specific sensor models selected for use in this study (see Table 1) were determined after reviewing
the literature to determine the sensitivity and usefulness of different models, as manufacturers rarely
supply data from their sensors at concentrations that are relevant for ambient air monitoring. Because
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the low-cost sensor field is fast-moving, some of these sensors are no longer available for purchase.
For example, the metal oxide CO2 sensor (TGS 4161) is no longer produced, and the MiCS-2710 has
been replaced by the newer MiCS-2714. The variable name(s) associated with each of the selected
sensors are listed in the table included in Table S1 in the Supplementary Materials.

Table 1. Details of the sensors that were selected for inclusion in the array.

Manufacturer Model Target Gas Technology

Baseline Mocon 1 piD-TECH
0–20 ppm

Volatile Organic
Compounds (VOCs) Photoionization (PID)

ELT 2 S300 Carbon Dioxide (CO2) Nondispersive Infrared (NDIR)

Alphasense 3

H2S-BH Hydrogen Sulfide (H2S) Electrochemical
O3-B4 Ozone (O3) Electrochemical

NO2-B1 Nitrogen Dioxide (NO2) Electrochemical
CO-B4 Carbon Monoxide (CO) Electrochemical
NO-B4 Nitric Oxide (NO) Electrochemical

Figaro 4

TGS 2602 “VOCs and odorous
gases” Metal Oxide

TGS 2600 “Air Contaminants” Metal Oxide
TGS 2611 Methane (CH4) Metal Oxide
TGS 4161 Carbon Dioxide (CO2) Metal Oxide

e2v 5

MiCS-5525 Carbon Monoxide (CO) Metal Oxide
MiCS-2611 Ozone (O3) Metal Oxide
MiCS-2710 Nitrogen Dioxide (NO2) Metal Oxide

MiCS-5121WP CO/VOCs Metal Oxide
1 MOCON Inc., Lyons, CO, USA. 2 ELT Sensor Corp. Bucheon-city, Korea. 3 Alphasense, Great Notley, Essex, UK.
4 Figaro USA Inc., Arlington Heights, IL, USA. 5 Teledyne e2v Ltd., Chelmsford, UK.

2.1.1. Metal Oxide (MOx) Sensors

Metal-oxide-based low-cost sensors are extremely common in the literature due to their small
size and especially low cost (on the order of $10 USD/ea.). They have been used to measure a
range of species that are important for air quality measurement and include NO2, O3, CO, VOCs,
and CH4 [19,20,26,33–36]. In the default configuration of the Y-Pod there are three “onboard” MOx
sensors. Of these onboard sensors, two are designed for Figaro MOx sensors, and the heaters
are connected to an op-amp circuit designed to keep the heater element at a constant resistance
(i.e., temperature) by providing a varied electrical current. The third MOx pad is designed for an e2v
sensor and drives the heater with a constant voltage. All three onboard MOx sensors’ sensing elements
are measured using a voltage divider and analog-to-digital converter (ADC) chips. Additional MOx
sensors were added to each Y-Pod board by installing them in voltage dividers with additional ADCs
that communicated with the main board via the I2C protocol (see Figure 2).

2.1.2. Electrochemical Sensors

Electrochemical sensors are another popular low-cost sensor technology and have been used
widely for the study of pollutants at ambient concentrations [5,7,26,27,30,37–40]. For the purposes
of this study, all electrochemical sensors were those manufactured by Alphasense and consisted
of models designed to target NO, NO2, CO, O3, and H2S with some sensor models duplicated.
Alphasense electrochemical sensors were selected because of both the broad base of study that has been
conducted with them in similar studies [5,26,30,38,40] and also because of the significant (claimed)
variability in cross-sensitivities between the models selected for study here [29]. As shown in Figure 2,
the electrochemical sensors are all installed on boards containing a total of four sensors, each of which
is in a potentiostatic circuit as recommended by their manufacturer [41] and the induced current is
measured using an op-amp circuit and ADC as also recommended by the manufacturer [41].
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2.1.3. Other Sensor Types

Nondispersive infrared (NDIR) and photoionization detection (PID) are two technologies that
have been used in the literature for the detection of CO2 and total VOCs [7,36,39]. An NDIR sensor
manufactured by ELT Sensor was included and was designed to be sensitive to CO2. This sensor
communicates estimated CO2 concentration directly to the main Arduino board using the I2C protocol.
The included PID was manufactured by Baseline Mocon and is sensitive to total VOCs and outputs a
proportional analog signal that varies from 0–2.5 volts as the concentration ranges from 0–20 ppm,
respectively. The Y-Pod also includes commercial sensors for the measurement of ambient temperature,
relative humidity, and barometric pressure.

2.2. Environmental Chamber Testing

For this study, it was determined that testing in a controlled environmental chamber would
allow us to best characterize the array and to determine the feasibility of its usefulness when exposed
to complex gaseous mixtures in the field. The test chamber used for this study was Teflon-coated
aluminum with a glass lid with a total volume of approximately 1500 in3 (24.6 L). In order to reduce
the total volume, two glass blocks were added to the chamber, reducing the unoccupied volume to
1320 in3 (21.6 L). A small (40 mm, 6.24 ft3/min [177 Lpm]) fan was also installed inside the chamber in
order to promote mixing throughout.

Gas mixtures were varied in both total concentration and composition to attempt to capture the
variation in emissions within different classes of pollution sources. Both temperature and humidity were
adjusted independently to capture variability in sensor responses to both environmental parameters.
The test plan was conducted intermittently over three months to attempt to capture temporal drift,
a factor known to affect many types of low-cost sensors [42,43]. The full summary of concentration
and other environmental parameter values produced during testing is available in Table S2 in the
Supplementary Materials.

2.2.1. Simulating Pollutant Sources

We selected classes of sources to be simulated that are relevant to the communities in which these
sensors could be deployed. The example community selected was one with which the Hannigan
Group has performed another air quality research project and is located near downtown Los Angeles,
California [44]. This community was selected because of its proximity to a variety of sources that may
contribute to local air quality issues. These sources include oil and gas products and heavy traffic on
major interstate highways, both of which can contribute to local elevations in concentrations of BTEX
(benzene, toluene, ethylbenzene, and xylene) compounds and other VOCs. Produced liquids from
oil and gas extraction were simulated using gasoline headspace, which contains hydrocarbons that
can vaporize from produced oil and condensates. Additionally, natural gas leakage and low-NOx

combustion events (like biomass burning in wildfires) were selected as other sources relevant to
the community.

Sources were simulated by injecting up to three component gases along with dilution air into the
environmental chamber in a flow-through configuration. The dilution air for all testing was bottled
“Ultra Zero” air, which is a synthetic blend of oxygen and nitrogen and contains less than 0.1 ppm
of total hydrocarbons [45]. Flow control was accomplished using mass flow controllers (MFCs) that
ranged from 0–20,000 SCCM for the dilution air and 0–20 SCCM for the component gases. Each MFC
was calibrated in situ using bubble flow meters as reference flow measurements, and a linear calibration
was applied to each MFC prior to calculating in-chamber concentrations. Reference gas concentrations
were calculated as a flow-weighted average as shown in Equation (1), where Fi,t is the concentration
of the compound at the inlet of the chamber, Fi,b is the concentration of the pollutant in the supply
bottle, Qi,b is the flow rate of the gas from that bottle, and Qm is the flow rate as reported by each MFC,
including the dilution air.
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Fi,t =

∑ j
0 Fi,b ∗Qi,b∑n

0 Qm
, (1)

Our test chamber did not include instrumentation to measure concentrations within the test
chamber, so we assumed that the concentration of gas flowing into the chamber was equal to the
concentration within the chamber. In order to make this a reasonable assumption, we determined the
time between the inlet conditions changing and the concentrations stabilizing within the chamber.
This stabilization time period was calculated as four times the time constant for the chamber, a value
that was determined to be roughly 600 s at 8.5 L/min, the nominal flow rate used for testing. The lack
of online reference measurements also necessitated the assumption that component gases not plumbed
to the gas injection system for a given test were not present, i.e., that their concentration was exactly
zero. This was a limitation of the system, but the use of “Ultra Zero” air for dilution made this a more
reasonable assumption than if ambient air were used.

The component gases are listed in Table 2 for each simulated source. For the testing of each source,
the total concentration of the mixture and the relative concentrations of each component gas were
varied to attempt to better simulate variation within source classes while remaining representative
of the source. Figure 3 illustrates the variation within and between sources with respect to the
concentration of component gases. For example, the level of nonmethane hydrocarbons (NMHCs)
within the simulated natural gas was varied from 0%, representing an extremely dry gas, to just over
20%, representing a rich gas that would be more representative of midstream or associated natural
gas. This variation was also intended to try to remove some of the correlations between component
gases to allow better understanding of which sensors were specific to which gas. The dilution ratio
and ratios of component gases were limited by the flow ranges of the MFCs and the concentrations of
the gas standards used to supply the component gases. For a full matrix of conditions for each test
point, please refer to the Supplementary Materials.

Table 2. Simulated source classes and the “key” species used to simulate them for the purpose of this
chamber testing.

Source Component Gases

Biomass Burning CO, CO2
Mobile Sources CO, CO2, NO2

Gasoline/Oil and Gas Condensates Gasoline Vapor
Natural Gas Leaks CH4, C2H6, C3H8

The two simulated combustion sources did not include VOC species, despite the associated VOC
production motivating their inclusion in this testing. This decision was made for two reasons. First,
the typical emission rates of primary compounds like CO, CO2, and NO2 from highway traffic are an
order of magnitude higher than the emission rates for total gaseous VOCs on a mass basis, and even
higher on a molar basis [46]. Secondarily, the NMHC emissions from combustion are dominated by
highly reactive oxygenated volatile organic compounds (OVOCs) as well as semi-volatile organic
compounds (SVOCs) [47], both of which are impractical to obtain as reference gas cylinders because of
their propensity to react and/or condense. Because of these factors, it was decided to attempt to detect
the primary pollutants (CO, CO2, and NO2) as indicators for the two types of combustion sources. NOx

was not included with “low-temperature combustion” both because NOx emissions are dominated
by diesel combustion [48] and because it has been shown to quickly react with other emitted species
into PAN (peroxyacetyl nitrate) and particulates [49]. If a significant influence of mobile sources or
biomass burning was detected, one could use typical emission rates to estimate VOC exposures and/or
could bring a more precise and targeted instrument into the community to make regulatory or other
important decisions.
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Figure 3. Timeseries of reference concentrations for each “key” component gas, colored by the simulated
pollutant source. X-axis indicates elapsed time in days that the sensor arrays were powered. Gaps in
the plots indicate times that they were powered but no test was being performed. During these times,
the arrays were left in the chamber at room temperature and exposed to ambient indoor air.

2.2.2. Simulating Other Environmental Parameters

In addition to simulating different mixtures of gases, temperature and humidity were also varied
to attempt to capture environmental effects that are known to affect low-cost sensing devices [3,50,51].
Temperature control was accomplished using a resistive heater, and humidity control was accomplished
by bubbling the dry dilution air through a water bath. Typical values ranged from 25–45 ◦C and
40–80%, respectively. Both temperature and humidity were recorded inside the chamber throughout
testing, and a fan was installed inside the chamber to ensure that the temperature and humidity were
uniform throughout the chamber.

2.3. Computational Methods

After subjecting the sensor arrays to a range of mixtures and environmental conditions, it was
possible to develop training algorithms to quantify the component gases and predict the presence
of each simulated source. This analysis was conducted using a custom script written in MATLAB.
To begin this process, the data from both the sensor arrays and the chamber controls were collated
and prepared for analysis. Because of the high dimensionality and nonlinearity of the sensor dataset,
a two-step approach was adopted and is illustrated in Figure 4. In this approach, a regression model
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is first fitted to predict the concentration data for each gaseous compound or class of compounds,
e.g., carbon monoxide or NMHC. Please note that in this paper, “predicting” a value does not indicate
the estimation of a value in the future but rather is more generally used to describe the application of a
trained model to use a vector of feature values to generate an estimate of, in this case, the concentration
of a given compound. The application of this regression model created a pre-processing step that
reduced the dimensionality of the dataset in a way that created new features that were useful on their
own. The estimated concentrations of each compound were then used as features for a classification
model that attempted to predict the class of source that was being simulated, e.g., “Natural Gas” or
“Mobile Sources”. The classification models for each source were trained to allow for the prediction
of multiple simultaneous sources, although multiple simultaneous sources were not tested in this
capacity due to limitations on the number of MFCs in our test chamber.
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Figure 4. Information flow diagram illustrating how predictions of the sources of detected pollutants
(in this case, natural gas) are generated indirectly from raw sensor data.

2.3.1. Initial Data Preprocessing

Both datasets were down-sampled to their 1-min median values to remove noise and
transient changes in conditions that could not be assumed to be uniform throughout the chamber.
During preprocessing, other data cleaning steps included the removal of 60 min after the pods were
turned on (warm-up times). The temperature and relatively humidity values were also converted to
Kelvin and absolute humidity, respectively, and the data from the stabilization period described earlier
were removed. This ensured that enough time was allowed for the chamber to reach its steady state
such that it was appropriate to assume that the inlet mixing ratio was representative of the actual mixing
ratio within the chamber. Further feature selection like principal component analysis (PCA), partial
least squares regression (PLSR), and other similar tools were not used to reduce the dimensionality of
this data because many of the models included methods to reduce overfitting that could be associated
with a large number of features. At the end of the preprocessing stage, there remained features
representing signals from 28 sensor components using 41 features with 3280 instances.

The full set of data was split into ten sequential, equally sized portions for fitting and validation
using k-fold validation. This was used to understand the ability of each model to perform on data
on which it was not trained on. The sections of data used for training and validation were kept the
same for both regression and classification models, so the source identification estimates that are
labeled as “validation” used the concentration estimates produced when validating the regression
models. This meant that the sources were identified using data that was not used for training either
the regression models or classification models and represent a true set of validation data. More details
for how the validation was conducted are included in the Supplementary Materials of this report.

2.3.2. Regression Models Applied

The first step in the analysis process involved regressing several “key” compounds (see Figure 3)
that were selected as especially important for both detecting and differentiating the emissions from
different classes of sources. Although the primary aim of this study was not to produce highly accurate
estimates of gas concentrations, good estimates of gas concentration are useful both for the community
in which the sensors are deployed and would likely be more useful for the classification models applied
in the next step. The literature is yet not settled regarding which regression models are most useful
when applied to low-cost atmospheric sensing, so a broad selection of models was applied here in
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order to better appreciate the sensitivity of the classification models to using inputs produced using
different methods.

Several regression techniques that have been applied in the literature were explored here
and assessed first on their ability to accurately model the concentrations of several different gases.
These regression techniques included multiple linear regression (MLR), ridge regression (RR), random
forests (RF), gaussian process regression (GPR), and neural networks (NN). Separate models were
trained for each compound to avoid “memorizing” the artificial correlations that were present in
this study but would not fully represent the diversity of mixtures that could be expected in a field
deployment. Although a brief explanation of the models is included below, a thorough discussion of
each model and its application is included in the Supplementary Materials.

Multiple linear regression is one of the most popular forms of regression used to convert sensor
signal values into calibrated concentration estimates and have been used in a range of applications
with many low-cost sensor technologies [3,30,36,52–54]. Because of popularity and the relatively low
computational costs, several forms of multiple linear regression were investigated. These models
included two methods (stepwise linear regression and ridge regression) that attempt to reduce the
effects of multicollinearity that can affect model performance in environments like atmospheric
chemistry wherein many parameters are correlated with each other. The linear models included the
following: “FullLM”, a multiple linear regression model that used every sensor input from the array;
“SelectLM”, which included only data from sensors that were known to react to the current target gas,
as determined by a combination of field experience and manufacturer recommendations; “StepLM” a
linear model with terms selected by stepwise linear regression; and finally, “RidgeLM”, which was a
multiple linear model with weights that were fitted using ridge regression.

In addition to the linear models discussed above, several nonlinear models were included
with the hope that they could capture nonlinear relationships between the sensors including the
cross-sensitivities that have been discussed earlier. These nonlinear models were random forest
regression (“RandFor”), gaussian process regression (“GuassProc”), and neural networks (“NeurNet”).
These three models are able to capture much more complex, nonlinear relationships between variables.
It was suspected that these models that included more complexity might capture the interactions and
cross-sensitivities that a simpler, linear model might miss. The specific nonlinear models selected
apply significantly different methodologies to determine and model those relationships, which should
also lead to different biases and errors. The reader is directed to the Supplementary Materials for a
detailed explanation of the tuning and application of these models.

2.3.3. Classification Models Applied

After generating estimates of “key” compounds using each of the above regression approaches,
classification algorithms were trained to identify the class of “source” that was being simulated,
using the estimated concentrations at each timestep as features. Each was selected for a combination of
its appearance in the literature and because it works significantly differently than the other methods
included [10,55–57]. Those algorithms applied here included the following: “Logistic_class”, logistic
regression with terms selected by stepwise regression; “SVMlin_class” and “SVMgaus_class”, support
vector machines (SVM) with both a linear and Gaussian kernel, respectively; “RandFor_class”, a random
forest of classifier trees; and “NeurNet_class”, a set of neural networks trained to predict the presence
of each source. For all of the methods presented here, the classification model outputs were values
ranging from 0 to 1, where 0 indicates high confidence in the absence of a source, and 1 indicates high
confidence in the presence of a source. When comparing the results to the actual simulated source,
a value greater than or equal to 0.5 indicated a prediction that the source was present and a value less
than 0.5 indicated that it was absent.

Other classification methods that were not included here but are present in the literature include
k-nearest neighbor classifiers [51,58], linear discriminant analysis [35,42,59], and other, more specialized
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techniques targeted at specific sensor technologies [21,58]. These were not included due largely to
their similarities to other techniques applied here.

2.3.4. Determining the Best Combination of Classification and Regression Models

The best combination of classification and regression model was determined by comparing F1

score as calculated using Equations (2)–(5), where n indicates the number of source classes and i
indicates a specific source class. The notations tp, fp, tn, and fn represent the counts of true positives,
false positives, true negatives, and false negatives, respectively. The F1 score is a popular metric when
understanding the performance of pattern recognition algorithms because it provides a balanced
indication of both the precision and recall [60]. Precision can be understood as the fraction of times
that a model is correct when it predicts that a source is present, and recall is the fraction of times
that a source is present and the model “catches it”. The F1 score uses the harmonic mean of the two
values, which more heavily penalizes poor performance in either metric, a consideration that becomes
important when the prevalence of classes is not balanced. The F1 scores that were used for model
evaluation were those calculated on data that was left out of the training data for both regression and
classification and are shown in Table 3 for each combination of models.

F1,all =
1
n
×

∑
i=1:n

F1,i (2)

F1,i = 2×
precisioni × recalli
precisioni + recalli

(3)

precisioni =
tpi

tpi + f pi
(4)

recalli =
tpi

tpi + f ni
(5)

Table 3. F1 Scores calculated for different combinations of regression and classification models.
Calculated using Equations (2)–(6) on data that was held out for validation during model training.
Cells are colored by the indicated score.

Classification Model

Logistic_class NeurNet_class RandFor_class SVMgaus_class SVMlin_class

R
eg

re
ss

io
n

M
od

el

FullLM 0.677 0.417 0.718 0.610 0.711

GaussProc 0.416 0.401 0.394 0.288 0.535

NeurNet 0.596 0.496 0.690 0.569 0.596

RandFor 0.332 0.442 0.479 0.578 0.556

RidgeLM 0.521 0.376 0.570 0.493 0.596

SelectLM 0.600 0.531 0.545 0.493 0.596

StepLM 0.695 0.502 0.619 0.614 0.616

3. Results

3.1. Regression Results

After training each model, the accuracy was measured as the root mean squared error (RMSE).
Other analysis metrics like the Pearson correlation coefficient, that use the variance of the reference
values were difficult to interpret because some folds of validation data consisted entirely of concentration
values that were exactly zero. These periods exist because some validation folds consisted of time
periods when a compound was not being added to the chamber. The system used here does not have
an online reference measurement of chamber concentrations, so it was assumed to be exactly zero.
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The RMSE values plotted in Figure 5 illustrate that the models perform acceptably but are generally not
as accurate as has been achieved in the literature [5,27,37,52]. They also show that they are susceptible
to overfitting to various degrees as shown by the differences between the results on training data
(dark colored boxes) and testing data (light boxes). The relatively poor performance that is reflected
in the RMSE values is also observed qualitatively when plotting the estimated concentrations versus
reference values. For those plots, refer to Figure S2 in the Supplementary Materials.Sensors 2019, 19, x FOR PEER REVIEW 12 of 27 
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Figure 5. Boxplots of root mean squared error (RMSE) values (ppm) from each fold using each model
and species. Bars indicate the 25th and 75th percentile values, whiskers extend to values within
1.5 times that range from the median, and dots represent points outside of that range as calculated
using the GRAMM package implemented in MATLAB [61].



Sensors 2019, 19, 3723 13 of 26

Interestingly, the variation between models when compared by their RMSE is not as great as
one might expect. It also appears that the regularization as applied to the ridge regression did not
totally address the problem of overtraining, as evidenced by the training RMSE values consistently
underestimating the testing errors. This overtraining could indicate that the regularization didn’t
balance out the increased variance caused by the addition of temperature and humidity interaction
features introduced only for ridge regression. Neural nets and random forest regression typically
performed best in our study, possibly explained by their ability to encode complexities like interactions,
changes in sensitivity over time, and nonlinearities in signal response.

The relatively poor performance of the models, as compared to the literature, may be partially
explained by design of the experiment. That is, this chamber study was designed to intentionally
introduce a wide range of conditions containing known or suspected confounding gases at significantly
elevated levels. This wide range of sources and concentrations would be unlikely to occur in a single
location and it was, therefore, more challenging to accurately predict concentrations than in a typical
environment. Reference values are also calculated based on MFC flow rates, which introduces the
assumption that the chamber is fully mixed and has reached steady-state concentrations equal to that
at the inlet. Both assumptions necessarily introduce additional uncertainties. Finally, the nature of
chamber studies produces relatively discrete values for each reference instead of the continuous values
that would be experienced in an ambient environment. This forces models to interpolate across a
relatively wide range of conditions that are not seen in the training data; likely an important factor that
may reduce the accuracy of the models.

3.2. Classification Results

At the end of the classification step, a set of values from 0 to 1 was output by each of the
classification models for each simulated source. These values indicated the model’s prediction that
a source was or was not present at each time step. In a field application, these values would be the
indication of the likelihood that a source was affecting the measured air quality.

The results of each combination of classification and regression model were evaluated using
empirical cumulative probability functions (CDFs) of the model outputs when a source was and was
not present. An example of one of those plots is shown in Figure 6 for the best-performing set of models
(“FullLM” and “RandFor_class”). By plotting a CDF of the output of the model, it was possible to see
how often a model correctly predicted the presence of a source (score ≥ 0.5) or absence of a source
(score <0.5) when the source was present (blue line) and was not present (red line). The magnitude of
the score also indicated how confident the model was in its prediction, so values closer to 0 or 1 would
be more useful to an end user because it would give a stronger indication that the source was actually
absent or present. For example, if the classifier output a value close to 1 for traffic emissions, the user
could be more confident that elevated concentrations were due to an influence of traffic pollution.
In these plots, an ideal and omniscient model would roughly trace a box around the exterior; yielding a
score close to 0 for all points where a source was not being simulated (red), and close to 1 for all points
when a source was being simulated (blue). The CDF was plotted for classification models trained on
both the reference values and the estimated values output by regression models. This allowed us to
determine whether a model would or would not be able to separate the sources when given “perfect”
concentration values. If not, then the model was unlikely to be useful when trained on less accurate
estimates produced by regression models.
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Figure 6. Example set of cumulative probability functions (CDFs) showing classification model
performance on both calibration (train) and validation (test) data. The red lines trace the CDF for test
cases where the source was not present (-), and blue lines illustrate the results when the source was
present (+). (a) shows performance using the reference gas concentrations as features, and (b) shows
performance for a combination of regression and classification models (in this case, FullLM and
RandFor_class).
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Another analysis tool that was used to select models were the confusion matrices that are shown
in Figure 7 for each combination of regression and classification models. The confusion matrices
plotted here illustrate the fraction of times each source was identified as present when each of the
sources was being simulated. Confusion matrices are useful because they help us to understand what
types of mistakes the model is making. For example, the top row of each confusion matrix shows the
fraction of times that a model predicted that a source was present when no source was being actively
simulated. A confusion matrix for an ideal model would be a matrix with the value of 1 along the
diagonal and 0 elsewhere, indicating that it predicted the correct source every time. As mentioned
before, the threshold was set as 0.5 for each model output, and each model was trained independently,
so it was possible that multiple sources were predicted for a single timestep. This functionality was
intentional because it would allow for the identification of multiple simultaneous sources, a situation
that is likely to occur in reality.

Several of the models had problems with confusion between low- and high-temperature
combustion that should have been easily differentiated by the presence of NOx. After reviewing the
data, it appears that the NO2 electrochemical sensor failed approximately 2/3 of the way through the
test matrix, likely hampering the ability of regression models to learn its importance in predicting NO2

concentrations. Interestingly, the regression model that used all of the sensor signals was the one that
produced the best inputs to the classifier models. This may be because it did not discard other sensors
that would have been possibly less useful for the regression of NO2 but that also did not fail near the
end of the test.

4. Discussion

4.1. Classification Results

Using the criterion of maximum F1 score as defined in Equations (2)–(4), the best performance
was accomplished by using the full multiple linear model (FullLM) to produce concentration estimates
for a set of random forest models (RandFor_class) that estimated the sources. The performance of
this pair is highlighted in Figure 8, which shows that the models were most effective at identifying
gasoline vapors, and the second most successful classification was for natural gas emissions. The most
common mistakes made by the model were confusion between low-temperature combustion and
heavy exhaust. This makes intuitive sense because the only differentiating factor in this study was the
presence of NO2 during heavy exhaust emissions, a compound that the regression models struggled to
accurately predict.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 27 

 

4. Discussion 

4.1. Classification Results 

Using the criterion of maximum F1 score as defined in Equations (2)–(4), the best performance 

was accomplished by using the full multiple linear model (FullLM) to produce concentration 

estimates for a set of random forest models (RandFor_class) that estimated the sources. The 

performance of this pair is highlighted in Figure 8, which shows that the models were most effective 

at identifying gasoline vapors, and the second most successful classification was for natural gas 

emissions. The most common mistakes made by the model were confusion between low-temperature 

combustion and heavy exhaust. This makes intuitive sense because the only differentiating factor in 

this study was the presence of NO2 during heavy exhaust emissions, a compound that the regression 

models struggled to accurately predict. 

Table 3. F1 Scores calculated for different combinations of regression and classification models. 

Calculated using Equations (2)–(6) on data that was held out for validation during model training. 

Cells are colored by the indicated score. 

  Classification Model 

    Logistic_class NeurNet_class RandFor_class SVMgaus_class SVMlin_class 

R
eg

re
ss

io
n

 M
o

d
el

 FullLM 0.677 0.417 0.718 0.610 0.711 

GaussProc 0.416 0.401 0.394 0.288 0.535 

NeurNet 0.596 0.496 0.690 0.569 0.596 

RandFor 0.332 0.442 0.479 0.578 0.556 

RidgeLM 0.521 0.376 0.570 0.493 0.596 

SelectLM 0.600 0.531 0.545 0.493 0.596 

StepLM 0.695 0.502 0.619 0.614 0.616 

 

Figure 8. Confusion matrix for the “best” combination of models as judged by the F1 score as 

calculated using validation data. This combination involved regression using all linear models and 

then random forest classification trees. 

4.2. Sensor Importance for Different Compounds 

The sensors that were most influential when estimating the concentration of different gases was 

investigated by probing parameters from a few different regression models. This investigation will 

hopefully inform the design of future sensor arrays that are targeting some or all of the compounds 

discussed here. Specifically, we explored the sensor signals that were selected by stepwise regression, 

the unbiased importance measures for sensors from the random forest regression models, and the 

standardized ridge trace generated when fitting ridge regression models. By looking at which sensors 

were especially important to different models, it was possible to see which sensors were likely to be 

truly important for estimating the concentration of a gas. 

4.2.1. Terms Selected by Stepwise Regression 

Figure 8. Confusion matrix for the “best” combination of models as judged by the F1 score as calculated
using validation data. This combination involved regression using all linear models and then random
forest classification trees.

4.2. Sensor Importance for Different Compounds

The sensors that were most influential when estimating the concentration of different gases was
investigated by probing parameters from a few different regression models. This investigation will
hopefully inform the design of future sensor arrays that are targeting some or all of the compounds
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discussed here. Specifically, we explored the sensor signals that were selected by stepwise regression,
the unbiased importance measures for sensors from the random forest regression models, and the
standardized ridge trace generated when fitting ridge regression models. By looking at which sensors
were especially important to different models, it was possible to see which sensors were likely to be
truly important for estimating the concentration of a gas.

4.2.1. Terms Selected by Stepwise Regression

Figure 9 shows the sensors selected by stepwise linear regression for each compound of interest
where the boxplots indicate the statistical importance of those sensors when they were selected.
Many of the terms selected algorithmically match the sensors that we have used based on previous
experience [52,62], although there were a few surprises that would suggest further investigation.
For example, terms that were expected were the inclusion of the Figaro 2600 and 2602 for the detection
of methane and nonmethane hydrocarbons (NMHC). The importance of the Baseline Mocon sensor for
gasoline was also expected, as it is one of the few sensors that our research group has used to detect
heavy hydrocarbons at sub ppm levels. Finally, the sole selection of the NDIR sensor for CO2 from
NLT was expected as this technology is generally quite robust to cross-interferences and has been
used successfully before in other studies. Some of the unexpected terms were the inclusion of the CO2

sensor for indication of CO and NO2, although this is likely because NO2 was only ever present when
CO2 was also present, although not always at the same ratios, and the reverse was not true. CO is
interesting in that there were some test points where only CO was present, although it is possible that
there were not enough to counteract the more common correlation between the two compounds. It’s
also interesting that the gasoline models consistently selected the Figaro 4161, which is an older metal
oxide sensor that was marketed for the detection of CO2. Other sensors were selected for inclusion
in only one or two of the cross-validation folds for NO2, CO, and NMHC, which indicates that their
inclusion is not reliable and may be caused by a correlation unrelated to sensitivities.
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Figure 9. Frequency that each term was selected by stepwise regression for each pollutant from all
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4.2.2. Random Forest Unbiased Importance Estimates

The random forests were trained such that they determined the variable to split at each node by
using the interaction-curvature test as implemented by the MATLAB function “fitrtree”. This method
allows the model to account for interactions between variables and produces unbiased estimates of
the change in mean squared error (MSE) associated with the variable selected to split at each node.
Because the decision of which variable to split on is evaluated for each tree at each node using different
subsets of the full set of variables, importance estimates are generated for every variable and are
determined on a wide range of subsets of the data. The ten most important variables—in this case
sensor signals—for each compound are shown in Figure 10.

For NO2, we once again see that none of the sensors were selected to have a strong importance.
This again is likely at least partly due to the failure of the NO2 sensor part way through testing. This is
reflected in the high ranking of the elapsed time (“telapsed”) variable, as it would help separate the
point of failure for that sensor. The H2S electrochemical sensor is again among the more important
inputs, reinforcing the hypothesis that it is at least partially sensitive to NO2. Interestingly, the NO2

sensor does feature prominently in the CO importance plot. It is possible that the individual trees
making up the random forest learned to screen the NO2 sensor when it had failed so as to be able
to still use its common association with NO2, although it is not clear why that would be true when
estimating CO and not NO2.
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regressed pollutant. These pollutants were (a) NO2, (b) CO, (c) NMHC, (d) Gasoline, (e) CO2,
and (f) CH4. Boxes indicate the variation in the predictor importance when models were trained on
different cross-validation folds.

Both the methane and nonmethane hydrocarbon (NMHC) models are dominated by the Figaro
2600, which is the sensor that we have shown to be effective for similar applications [52,62]. It is
possible that the NMHC are simply taking advantage of the partial correlation of NMHC with methane
and not actually recording a sensitivity of the Figaro 2600 to other NMHC. This is reinforced by the
lower ranking of the 2600 when regressing gasoline concentrations. In this model, the Baseline Mocon
PID sensor and Figaro 2602 are selected, and their selection matches our experience with detecting
heavier hydrocarbons. The elapsed time variable is relatively important here, which matches a drift in
the Figaro 2602 that was noticed when reviewing the sensor values over the full test period.

The CO2 model is also dominated by the NDIR CO2 sensor from ELT, another instance where the
models match expectations [19,52]. The gasoline model is also again dominated by the Baseline Mocon
PID sensor and the Figaro 2602, which are two sensors that we have used to study those compounds in
the past. The MICS-5121wp sensor by e2v is also relatively important, and it, too, is a sensor targeted
at the detection of VOCs.

4.2.3. Standardized Ridge Regression Coefficients

The use of ridge regression offered an opportunity to review which sensors contributed to models
when using regularization to avoid overfitting. Because of this regularization, more initial terms
could be included; in this case, interactions between each sensor and temperature, humidity, and both
temperature and humidity were included in the input dataset. These are denoted by appending “:T”,
“:H”, or “:T:H”, respectively, to the end of the sensor name. The methodology here initially used a
range of regularization coefficients to produce a “ridge trace” plot that showed the standardized weight
assigned to each variable as a function of that regularization coefficient (see Figure 11). By reviewing
the ridge trace produced for each pollutant, it was possible to select a regularization coefficient that
seemed to be an appropriate combination of reducing variance while avoiding underfitting. For this
study, that value seemed to typically range between 1 and 10 for all pollutants, so a value of 5 was
applied to all models for consistency and to avoid over-learning that hyperparameter. The ridge trace
plots for each compound provide another insight into which sensors were important enough to the
model that its importance to the model outweighed all but extreme values of regularization. This is
indicated by weight values that are relatively high and stable, even at high levels of regularization
(the right side of the plot).

In the NO2 ridge trace, most of the weights collapsed toward zero as regularization was increased,
indicating that none were especially strongly correlated with NO2. That said, the H2S sensor was
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relatively resistant to regularization, indicating that it may have some sensitivity to NO2. The CO2

NDIR sensor term with temperature interaction term is also quite stable, although this may simply
indicate that NO2 was sometimes co-emitted with CO2. It is important to again note that the NO2

sensor included in the study appears to have failed during the second half of testing, likely explaining
its absence from this plot.

For CO, a strong dependence was seen with the NO2 sensor, although this may again be caused
by the fact that NO2 was sometimes released at the same time as CO. The CO2 NDIR sensor is also
relatively resistant to regularization, but this may be caused by the same phenomena. Interestingly,
the electrochemical ozone sensor (with temperature interaction) was relatively strongly and negatively
represented in the ridge traces. This may indicate that the catalytic surface on the ozone sensor is
somewhat sensitive to carbon monoxide, although the electrochemical cell would be operating in
“reverse” as ozone is an oxidizing agent and CO is reducing.

Nonmethane hydrocarbons (NMHC) seem to have been dominated by their inclusion as a
component of some of the simulated natural gas emissions, as both Figaro 2600s were strongly
weighted even with high regularization. Temperature itself was also selected, although it is not clear
why this was selected rather than the terms that included temperature interactions.
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Figure 11. Summary of ridge traces of the top 10 most important parameters from the regression of each
pollutant. These pollutants were (a) NO2, (b) CO, (c) NMHC, (d) Gasoline, (e) CO2, and (f) CH4. Weight
magnitude should not be compared between compounds because they scale with the concentration
values. Interactions with temperature and/or humidity are indicated by “:T”, “:H”, or “:T:H, respectively.
Colors indicate the sensor and are sorted from largest to smallest importance at high regularization.
Dashed lines illustrate the ridge trace for each cross-validation fold, and the solid lines illustrate
the median value for all folds. The x-axis of each plot indicates the ridge parameter (regularization
strength), and the y-axis indicates the unbiased parameter weight. Larger absolute values indicate a
stronger importance of that sensor, especially at larger values of the ridge parameter.

Gasoline vapors produced a significantly different plot from NMHC, likely because they were
not co-emitted with methane and were not dominated by the ethane and propane signals from the
simulated natural gas emissions. These vapors were well captured by the Baseline Mocon PID sensor
that is designed to quantify gaseous hydrocarbons. Interestingly, the parameter of just this sensor and
the parameter with the interaction of this sensor with temperature and humidity were both selected
strongly. This may indicate that the sensor has some sensitivity to environmental parameters as well as
the mixture itself. The Figaro 2602 with humidity interaction was also selected strongly, which is an
expected result as these vapors are the target of the 2602 and humidity is known to affect metal oxide
sensors. One of the pressure sensors (BME) was also selected with almost as much weight as the Figaro
2600 sensor. After reviewing the data, we determined that this was due to a spurious correlation with
pressure in the chamber, which was not controlled.

For CO2, several of the Figaro 2600 sensors were selected, although it is not clear whether that
is representative of a true cross-sensitivity to CO2. It is, for example, possible that these are actually
cross-sensitive to CO, which was co-emitted with CO2 in some of the testing. The CO2 NDIR sensor on
one of the pods was selected, although not as distinctly as one might have predicted, based on the
typical sensitivity of these sensors.

Finally, for methane, the Figaro 2600 sensor term was selected most strongly at higher levels of
regularization. The Figaro 2600 sensor that was installed on the ancillary board and which operated
at a slightly different operating temperature was also selected somewhat at a similar level to the
Baseline Mocon PID sensor. Both BME pressure sensors were again selected, representing an incidental
correlation with pressure.

5. Conclusions

In this study, we have shown the ability of current modeling and machine learning techniques to
quantify several trace gases and identify likely sources for those trace gases using an array of low-cost
sensors. The best combination of regression and classification methods for source identification was a
linear regression using every sensor in the array followed by a random forest of classification trees.
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The F1 score as calculated on data that was held out during optimization and model fitting was 0.718,
indicating a relatively strong combination of accuracy and precision. The success of these models was
an unexpected result as our previous work suggested that a linear regression model with every sensor
signal was likely to overfit and perform poorly on validation data. We also initially suspected that
this model would fail to capture the interactions between sensors and environmental parameters like
temperature and humidity. Indeed, as far as regression accuracy, many of the other regression models
outperformed this model when predicting on validation data. That said, it is possible that the random
forest classifier model was able to encode the interferences that would have been normally captured
by the regression model while also taking advantage of signals that would have been removed or
reduced by other regression models. If true, the omission of the regression step could be considered,
although it would greatly increase the computational power required to train and apply the random
forest classifier models.

In this study, we also reviewed the variable importance from three different regression models to
investigate the value of sensors when quantifying different pollutants of interest. Although there were
some issues caused by sensor failure, these may provide valuable insight to researchers designing the
next generation of sensor platforms.

Going forward, it will be important to validate these methods in more realistic environments
as chamber calibrations are known to be imperfect representations of field performance [18,63].
One example of a study that could provide valuable insights would be the placement of this sensor
array in regions where different sources are likely to dominate, e.g., immediately next to a highway
onramp and then next to a well during completion. By collecting data in these locations as well as e.g.,
rural sites, it would be possible to determine how well the identification of sources might function in
situations where the qualitative levels are known. This has been demonstrated by Molino and others
for the detection of single sources [26].

There are also other analysis techniques that could be used to possibly improve the results
presented here. Specifically, combining the models into ensembles for both classification and regression,
the ensembles could improve overall results by combining models that make “decisions” in different
ways and are, therefore, less likely to make the same types of mistakes. The use of generative
classification models could also improve the identification of sources. These models learn the
characteristics of different classes instead of learning to separate one class from another. This type of
classifier generally performs better on smaller training data sets. This would be important for work
like that presented here because any economical calibration strategy will always represent a small
training set relative to the range of environments in which a sensor could be deployed.

Finally, many sensors were not available for inclusion in this array due to limited availability.
Including new sensors in the array could fill in gaps that were not covered by the relatively limited
variety of sensors here. These new inputs could involve similar sensors operated in new ways,
e.g., temperature-cycled MOx sensors that have been shown to improve sensitivity to VOCs and other
gases [21,35,64]. It could also include sensors with wildly different operating principles like micro-GCs
(gas chomatographs) [27] or with new targets like the low-cost PM sensors that could also be useful in
the differentiation of sources.
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