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Abstract
The mechanisms underlying central nervous system (CNS) toxicities in antiretroviral-treated persons living with HIV (PLWH)
remain elusive. We investigated the associations between markers of tryptophan metabolism and measurements of CNS toxicity
in PLWH. In a prospective study, virologically suppressed PLWH receiving efavirenz-containing antiretroviral regimens with
ongoing CNS toxicity were switched to dolutegravir-containing regimens and followed up for 12 weeks. Plasma tryptophan and
kynurenine concentrations and the kynurenine/tryptophan ratio were calculated. Ten CNS toxicities were graded according to the
ACTG adverse events scale. Scores ranged from 0 (none) to 3 (severe) and were summed, giving a total from 0 to 30. Paired-
samples t tests and linear mixed model analyses were conducted to assess changes in, and relationships between, laboratory and
clinical parameters. Mean kynurenine plasma concentration increased from baseline to week 12 (2.15 to 2.50 μmol/L, p = 0.041).
No significant changes were observed for tryptophan (54.74 to 56.42μmol/L, p = 1.000) or kynurenine/tryptophan ratio (40.37 to
41.08 μmol/L, p = 0.276). Mean CNS toxicity score decreased from 10.00 to 4.63 (p < 0.001). Plasma kynurenine concentration
correlated with CNS toxicity score: for every 1 μmol/L increase in kynurenine concentration observed, a 1.7 point decrease was
observed in CNS toxicity score (p < 0.038). A similar trend was observed for the kynurenine/tryptophan ratio: for every 1 μmol/
mmol increase observed in kynurenine/tryptophan ratio, a 0.1 point decrease was observed in CNS toxicity score (p = 0.054).
Switching from efavirenz to dolutegravir was associated with increases in plasma kynurenine concentration and improvements in
CNS toxicity scores. Underlying mechanisms explaining the rise in kynurenine concentrations need to be established.
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Introduction

Many antiretroviral agents are associated with central nervous
system (CNS) toxicities. Efavirenz is a widely used agent and
is associated with CNS clinical toxicities including vivid
dreams, insomnia, cognitive impairment, suicidal ideation
and suicide (Summary of product characteristics, Sustiva®
2016; Cavalcante et al. 2010). This has resulted in HIV

treatment guidelines moving towards the use of HIV-
integrase-inhibitors as first line antiretroviral regimens
(European AIDS Clinical Society (EACS) n.d.; British HIV
Association (BHIVA) n.d.; United States Department of
Health and Human Services (DHHS) n.d.; Gunthard et al.
2016). Although overt CNS side effects may be less prevalent
with the integrase-inhibitor class, emerging toxicities are be-
ing reported (Fettiplace et al. 2016).

The pathogeneses of CNS toxicities from antiretroviral
agents remains elusive (Underwood et al. 2015). One potential
mechanism is direct neuronal toxicity. Efavirenz and its major
metabolite, 8-hydroxy-efavirenz, have been shown to be toxic
in neuron cultures at concentrations found in cerebrospinal
fluid (Robertson et al. 2012; Tovar-y-Romo et al. 2012).
Other potential mechanisms may include alterations to trypto-
phan metabolism. Tryptophan acts as a substrate for trypto-
phan 5-hydroxylase, leading to the production of 5-
hydroxytryptophan (serotonin). Under physiological condi-
tions, tryptophan is also degraded via hepatic metabolism by
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tryptophan 2,3-dioxygenase (TDO), which is activated when
the concentration of tryptophan exceeds the requirements for
its metabolic needs. Tryptophan is also catabolised
extrahepatically in intestinal, lung, placenta and brain tissues
by indoleamine 2,3-dioxygenase (IDO-1), which is inducible
by proinflammatory cytokines (Stone 1993; Fuchs et al. 1990;
Boasso and Shearer 2007). In the CNS, the cellular localiza-
tion of IDO-1 has been shown to be primarily in infiltrating
macrophages and resident microglial cells (Guillemin et al.
2003; Guillemin et al. 2004). Increasing IDO-1 activity diverts
tryptophan away from serotonin production and results in the
production of kynurenine and a number of neuroactive catab-
olites, most of which are either neurotoxic or neuroprotective
(Stone 1993; Fuchs et al. 1990; Boasso and Shearer 2007;
Guillemin et al. 2003; Guillemin et al. 2004). The net result
during HIV infection is unclear, but there is potential for neu-
ral damage to occur, which could impact cognition and mood
(Davies et al. 2010; Heyes et al. 1992; Keegan et al. 2016;
Grill et al. n.d.).

The impact of antiretroviral therapy (ART) on tryptophan
metabolism has yet to be fully explored. In PLWH, virologi-
cally suppressive ART has been shown to reduce, though not
necessarily normalise, tryptophan metabolism. This is thought
to be via the kynurenine pathway through its ability to reduce
viral loads and attenuate immune activation (Zangerle et al.
2002; Byakwaga et al. 2014; Chen et al. 2014). However,
previous studies have not assessed the potential differential
effects of specific ART drugs. Efavirenz has been show to
inhibit TDO activity in the liver cells of non-HIV-infected rats,
but it is unclear whether this is associated with neurotoxicity
(Zheve 2007).

Our aim was to explore the effects of switching from
efavirenz to dolutegravir on tryptophan metabolism and
CNS toxicity in virologically suppressed PLWH.

Methods

Study design

We conducted a prospective, randomised, open-label,
multi-centre study, in which virologically suppressed
PLWH receiving two nucleoside reverse transcriptase in-
hibitors (NRTIs) plus efavirenz for ≥ 12 weeks who had
reported experiencing ongoing CNS toxicity were en-
rolled. Subjects were randomised to switch immediately
to dolutegravir (n = 20) or have their switch delayed for
4 weeks (n = 20), without NRTI change. Both groups were
followed up for a further 12 weeks. The main study results
have been reported (Bracchi et al. n.d.). In this analysis,
the study arms were pooled and ‘baseline’ was defined as
the time of ART switch for all subjects.

Clinical assessments

Participants received a comprehensive medical examination,
which included an assessment of HIV disease (i.e. current and
nadir CD4+ cell count, and plasma HIV-1 RNA) and ART
characteristics.

Rates of CNS toxicities were measured at baseline, week 4
and week 12 using a questionnaire based on the efavirenz
label and graded according to the ACTG adverse events scale.
The questionnaire consisted of 10 sections specifically ascer-
taining the following symptoms: dizziness, depression, in-
somnia, anxiety, confusion, impaired concentration, head-
ache, somnolence, aggression and abnormal dreams. Each
score ranged from 0 (none) to 3 (severe) with scores summed,
giving a total score ranging from 0 to 30.

Laboratory methods

Plasma concentrations of tryptophan and kynurenine were
measured by high-performance liquid chromatography
(HPLC) using the ProStar 210 solvent delivery system
(Agilent Technologies Inc.) (Laich et al. 2002). Sample injec-
tion was controlled by a ProStar 400 autosampler, a ProStar
360 fluorescence detector and a ProStar 325 ultraviolet detec-
tor (Agilent). Separation was accomplished at room tempera-
ture using a reversed-phase LiChroCART 55–4 mm cartridge
(Merck), filled with Purospher STAR RP-18 (3 μm grain size;
Merck) together with a reversed-phase C18 precolumn
(Merck). Before HPLC, serum protein was precipitated with
0.015 mM trichloroacetic acid. For both measurements, L-
nitro-tyrosine is used as an internal standard and monitored
at the 360 nm wavelength.

Tryptophan and kynurenine concentrations were measured
in one chromatographic run using dihydrogen phosphate so-
lution for separation on reversed-phase C18 material with mo-
bile phase 0.015 M sodium acetate/acetic acid (pH = 4) + 5%
methanol and with the fluorescence detector set at 285 nm
excitation and 360 nm emission wavelengths. Ultraviolet ab-
sorption to detect kynurenine and L-nitro-tyrosine concentra-
tions was measured at the 360 nm wavelength (Laich et al.
2002; Widner et al. 1997). The kynurenine/tryptophan ratio
was calculated, estimating IDO-1 activity.

Neopterin concentrations were measured by enzyme-
linked immunosorbent assay (BRAHMSDiagnostics) follow-
ing the manufacturer’s protocol (sensitivity, 2 nmol/L).

Statistics

Statistical analyses were performed with IBM’s SPSS
Software Version 23. The results were subjected to tests of
normal distribution. The data were found to be normally dis-
tributed and so paired-samples t tests were conducted to assess
changes from baseline to week 4, week 4 to week 12, and
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baseline to week 12 for tryptophan, kynurenine and neopterin
concentrations, the kynurenine/tryptophan ratio, and CNS
toxicity scores. To investigate the relationship between CNS
toxicity scores and kynurenine concentrations and the
kynurenine/tryptophan ratio, linear mixed models were
constructed.

Bonferroni corrections were applied to each group of anal-
yses to adjust the level of significance to account for multi-
plicity. Only the adjusted p values are shown.

Results

Subject characteristics

Most subjects were male (n = 38; 95%) and of white ethnicity
(n = 38; 95%). Mean age was 48 years (standard deviation
[SD] 11). All subjects were virologically suppressed (HIV-1-
RNA < 50 copies/mL) at baseline and maintained suppression
throughout the 12 weeks. Mean CD4+ cell count/μL was 604
(SD = 201) and 679 (SD = 219) at baseline and week 12, re-
spectively. NRTI backbones were either tenofovir and
emtricitabine (n = 39) or zidovudine and lamivudine (n = 1).

Laboratory and clinical measurements

Mean plasma concentrations of tryptophan, kynurenine,
neopterin and the kynurenine/tryptophan ratio are present-
ed in Table 1. The mean plasma concentration of
kynurenine increased significantly from baseline to week
12 (adjusted p = 0.041). Numerical increases were ob-
served for the kynurenine/tryptophan ratio from baseline
to week 12 (adjusted p = 0.456) and week 4 to week 12
(adjusted p = 0.276), but these were not statistically signif-
icant following Bonferroni correction. No significant
changes were observed for tryptophan or neopterin at
any time point (Table 1).

A significant reduction was observed in the mean CNS
toxicity score from baseline to week 4 (adjusted p < 0.001)
and baseline to week 12 (adjusted p < 0.001), indicating im-
provement (Table 1). No significant change was observed
between week 4 and week 12 (adjusted p = 1.000).

Factors associated with markers of tryptophan
metabolism

In the linear mixed model analyses (Table 2), plasma
kynurenine concentrations were found to be negatively corre-
lated with CNS toxicity scores, such that for every 1 μmol/L
increase observed in kynurenine concentration, a 1.7 point
decrease was observed in the CNS toxicity score (adjusted
p = 0.038). Likewise, a trend was observed for the
kynurenine/tryptophan ratio, such that for every 1 μmol/ Ta
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mmol increase observed in the kynurenine/tryptophan ratio, a
0.1 point decrease was observed in the CNS toxicity score
(adjusted p = 0.054).

Conclusions

In this study, virologically suppressed PLWH experiencing
ongoing CNS toxicity with efavirenz were switched to
dolutegravir, resulting in significant improvements in
CNS adverse events. Following switch, a significant in-
crease was observed in plasma kynurenine concentrations
and this change was negatively correlated with the reduc-
tion in CNS toxicities.

The improvements in clinical parameters are expected.
Several studies have demonstrated similar results when
switching from efavirenz to other antiretroviral agents, such
as etravirine, raltegravir and rilpivirine (Waters et al. 2011;
Yapa et al. n.d.; Rowlands et al. n.d.). However, the increases
in plasma kynurenine concentrations and the kynurenine/
tryptophan ratio were surprising. Previous studies have dem-
onstrated that kynurenine/tryptophan ratios decline following
initiation of ART due to decreases in immune activation
resulting from suppression of HIV-1-RNA (Zangerle et al.
2002; Byakwaga et al. 2014; Chen et al. 2014). In this study,
neopterin was selected as a marker of immune activation
based on its correlation with IDO activity (Fuchs et al.
1991). The lack of correlation between neopterin and
kynurenine concentrations observed is consistent with the hy-
pothesis that increases in kynurenine concentrations may be
due to changes in hepatic tryptophan metabolism rather than
immune-driven IDO activity. However, we only have one
marker of immune activation (neopterin) and, therefore, can-
not validate this hypothesis by assessing other markers of
inflammation. Efavirenz is a potent inhibitor and inducer of
cytochrome P450 enzymes in the liver (McDonagh et al.
2015). Unpublished data by Zheve showed that efavirenz in-
hibits TDO activity in the liver cells of non-HIV-infected rats

(Zheve 2007). If this effect translates to human subjects, then
removal of efavirenz would result in an increase in TDO ac-
tivity and an increase in kynurenine production, as we ob-
served. Whilst this is a plausible explanation, we cannot ex-
clude other immunologic or virologic factors that may have
influenced tryptophan metabolism and kynurenine production
and remain undetected in our study.

The results of the mixed model analyses suggest that the
improvements in CNS toxicity scores are associated with the
increases in kynurenine concentrations. Kynurenic acid, a
downstream catabolite of kynurenine, is known to be neuro-
protective due to its ability to block excitotoxic neuronal dam-
age (Foster et al. 1984; Andine et al. 1988) and has been
shown to be elevated in the brains of PLWH (Baran et al.
2000). Whilst we did not measure changes in this compound,
it is interesting to speculate that increases in kynurenic acid
concentration or activity following the removal of efavirenz
could be attenuating neuronal damage and contributing to the
improvements in CNS toxicity. It is important to note that
other mechanisms could also be contributing. For example,
the direct neurotoxic effects of the 8-hydroxy-efavirenz me-
tabolite were not measured in this study and it is possible that
they may be confounding our observations. Our data should
be interpreted with caution.

There are some important limitations to our study. Firstly,
we only measured tryptophan and kynurenine concentrations
in plasma. Cerebrospinal fluid analysis would be useful to
help determine whether there are similar changes occurring
in the CNS compartment. In addition to this, analysis of other
kynurenine pathway catabolites, such as kynurenic acid
and quinolinic acid, as well as additional markers of im-
mune activation, would be useful to help explain our ob-
servations. Measurement of serotonin concentrations,
which are known to be lower in the blood and cerebrospi-
nal fluid of PLWH, would also be helpful (Launay et al.
1988; Larsson et al. 1989).

Another limitation is the open-label nature of the study and
the subjective nature of the CNS toxicity scoring question-
naire, which may have introduced bias.

Given that most of our participants were white males,
these findings may not be extrapolatable to other ethnici-
ties or females. Differences in TDO activity have been
reported in men and women of various ethnicities
(Badawy and Dougherty 2016). There are six reported
IDO-1 genetic transcript variants, the effects of which
are currently unknown (Murray 2007).

Lastly, we did not assess the potential contribution of dietary
differences to tryptophan concentration (Strasser et al. 2016).

In summary, switching from efavirenz to dolutegravir re-
sulted in changes in tryptophan metabolism and improve-
ments in measures of CNS toxicity. Future studies to confirm
and expand on our observations and elucidate the underlying
pathogenic mechanisms are warranted.

Table 2 Linear mixed model results for KYN and KYN/TRP ratio and
CNS toxicity from baseline to week 12

Parameter Estimate (95% CI) Adjusted
P value

Model 1: CNS toxicity and KYN

Mean CNS toxicity score 10.4 (7.0 to 13.9) < 0.001

KYN, μmol/L − 1.7 (− 3.1 to − 0.3) 0.038

Model 2: CNS toxicity and
KYN/TRP ratio

Mean CNS toxicity score 10.4 (6.8 to 14.1) < 0.001

KYN/TRP ratio, μmol/mmol − 0.1 (− 0.2 to − 0.0) 0.054

TRP tryptophan, KYN kynurenine, CNS central nervous system, CI con-
fidence interval
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