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Objective: To determine the changes due to therapeutic hypothermia (TH) exposure

in the strength of association between traditional clinical and biochemical indicators of

severity of neonatal hypoxic-ischemic encephalopathy (HIE) and serum biomarkers. We

hypothesized that culmination of TH changes the strength of the relationships between

traditional indicators of severity of HIE and serum biomarkers.

Methods: This was a single-center observational cohort study of 178 neonates with

HIE treated with TH and followed with serum biomarkers: (i) brain-derived neurotrophic

factor (BDNF) and vascular endothelial growth factor (VEGF) (neurotrophins); (ii) tau and

glial fibrillary acidic protein (GFAP) (neural cell injury); and (iii) interleukin 6 (IL-6), IL-8,

and IL-10 (cytokines), during their first week of life. Adjusted mixed-effect models tested

associations with HIE indicators in relation to TH exposure.

Results: At admission, lower Apgar scores and base excess (BE) and higher lactate

and nucleated red blood cell (NRBC) count correlated with higher Sarnat scores. These

indicators of worse HIE severity, including higher Sarnat score, correlated with lower

VEGF and higher tau, GFAP, and IL-10 levels at different time points. Within the first

24 h of life, patients with a Sarnat score >2 had lower VEGF levels, whereas only those

with score of 3 also had higher GFAP and IL-10 levels. Tau levels increased during TH

in patients with Sarnat score of 3, whereas tau and GFAP increased after TH in those

with scores of 2. After adjustments, lower VEGF levels during TH and higher tau, GFAP,

and IL-10 levels during and after TH were associated with worse Sarnat scores. Tau and

GFAP relationship with Sarnat score became stronger after TH.
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Conclusion: Therapeutic hypothermia exerts an independent modulatory effect in the

relationships between traditional indicators of severity of HIE and serum biomarkers after

adjustments. Thus, the timing of biomarker testing in relation to TH exposure must

be carefully considered if biomarkers are proposed for patient stratification in novel

clinical trials.

Keywords: neonatal encephalopathy, cytokines, neurotrophins, GFAP, tau, Sarnat score

INTRODUCTION

Hypoxic-ischemic (HI) encephalopathy (HIE) is the most
prevalent type of brain injury in full-term neonates and a
main cause of neonatal encephalopathy (NE) (1). Impaired fetal
perfusion results in biochemical changes, such as worsening
acidosis and ultimately HI injury to the brain (1, 2). Hypoxic-
ischemic encephalopathy results from a cascade of excitotoxicity,
oxidative stress, and inflammation, which may persist for weeks
(3–5). The severity and recovery of HI brain injury do not
always align with early assessments using traditional clinical
and biochemical indicators because of lack of sensitivity and
specificity to brain injury. Therapeutic hypothermia (TH), the
only available therapy, reduces death or disability in patients
with moderate HIE (6–9). However, sex and other factors (5, 10–
13) may play a role in the variable post-natal presentation and
response to TH. The lack of specificity of the existing criteria
guiding the initiation of TH offers an unsatisfactory assessment
of severity of brain injury hindering our ability to identify
patients who may benefit of adjuvant therapeutic strategies and
to monitor response to therapy (1, 14). Thus, peripheral blood
biomarkers may improve the assessment provided by traditional
indicators alone.

Brain insults trigger activation of signaling cascades, resulting
in a temporally dynamic “biochemical footprint” detectable in
circulating blood that have the potential to be used as biomarkers.
These biomarkers may improve the ability to grade severity of
injury and guide therapy in several neurological conditions (15–
17). In neonatal HIE, brain-derived neurotrophic factor (BDNF),
glial fibrillary acidic protein (GFAP), and tau have been among
those studied against modified Sarnat scores, as well as brain
magnetic resonance imaging (MRI) and neurodevelopmental
outcomes (18, 19). However, it is unclear how longitudinal
changes in these and other proposed HIE biomarkers relate

to traditional early clinical and biochemical indicators in the
era of TH. Understanding these relationships and how TH

exposure may modulate them will inform the optimal timing

at which proposed biomarkers may indicate the specific type
and severity of HI injury to guide treatment and refine

predictive models.
Here, we aim to study the changes attributable to TH exposure

in the strength of association between traditional clinical and

biochemical indicators of severity of neonatal HIE and serum

biomarkers. These biomarkers included (i) BDNF and vascular

endothelial growth factor (VEGF), neurotrophins essential for
brain development (18, 20, 21); (ii) tau and GFAP, neuronal
(19, 22, 23), and astrocytic (24) cytoskeletal markers linked to

brain cell injury; and (iii) interleukin 6 (IL-6), IL-8, and IL-10,
markers of inflammatory response (18, 20, 21); most of them
studied in association to neonatal HIE previously in smaller
cohorts. We hypothesized that culmination of TH changes the
strength of the relationship between traditional indicators of
severity of HIE and serum biomarkers. Here, we report that (i)
indicators of worse HIE severity, including higher Sarnat score,
correlated with lower VEGF and higher tau, GFAP, and IL-10
levels; and (ii) lower VEGF levels during TH, and higher tau,
GFAP, and IL-10 levels during and after TH, were associated with
worse Sarnat scores with tau and GFAP relationship with Sarnat
score becoming stronger after TH.

METHODS

The study received exempt status from the Johns Hopkins
University (JHU) institutional review board (IRB), until 2017,
when informed consent became required to access medical
records and use discarded blood collected for clinical purposes.
The Neuroscience Intensive Care Nursery program coordinator
(C.P.) identified patients with diagnosis of NE and obtained
agreement by the treating clinical team to allow a member
of the study team to discuss inclusion of the neonate in the
study with the parents. Written consent was obtained from the
parents of the participants after 2017, as required by IRB. The
study Identification of Diagnostic and Prognostic Biomarkers
for Perinatal Hypoxic-Ischemic Brain Injury (BIN study, IRB
NA_00026068) was in compliance with the Health Insurance
Portability and Accountability Act of 1996 (HIPAA).

Patients
Inclusion Criteria
A prospective cohort of 246 neonates (GA≥35 weeks) diagnosed
with NE, who were initiated in whole-body TH within 6 h of life
between April 28, 2009, and November 15, 2019, at a single level
IV neonatal intensive care unit (NICU).

Exclusion Criteria
Forty-five patients were excluded for incomplete clinical data,
off-label use of TH (<35 weeks GA), partial TH course,
non-peripartum events (apparent life-threatening event/brief,
resolved, unexplained event), death for causes other than HIE
(i.e., severe pulmonary hypertension of the newborn), need for
extracorporeal membrane oxygenation, and non-HIE causes of
NE (Figure 1). Of 201 patients, 178 had 7 days of biomarker data.
Diagnosis of HIE was based on the National Institute of Child
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FIGURE 1 | Flowchart of patient allocation.

Health and Human Development (NICHD) Neonatal Research
Network criteria (6).

Whole-Body TH Protocol
Initiation of TH occurred within the first 6 h of life in infants
≥1,800 g birth weight and ≥35 weeks GA with (a) cord or first
hour of life pH≤ 7.0 and/or base excess (BE)≤-16 or (b) cord or
first hour pH > 7.0 but ≤7.15 and/or BE between −10 and −16,
plus evidence of a perinatal adverse event and need for assisted
ventilation or Apgar <5 at 10min of life. Although moderate to
severe encephalopathy is a criterion used to initiate TH, ∼20%
of patients included in the analysis had a modified Sarnat score
(25, 26) of 1 due to concerns that the neurological examination
may worsen after 6 h of life (27–29), particularly in those with
severe metabolic acidosis (30, 31). In our cohort, 83% of patients
with Sarnat score of 1 who received TH had severe metabolic

acidosis. The inclusion of these patients in the analysis better
reflects the current state of practice.

Clinical Data
Clinical data were obtained from electronic charts (Table 1).
Race was assigned based on maternal race. Absent/reversed end-
diastolic flow in umbilical artery was determined by Doppler
scan of the umbilical artery. Placenta pathology was used to
assign histological chorioamnionitis or funisitis. Assignment of
sex of the newborn, confirmation of GA, and Apgar scores
were determined by the NICU team during initial assessment.
Highest modified Sarnat score during the first 6 h of admission
to the NICU was determined by the study team (R.C.V., C.P.,
and F.J.N.) (25, 26). Most deaths occurring in the cohort were
secondary to withdrawal of care in conjunction with the family
after discussion about clinical prognosis.
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TABLE 1 | Summary of prenatal, perinatal, and postnatal patient variables.

PRENATAL All HIE patients With biomarker data Without biomarker data p-value

(n = 201) (n = 178) (n = 23)

Maternal age, median (IQR), n 29 (25, 33), 201 29 (25, 33), 178 29.0 (24.0, 32.0), 23 0.80a

Gravida, median (IQR), n 2 (1,3), 201 2 (1,3), 178 2.0 (1.0, 5.0), 23 0.50a

Race, black, n (%) 76 (38.0%) 68 (38.4%) 8 (34.8%) 0.86b

GA (weeks), median (IQR), n 39.1 (37.7, 40.1), 201 39.1 (37.6, 40.1), 178 39.3 (37.9, 40.1), 23 0.81a

Sex, Male, n (%) 115 (57.2%) 100 (56.2%) 15 (65.2%) 0.41b

Preeclampsia, n (%) 24 (11.9%) 19 (10.7%) 5 (21.7%) 0.12b

IUGR, n (%) 8 (4.0%) 6 (3.4%) 2 (8.7%) 0.22b

Oligohydramnios, n (%) 5 (2.5%) 4 (2.2%) 1 (4.3%) 0.54b

Tobacco exposure, n (%) 9 (4.5%) 8 (4.5%) 1 (4.3%) 0.97b

Opioid exposure, n (%) 4 (2.0%) 2 (1.1%) 2 (8.7%) 0.02b

Cocaine exposure, n (%) 2 (1.0%) 2 (1.1%) 0 (0.0%) 0.61b

PERINATAL

BW (g), median (IQR), n 3,255 (2,900, 3,680), 201 3,235 (2,885, 3,670),178 3,371 (2,960, 4,085), 23 0.26a

Delivery, C/S, n (%) 137 (68.2%) 120 (67.4%) 17 (73.9%) 0.81b

Emergent C/S, n (%) 119 (60.1%) 105 (60.0%) 14 (60.9%) 0.94b

NRFHT, n (%) 120 (59.7%) 105 (59.0%) 15 (65.2%) 0.57b

Placental abruption, n (%) 35 (17.4%) 31 (17.4%) 4 (17.4%) 1.00b

Clinical chorio, n (%) 23 (11.4%) 22 (12.4%) 1 (4.3%) 0.26b

Chorio (pathology), n (%) 28 (36.0%) 26 (37.0%) 2 (29.0%) 0.65b

Funisitis (pathology), n (%) 14 (18.0%) 12 (17.0%) 2 (22.0%) 0.71b

Labor induction, n (%) 68 (33.8%) 64 (36.0%) 4 (17.4%) 0.08b

Sentinel event, n (%) 80 (39.8%) 71 (39.9%) 9 (39.1%) 0.94b

Meconium-stained AF, n (%) 71 (35.3%) 58 (32.6%) 13 (56.5%) 0.02b

POSTNATAL

Apgar 1m, median (IQR), n 1 (1,2), 191 1 (1,2), 172 1.0 (0.0, 1.0), 19 0.03a

Apgar 5m, median (IQR), n 4 (3,5), 191 4 (3,5), 172 3.0 (0.0, 6.0), 19 0.15a

Apgar 10m, median (IQR), n 6 (4,7), 166 6 (4,7), 148 4.5 (3.0, 7.0), 18 0.43a

Worse pH, median (IQR), n 6.95 (6.85, 7.07), 201 6.95 (6.85, 7.07), 178 6.96 (6.80, 7.04), 23 0.75a

Worse BE, median (IQR), n −17.0 (−22, −13.9), 200 −16.3 (−21, −14), 177 −18.0 (−25.0, −13.0), 23 0.24a

Lactate (mmol/L), median (IQR), n 5.5 (2.6, 9.8), 125 5.1 (2.5, 9.5), 109 7.1 (3.5, 11.0), 16 0.14a

Hct (%), median (IQR), n 46 (40.8, 50.8), 201 45.6 (40.6, 51.0), 178 46.4 (42.8, 49.1), 23 0.63a

NRBCs/mm3, median (IQR), n 1,650 (430, 4,350), 199 1,580 (420, 4,180), 176 2,460 (1,270, 6,780), 23 0.24a

Sarnat score, median (IQR), n 2 (2,2), 201 2 (2,2), 178 2.0 (2.0, 3.0), 23 0.06a

PI score, median (IQR), n 6 (5,7), 201 6 (5,7), 178 6.0 (5.0, 9.0), 23 0.38a

Seizures, n (%) 62 (30.8%) 52 (29.2%) 10 (43.5%) 0.16b

Abnormal MRI, n (%) 66 (33.0%) 56 (31.6%) 10 (43.5%) 0.26b

Neonatal infection, n (%) 39 (19.2%) 36 (20.0%) 3 (13.0%) 0.43b

Death, n (%) 10 (5.0%) 6 (3.4%) 4 (17.4%) <0.01b

AF, amnionitic fluid; BE, base excess; BW, birth weight; C/S, cesarean section; Chorio, chorioamnionitis; GA, gestational age; IQR, interquartile range; Hct, hematocrit; IUGR, in utero

growth restriction; MRI, magnetic resonance imaging; NRBCs, nucleated red blood cells; NRFHT, non-reassuring fetal heart tracing, PI score, Perinatal Insult score.
aWilcoxon rank-sum.
bPearson χ2.

Bold represent p-value < 0.05.

Laboratory Data
Results of the blood gas with lactate (mmol/L) within 1 h
of life were adjusted to core body temperature. Lowest
(worse) pH and BE measures were used for analysis,
as that better represents clinical practice. Biochemistry
and hematology data are reported in Table 1. Clinical
seizures were confirmed during the first 72 h of life using

continuous full-montage video electroencephalogram
with interpretation by pediatric neurology. Infection was
assigned by clinical or histopathological chorioamnionitis
or by proven neonatal sepsis confirmed by positive
blood, cerebrospinal fluid, or urine culture with need
for >72 h of antibiotics as a surrogate of clinically
significant infection.

Frontiers in Neurology | www.frontiersin.org 4 November 2021 | Volume 12 | Article 748150

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chavez-Valdez et al. Cooling Modulates Hypoxic-Ischemic Encephalopathy Biomarkers

Perinatal Insult Score
The Perinatal Insult (PI) score was created by assigning a
hierarchical value to the NICHD criteria used to decide initiation
of TH to treat HIE. The PI score ranges from 0 to 9 and is
calculated by assigning points for severity of metabolic acidosis,
need for emergency delivery, 10-min Apgar score <5, assisted
ventilation at 10min of life, and Sarnat scores as previously
described (32, 33). This score is linked with greater regional
injury on brain MRI (32). For our study, the PI score was used
as a global assessment of severity of perinatal HI insult based
on the NICHD criteria for TH initiation and to determine its
relationship with serum biomarkers.

Biomarker Measurements
The set of serum biomarkers reported here was chosen from
those linked to brain injury in adults and enough supporting
evidence in the pediatric population as specified in the Request
for Applications (RFA) from the National Institutes of Health,
funding the study. Of 201 patients included in the study, 178
had serum clinical remnants collected at admission (prior to
TH initiation) and daily from DOL 0 to 6. All serum samples
were aliquoted and stored at −80◦C. Each aliquot was exposed
to only 0–1 thaw/freeze cycle prior to assaying. A custom
multiplex enzyme-linked immunosorbent assay (ELISA) was
used to measure BDNF, VEGF, IL-6, IL-8, and IL-10 in 5 µl of
serum or GFAP in 12 µl of serum in 96-well plate formats [Meso
Scale Discovery (MSD), Rockville, MD] as previously described
(34). The interassay coefficient of variation for BDNF, VEGF, IL-
6, IL-8, IL-10, and GFAP assays were 3.4, 5.9, 5.1, 6.7, 5.6, and
10.9%, respectively. Tau was measured in 5 µl of serum using
a commercial ELISA (N451LAA-1, MSD) with an interassay
coefficient of variation of 9.0%.

Statistical Analysis
Data were not normally distributed; thus, results are summarized
as median and interquartile range (IQR) for continuous
variables. Non-parametric statistical methods were applied to
analyze continuous variables including Mann–Whitney U or
Kruskal–Wallis (KW) with Dunn post-hoc tests and Spearman
ρ correlations. χ

2 was applied for categorical variables.
Longitudinal biomarker trajectories were analyzed using linear
trend of medians (35). Mixed-effect model adjusted for sex to
assess the relationships between single indicators of HIE severity
(independent variable) and serum biomarkers evaluated for
repeatedmeasurements and stratified by time relative to exposure
to TH was applied. Additional adjusting for sex and neonatal
infection was also modeled. p ≤ 0.05 was considered significant.
Statistical analysis was performed usingGraphPad Prism [version
8.0.0 (131) 2018; GraphPad Software, San Diego, CA] and Stata
(version 15, StataCorp LLC, College Station, TX).

RESULTS

Demographic, Clinical, and Biochemical
Variables
Of 246 infants diagnosed with NE and treated with TH during the
study period, 45 met the exclusion criteria as detailed in Figure 1,

resulting in 201 patients diagnosed with HIE. Before exclusions,
16 deaths occurred in our cohort (6.5%; 16/246), with 2 deaths
not linked to HIE and 4 meeting other exclusion criteria. As a
result, the mortality rate for our cohort after exclusions was 5%
(10/201, Table 1). Of the 201 infants with HIE treated with TH
included in the analysis, 23 did not have serial serum samples
for biomarker analysis (Figure 1). Patients without available
biomarker data (n = 23) had a higher incidence of meconium-
stained amniotic fluid (p = 0.02), lower Apgar score at 1min of
life (p= 0.03), and higher death rate (p< 0.01) than patients with
biomarkers available (Table 1).

Longitudinal Changes in Serum
Biomarkers
The median (IQR) number of serum samples per patient for
biomarker analysis was 5 (3, 7). This resulted in 848 samples
analyzed from 178 patients (Table 2). Serum BDNF levels
decreased after DOL 0 (first 24 h of life) and recovered to levels
at and above admission by DOL 5 (p = 0.02, Table 2). Vascular
endothelial growth factor levels tended to be lower at admission
(before initiation of TH) and recover after 24 h (p = 0.19,
Table 2). Both tau and GFAP levels tended to peak by DOL 5–
6 (p = 0.19 and p = 0.06, respectively; Table 2). Cytokine levels
peaked within the first 24 h of life and decreased thereafter (p <

0.001 in all cases, Table 2).

Correlation Between Clinical Indicators of
HIE Severity and Serum Biomarkers
At admission to the NICU, lower 5-min Apgar scores and BE
and higher lactate and nucleated red blood cells (NRBCs), all
indicators of worse HI insult, correlated with higher Sarnat scores
(Table 3). Among the early non-brain-specific indicators of HI
insult, higher NRBCs (a marker of prolonged partial in utero
hypoxia) correlated with lower BDNF and VEGF and higher tau,
and cytokines, but not GFAP, whereas higher lactate (a sub-acute
HI marker) mostly correlated with lower VEGF and higher tau,
GFAP, and cytokines, but not BDNF, during the first week of
life (Tables 4A,B). All other early non-brain-specific indicators
of HI insult severity (5-min Apgar score, worse pH, and worse
BE) mostly correlated with tau (throughout the first week of
life) and IL-10 (during the first 72 h of life), explaining the
correlation between tau and IL-10 with the PI score, a global
assessment of perinatal insult (Tables 4A,B). Higher Sarnat score
(worse encephalopathy) correlated with lower VEGF during the
first 24 h of life (DOL 0) and higher tau, GFAP, and IL-10
throughout the first week of life (Tables 4A,B). The integration of
the proinflammatory (IL-6 and IL-8) and the anti-inflammatory
(IL-10) responses in a patient-by-patient basis was suggested
by the lost correlation between the (IL-6 ∗ IL-8)/IL-10 index
and most clinical and biochemical indicators of systemic HI
severity (i.e., BE, NRBCs, and lactate). Conversely, the persistent
correlation between Sarnat scores and this index suggested
a disproportionate IL-10 response with worse encephalopathy
(Table 4B).
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TABLE 2 | Longitudinal biomarker levels.

DOL Median (IQR) N DOL Median (IQR) N

B
D
N
F
(p
g
/m

l)

0 (Admission) 1,365.3 (630.9, 2,318.5) 85

p
=

0
.0
2

IL
-6

(p
g
/m

l)

0 (Admission) 16.4 (7.54, 54.5) 85

p
<

0
.0
0
1

0 1,308.2 (799.2, 1,883.1) 125 0 21.8 (11.3, 49.5) 126

1 1,027.8 (600.4, 1,499.5) 131 1 16.0 (10.1, 30.1) 131

2 798.2 (513.6, 1,431.9) 124 2 9.15 (5.63, 16.5) 125

3 924.8 (546.2, 1,509.4) 124 3 5.09 (3.23, 10.3) 124

4 1,018.5 (662.9, 1,657.6) 85 4 3.35 (1.68, 5.58) 86

5 1,360.7 (873.3, 2,177.5) 78 5 2.96 (1.61, 6.28) 79

6 1,529.7 (803.6, 2,808.2) 66 6 3.05 (1.59, 8.60) 66

V
E
G
F
(p
g
/m

l)

0 (Admission) 36.2 (0.164, 165.4) 83

p
=

0
.1
9

IL
-8

(p
g
/m

l)

0 (Admission) 83.1 (37.7, 248.8) 80

p
<

0
.0
0
1

0 114.6 (36.1, 214.7) 123 0 102.9 (45, 211.4) 109

1 130.5 (71.9, 254.9) 130 1 72.9 (47.8, 155.3) 114

2 135.9 (78.2, 232.9) 124 2 60.3 (39.9, 96.5) 104

3 141.6 (79.6, 229.7) 123 3 53.2 (35.1, 85.1) 107

4 151.5 (85.7, 254.8) 86 4 55.3 (33.6, 94.1) 76

5 138.0 (77.5, 232.0) 79 5 45.7 (32.4, 103) 70

6 133.7 (80.4, 234.3) 66 6 51.5 (29.6, 126.1) 60

Ta
u
(p
g
/m

l)

0 (Admission) 185.3 (79.9, 386.8) 85

p
=

0
.1
9

IL
-1
0
(p
g
/m

l)

0 (Admission) 8.30 (2.67, 43.18) 80

p
<

0
.0
0
1

0 193.5 (84.3, 429.5) 126 0 2.72 (1.16, 8.38) 109

1 179.9 (62.7, 452.8) 128 1 1.28 (0.56, 2.96) 114

2 178.0 (81.4, 536.6) 121 2 0.763 (0.29, 1.27) 104

3 236.7 (112.3, 566.8) 128 3 0.456 (0.06, 0.90) 107

4 267.9 (123.2, 598.8) 86 4 0.260 (0.06, 0.70) 76

5 300.7 (147.6, 790.2) 74 5 0.312 (0.06, 0.97) 70

6 206.5 (95.9, 482.7) 65 6 0.518 (0.06, 1.05) 60

G
F
A
P
(n
g
/m

l)

0 (Admission) 0.203 (0.082, 1.079) 89

p
=

0
.0
6

(I
L
-6
*I
L
-8

)
/I
L
-1
0
In
d
e
x 0 (Admission) 177.4 (64.3, 602.7) 80

p
=

0
.9
9

0 0.302 (0.071, 1.33) 130 0 984.9 (354.4, 2,459.3) 109

1 0.287 (0.072, 1.46) 134 1 1,078.9 (437.9, 5,578.7) 114

2 0.353 (0.092, 1.61) 130 2 872.0 (308.3, 4,264.2) 104

3 0.371 (0.105, 1.55) 133 3 1,183.7 (322.1, 3,437) 107

4 0.581 (0.111, 2.00) 91 4 860.8 (288.7, 3,028.3) 76

5 0.769 (0.112, 2.58) 78 5 771.1 (190.9, 3,258.4) 70

6 0.712 (0.071, 2.20) 66 6 771 (157.7, 2,392.6) 60

Analysis by linear trend of medians for the overall trajectory. Machado and Santos Silva (35). BDNF, brain-derived neurotrophic factor; DOL, day of life; GFAP, glial fibrillary acidic protein;

IQR, interquartile range; IL, interleukin; VEGF, vascular endothelial growth factor.

Bold represent p-values < 0.05.

Stratification of Biomarker Trajectories by
Sarnat Score
Sarnat scores were inversely correlated with VEGF and directly
with tau, GFAP, and IL-10 (Tables 4A,B). Patients with Sarnat
scores of 2 and 3 had a VEGF nadir soon after admission,
which recovered after 24 h of life [p < 0.001 (Sarnat 2), p =

0.008 (Sarnat 3); Figure 2A]. Unlike VEGF, GFAP discriminated
between patients with Sarnat scores of 2 and 3. Only patients
with Sarnat scores of 3 had higher GFAP levels since admission
to the NICU (p = 0.03 vs. Sarnat 1; p = 0.02 vs. Sarnat 2;
KW p = 0.04) and throughout the first 72 h of life (p = 0.003,
Figure 2C). Tau, the other marker of neural cell injury, only
began to increase after the first 24 h of life (DOL 1) in patients
with Sarnat score of 3, reaching levels fourfold to sixfold higher

than those in patients with lower scores by 48 to 72 h of life

(DOL 2) (p < 0.001 vs. either Sarnat 1 or Sarnat 2; Figure 2B).

Conversely, patients with score of 2 only began to increase their

tau and GFAP levels around the time of TH completion (72 h
of life, DOL 2), resulting in approximately three-fold [p = 0.01
(tau)] and approximately six-fold [p = 0.07 (GFAP)] higher

levels than those in patients with scores of 1 [p = 0.006 (tau)
and 0.004 (GFAP)] by DOL 5 (Figures 2B,C). At admission,

patients with Sarnat scores of 3 also tended to have higher IL-10

levels than those with Sarnat scores of 1 (p = 0.05; Figure 2D).
Although IL-10 levels decreased after the first 24 h of life (p <

0.001 for all Sarnat groups), they remained relatively elevated
in patients with Sarnat scores of 2 and 3, and by DOL 2 (48–
72 h of life) prior to completion of TH, IL-10 levels were more
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TABLE 3 | Correlation between indicators of HI severity [n = 178 (subset with biomarker data)].

ρ p-value n ρ p-value n ρ p-value n ρ p-value n ρ p-value n

Apgar 5 min Apgar 5 min

(n = 172)

Worse pH −0.018 0.810 172 • Worse pH

(n = 178)

Worse BE 0.161 0.036 171 0.527 <0.001 177 Worse BE

• (n = 177)

NRBCs −0.129 0.093 170 −0.113 0.134 176 −0.215 0.004 175 • NRBCs

• (n = 176)

Lactate −0.385 <0.001 104 −0.225 0.019 109 −0.374 <0.001 108 0.444 <0.001 108 • Lactate

• (n = 109)

Sarnat score −0.440 <0.001 172 −0.098 0.195 178 −0.124 0.100 177 0.147 0.051 176 0.326 0.001 109

Analysis by Spearman ρ correlations. BE, base excess; NRBCs, nucleated red blood cells.

Bold represent p-values < 0.10.

than twice the levels in patients with Sarnat of 1 (p = 0.009;
Figure 2D).

Adjusted Relationship Between Severity of
HI Insult and Serum Biomarkers
After adjustment for sex [Figures 3A(a−f),B;
Supplementary Table 1] and infection (Table 5;
Supplementary Table 2) and stratification by TH (DOL 0–
2) and post-TH (DOL 4–6) periods, most relationships between
indicators of HI insult severity and serum biomarkers persisted
as described above. Tau and GFAP had the strongest association
with 5-min Apgar score [Figure 3A(a)], worse BE [Figure 3A(c)],
and lactate [Figure 3A(e)], but lacked association with NRBCs
[Figure 3A(d)], during and after TH. Lower VEGF during TH
and higher tau, GFAP, and IL-10 during and after TH were
most strongly associated with worse Sarnat score [Figure 3B].
Some of these relationships changed during and after TH.
For example, lower 5-min Apgar scores were associated with
higher GFAP, but this association was 75% stronger during TH
than after TH [Figure 3A(a)], despite higher GFAP levels after
TH (Table 2). In addition, the association between lower BE
and higher IL-10 levels was six-fold stronger during TH than
after TH [Figure 3A(c)]. Conversely, the strength of association
between lower 5-min Apgar and higher IL-8 [Figure 3A(a)]
and higher NRBCs and higher IL-6 [Figure 3A(d)] became
stronger after TH. Lastly, the associations between tau and GFAP
with Sarnat scores became 50% stronger after TH [Figure 3B].
Adjustment for infection did not change most relationships
between indicators of severity of HI insult and cytokines
(Supplementary Table 2).

DISCUSSION

The strength of the relationships between serum biomarkers and
clinical indicators of HIE severity is modulated by TH. Here,
we show that after adjusting for sex and infection, lower BE
and higher lactate (biochemical markers of decreased perfusion),
and worse Sarnat scores (functional outcome) all relate to lower

VEGF and higher tau, GFAP, and IL-10. Within the first 24 h of
life, patients with Sarnat scores of 2–3 have lower VEGF, whereas
those with scores of 3 also have high GFAP and IL-10. Thus,
measuring VEGF, GFAP, and IL-10 soon after admission to the
NICU may assist to stratify more accurately moderate–severe HI
brain injury. During the next 72 h (TH period), tau levels begin
to increase. However, while in patients with a Sarnat score of 3
the increase in tau begins on DOL 0–1, in those with a score of 2,
this increase is delayed until DOL 2–3. By 72 h after completion
of TH (DOL 5), patients with Sarnat scores of 2 reach tau, GFAP,
and IL-10 levels similar to those of patients with scores of 3.
The increase in tau and GFAP levels after TH may reflect the
role of TH in delaying activation of injurious pathways, which
are the target of multiple adjuvant therapies under study (36–
38). In adjusted models, the associations between Sarnat scores
with tau and GFAP become stronger after TH. Whether these
associations represent persistent or worsening HI brain injury
after completion of TH requires further investigation. In light of
our data, we propose a screening schedule of HIE patients using
VEGF, tau, GFAP, and IL-10 at specific time points related to TH
(Figure 3C).

Hypoxic-ischemic encephalopathy severity is traditionally
assessed by a combination of clinical and biochemical indicators,
which, despite their lack of brain specificity, are used to guide
TH initiation. Although Apgar and Sarnat scores are subjective
(25, 39), the Sarnat score remains among the most brain-specific
indicator available to assess clinically HI injury (40). Other
indicators available at admission to the NICU, such as pH, BE,
NRBCs, and lactate levels, are systemic markers of decreased
fetal perfusion and are not brain-specific. Scores providing a
global assessment of severity of perinatal insult, such the PI score
(32), lack sensitivity and specificity to HI brain injury; whereas
cerebral oximetry and electroencephalographic activity, which
are more specific indicators of brain injury, are not broadly used
due to the expertise required for their interpretation (41, 42).
Thus, circulating biomarkers for HI brain injury may improve
the ability of clinical and biochemical indicators alone to assess
severity of injury. However, a better understanding of how TH
affects their relationships is needed.
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TABLE 4A | Correlation between indicators of HI severity and BDNF, VEGF, tau, and GFAP during the first week of life.

Apgar 5min Worse pH Worse BE NRBCs Lactate Sarnat score PI score

(n = 172) (n = 178) (n = 177) (n = 176) (n = 109) (n = 178) (n = 178)

DOL ρ ρ ρ ρ Rho ρ ρ

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

BDNF 0 (A) −0.001 (0.99) −0.04 (0.72) 0.02 (0.85) −0.23 (0.03) −0.11 (0.41) 0.02 (0.87) 0.04 (0.72)

0 0.10 (0.29) 0.20 (0.03) 0.15 (0.10) −0.14 (0.14) −0.14 (0.22) −0.07 (0.44) −0.16 (0.08)

1 0.01 (0.95) 0.17 (0.06) 0.12 (0.16) −0.28 (<0.01) −0.08 (0.47) −0.07 (0.44) −0.11 (0.23)

2 −0.07 (0.45) 0.09 (0.35) −0.06 (0.55) −0.05 (0.59) 0.12 (0.28) −0.003 (0.97) 0.06 (0.51)

3 −0.07 (0.46) 0.11 (0.24) 0.03 (0.78) −0.18 (0.04) −0.14 (0.21) −0.02 (0.87) −0.09 (0.30)

4 −0.08 (0.47) 0.23 (0.04) 0.11 (0.33) −0.35 (<0.01) −0.13 (0.35) −0.01 (0.92) −0.11 (0.34)

5 −0.08 (0.48) −0.05 (0.66) 0.08 (0.50) −0.40 (<0.01) −0.15 (0.30) 0.15 (0.21) 0.04 (0.70)

6 0.001 (0.99) 0.03 (0.79) −0.11 (0.40) −0.29 (0.02) −0.28 (0.08) 0.02 (0.86) 0.01 (0.96)

VEGF 0 (A) 0.08 (0.50) 0.15 (0.17) 0.18 (0.10) −0.24 (0.03) −0.19 (0.13) −0.19 (0.08) −0.19 (0.09)

0 0.01 (0.89) 0.21 (0.02) 0.34 (<0.01) −0.23 (0.01) −0.33 (<0.01) −0.16 (0.08) −0.17 (0.06)

1 0.20 (0.03) 0.11 (0.22) 0.29 (<0.01) −0.36 (<0.01) −0.38 (<0.01) −0.19 (0.04) −0.12 (0.18)

2 −0.06 (0.52) −0.06 (0.50) 0.15 (0.09) −0.27 (<0.01) −0.14 (0.21) −0.06 (0.54) 0.01 (0.94)

3 −0.07 (0.45) 0.13 (0.17) 0.19 (0.03) −0.35 (<0.01) −0.40 (<0.01) 0.03 (0.78) −0.06 (0.53)

4 0.13 (0.26) 0.16 (0.14) 0.18 (0.09) −0.48 (<0.01) −0.45 (<0.01) −0.23 (0.04) −0.13 (0.22)

5 −0.14 (0.22) 0.06 (0.60) 0.29 (0.01) −0.45 (<0.01) −0.28 (0.04) −0.04 (0.75) −0.03 (0.80)

6 0.09 (0.48) −0.10 (0.41) −0.03 (0.81) −0.32 (<0.01) −0.32 (0.04) −0.09 (0.46) −0.01 (0.94)

Tau 0 (A) −0.10 (0.40) −0.19 (0.08) −0.16 (0.14) 0.22 (0.04) 0.27 (0.03) 0.04 (0.74) 0.02 (0.86)

0 −0.18 (0.05) −0.001 (0.99) −0.06 (0.54) 0.21 (0.02) 0.43 (<0.01) 0.19 (0.04) 0.03 (0.76)

1 −0.27 (<0.01) −0.20 (0.03) −0.24 (<0.01) 0.35 (<0.01) 0.41 (<0.01) 0.27 (<0.01) 0.26 (<0.01)

2 −0.24 (<0.01) −0.10 (0.29) −0.20 (0.03) 0.23 (0.01) 0.22 (0.05) 0.35 (<0.01) 0.14 (0.14)

3 −0.22 (0.02) −0.22 (0.01) −0.32 (<0.01) 0.21 (0.02) 0.19 (0.08) 0.31 (<0.01) 0.21 (0.02)

4 0.07 (0.52) −0.24 (0.02) −0.19 (0.09) 0.09 (0.40) 0.29 (0.03) 0.23 (0.04) 0.18 (0.10)

5 −0.12 (0.34) −0.04 (0.76) −0.15 (0.19) 0.16 (0.18) 0.28 (0.04) 0.36 (<0.01) 0.14 (0.24)

6 −0.31 (0.01) −0.21 (0.09) −0.23 (0.07) −0.10 (0.46) 0.15 (0.34) 0.38 (<0.01) 0.27 (0.03)

GFAP 0 (A) −0.36 (<0.01) 0.09 (0.40) −0.001(0.99) 0.10 (0.37) 0.33 (<0.01) 0.20 (0.06) 0.02 (0.88)

0 −0.10 (0.29) −0.02 (0.84) −0.12 (0.18) 0.06 (0.47) 0.28 (0.01) 0.11 (0.23) 0.06 (0.49)

1 −0.30 (<0.01) −0.11 (0.21) −0.16 (0.07) 0.10 (0.27) 0.34 (<0.01) 0.22 (0.01) 0.18 (0.04)

2 −0.22 (0.02) −0.05 (0.57) −0.09 (0.31) 0.06 (0.52) 0.21 (0.06) 0.22 (0.01) 0.10 (0.28)

3 −0.14 (0.12) −0.13 (0.14) −0.14 (<0.10) 0.09 (0.30) 0.16 (0.13) 0.21 (0.02) 0.16 (0.07)

4 0.07 (0.55) −0.18 (0.09) −0.21 (0.05) 0.02 (0.88) 0.28 (0.03) 0.16 (0.13) 0.15 (0.17)

5 −0.12 (0.34) −0.13 (0.25) −0.12 (0.28) 0.004 (0.98) 0.36 (<0.01) 0.38 (<0.01) 0.24 (0.04)

6 −0.27 (0.04) −0.08 (0.52) −0.18 (0.15) −0.20 (0.11) 0.26 (0.10) 0.21 (0.10) 0.14 (0.27)

Analysis by Spearman ρ correlation. A, admission; BDNF, brain-derived neurotrophic factor; BE, base excess; DOL, day of life; GFAP, glial fibrillary acidic protein; NRBCs, nucleated red

blood cells; PI score, Perinatal Insult score; VEGF, vascular endothelial growth factor.

Bold represent p-values < 0.10.

Among the molecules measured for this study, tau and GFAP
are the most nervous system-specific proteins, which get spilled
to the blood stream upon injury of neurons and astrocytes,
respectively (34, 43). Because of their different cellular origins,
it is not surprising that they have different temporal trajectories.
Glial fibrillary acidic protein can discriminate Sarnat 3 from
lower scores at admission to the NICU, whereas tau levels peak
until the end of TH in neonates with Sarnat 3 and after TH in
those with score of 2. Glial fibrillary acidic protein levels did not
discriminate between Sarnat 1 and 2 at any time point. This may
be due to the sensitivity of the study to detect differences, as only
∼20% of the cohort had a Sarnat of 1, or may reflect similar

levels of astrocyte injury in these two groups. When adjusted
for sex and infection, worse Sarnat score was associated with
higher tau and GFAP levels, more so after TH. Whether patients
with more severe HI brain insults develop worsening injury
with increasing tau and GFAP levels after completion of TH
needs further investigation. Our results agree with other studies
that have confirmed the direct association between Sarnat scores
and circulating tau (19, 22, 23, 34, 44) and GFAP (21, 24, 34).
However, our study is the first to address the potential role of
TH/rewarming in the temporal trajectory of these biomarkers.

Vascular endothelial growth factor supports the blood–
brain barrier (BBB) after neonatal HI brain injury (45), but
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TABLE 4B | Correlation between indicators of HI severity and cytokines during the first week of life.

Apgar 5min Worse pH Worse BE NRBCs Lactate Sarnat score PI score

(n = 172) (n = 178) (n = 177) (n = 176) (n = 109) (n = 178) (n = 178)

DOL ρ ρ ρ ρ Rho ρ ρ

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

IL-6 0 (A) −0.19 (0.09) −0.11 (0.31) −0.18 (0.11) 0.40 (<0.01) 0.25 (0.05) 0.21 (0.06) 0.17 (0.13)

0 −0.15 (0.11) −0.11 (0.24) −0.09 (0.35) 0.17 (0.06) 0.07 (0.53) 0.06 (0.53) 0.04 (0.69)

1 0.10 (0.28) −0.18 (0.05) −0.19 (0.03) 0.06 (0.54) 0.08 (0.46) −0.01 (0.95) 0.09 (0.34)

2 0.01 (0.88) −0.15 (0.10) −0.16 (0.08) 0.28 (<0.01) 0.19 (0.09) 0.03 (0.76) 0.03 (0.74)

3 0.001 (0.99) −0.25 (<0.01) −0.12 (0.19) 0.18 (0.05) 0.10 (0.37) 0.07 (0.47) 0.10 (0.27)

4 −0.02 (0.86) −0.15 (0.17) −0.05 (0.63) 0.32 (<0.01) 0.35 (<0.01) −0.16 (0.14) 0.09 (0.42)

5 0.01 (0.91) −0.07 (0.56) −0.03 (0.80) 0.40 (<0.01) 0.24 (0.08) −0.01 (0.95) −0.01 (0.96)

6 −0.05 (0.73) −0.16 (0.21) −0.03 (0.81) 0.23 (0.07) 0.26 (0.11) 0.12 (0.36) 0.15 (0.25)

IL−8 0 (A) −0.22 (0.06) −0.03 (0.81) −0.26 (0.02) 0.52 (<0.01) 0.34 (<0.01) 0.15 (0.18) 0.14 (0.21)

0 −0.23 (0.02) −0.07 (0.49) −0.18 (0.07) 0.38 (<0.01) 0.26 (0.03) 0.22 (0.03) 0.22 (0.02)

1 0.04 (0.71) −0.21 (0.03) −0.13 (0.19) 0.24 (0.01) 0.33 (<0.01) 0.05 (0.62) 0.09 (0.35)

2 −0.11 (0.29) −0.11 (0.27) −0.11 (0.29) 0.26 (<0.01) 0.33 (<0.01) −0.03 (0.76) 0.01 (0.92)

3 −0.01 (0.92) −0.05 (0.60) −0.02 (0.82) 0.04 (0.67) 0.14 (0.22) −0.05 (0.63) −0.03 (0.79)

4 −0.08 (0.50) −0.02 (0.87) 0.09 (0.45) 0.04 (0.72) 0.004 (0.98) −0.17 (0.14) −0.09 (0.45)

5 −0.09 (0.47) −0.07 (0.58) −0.08 (0.50) 0.25 (0.04) 0.35 (0.01) 0.04 (0.76) 0.07 (0.59)

6 −0.30 (0.02) −0.03 (0.81) −0.05 (0.71) 0.11 (0.42) 0.37 (0.02) 0.16 (0.23) 0.11 (0.39)

IL−10 0 (A) −0.14 (0.23) −0.07 (0.55) −0.22 (0.06) 0.51 (<0.01) 0.29 (0.02) 0.23 (0.04) 0.19 (0.10)

0 −0.23 (0.02) −0.03 (0.78) −0.25 (0.01) 0.48 (<0.01) 0.39 (<0.01) 0.25 (0.01) 0.20 (0.04)

1 −0.10 (0.32) −0.10 (0.29) −0.30 (<0.01) 0.34 (<0.01) 0.25 (0.03) 0.19 (0.05) 0.21 (0.03)

2 −0.12 (0.26) −0.01 (0.95) −0.17 (0.10) 0.36 (<0.01) 0.25 (0.04) 0.30 (<0.01) 0.17 (0.09)

3 0.08 (0.41) −0.11 (0.28) −0.10 (0.30) 0.19 (0.05) 0.14 (0.24) 0.19 (0.05) 0.05 (0.59)

4 0.02 (0.88) −0.03 (0.77) 0.14 (0.24) 0.21 (0.08) 0.19 (0.18) 0.17 (0.13) 0.11 (0.36)

5 −0.03 (0.83) −0.09 (0.45) −0.13 (0.28) 0.21 (0.08) 0.25 (0.08) 0.12 (0.32) 0.15 (0.21)

6 −0.11 (0.42) 0.08 (0.56) 0.05 (0.72) 0.16 (0.23) 0.28 (0.09) 0.26 (0.05) 0.08 (0.53)

(IL−6*IL−8)/IL−10 index 0 (A) −0.17 (0.16) 0.03 (0.78) −0.02 (0.89) 0.03 (0.81) 0.003 (0.98) 0.05 (0.68) 0.03 (0.83)

0 −0.12 (0.25) −0.04 (0.71) 0.02 (0.81) −0.03 (0.75) −0.12 (0.31) 0.01 (0.95) −0.01 (0.96)

1 0.23 (0.02) −0.15 (0.11) 0.11 (0.25) −0.15 (0.12) −0.02 (0.85) −0.19 (0.05) −0.11 (0.24)

2 0.08 (0.45) −0.07 (0.46) 0.05 (0.63) −0.08 (0.42) 0.02 (0.87) −0.26 (<0.01) −0.14 (0.15)

3 −0.05 (0.65) −0.03 (0.75) 0.09 (0.36) −0.16 (0.10) −0.05 (0.64) −0.13 (0.18) −0.01 (0.92)

4 −0.004 (0.97) −0.08 (0.49) −0.13 (0.28) −0.003 (0.98) 0.05 (0.71) −0.30 (<0.01) −0.05 (0.65)

5 −0.02 (0.86) 0.06 (0.64) 0.14 (0.25) 0.24 (0.05) 0.12 (0.40) −0.11 (0.38) −0.10 (0.40)

6 −0.004 (0.98) −0.18 (0.17) −0.16 (0.24) 0.16 (0.23) 0.22 (0.19) −0.10 (0.46) 0.09 (0.48)

Analysis by Spearman ρ-correlation. A, admission; BE, base excess; DOL, day of Life; IL, interleukin; NRBCs, nucleated red blood cells; PI score, perinatal Insult score.

Bold represent p-values < 0.10.

its production may be compromised with severe insults. The
association between high Sarnat score and decreased VEGF
levels during TH shown here may suggest that worse HI brain
insults may impair VEGF production. Associations between
VEGF and early non-brain-specific indicators, such as low pH
and BE and high lactate and NRBCs, persist before and after TH.
One possible explanation is that injury of other organ systems
may carry a significant influence in circulating VEGF levels,
particularly after TH. As a result, the early decrease in VEGF
may be primarily cause by HI brain injury with some systemic
influence, whereas any deficit seen after TH may be mostly
linked to persistent systemic compromise. The influence of the
recovery of the BBB microstructure in these relationships after

TH (46) remains unexplored. In preclinical models, neonatal HI
injury leads to delayed regional decrease in BDNF levels (47, 48),
the second neurotrophin studied here. In agreement, we report
a decrease in serum BDNF levels in infants after HIE, which
shows nonetheless no association with Sarnat scores. In a smaller
cohort, Massaro et al. reported correlation between low BDNF
levels and worse neurodevelopmental outcomes at age 1, but the
analysis was unadjusted, limiting interpretation (19). In a larger
cohort, higher Sarnat scores were linked to lower BDNF levels
(34), an association likely powered by the inclusion of a group
with a Sarnat score of 0. As infants with Sarnat scores of 0 are
rarely assessed for TH, from a translation perspective, our results
suggest that VEGF is a better candidate than BDNF for predictive
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FIGURE 2 | Temporal trajectories of Sarnat score–stratified serum biomarkers. Temporal trajectories of VEGF (A), tau (B), GFAP (C), and IL-10 (D) levels during the

first 7 days of life (DOL 0–6) stratified by Sarnat score (1, white; 2, gray, and 3, black) are shown. Two specimens were collected during first 24 h of life (DOL 0), the first

sample obtained after admission and the one collected in the second 12 h of life. Data are represented as box-and-whiskers plot, where the box represents the IQR

limited by the 25th and 75th percentiles, with solid line inside the box representing the median. Whiskers are limited by the last data point sitting within 1.5 times the

IQR, whereas outliers are represented as circles beyond the boundaries of the whiskers. The biomarker level in a 10-base log scale is shown in the y axis. Time in

hours and DOL for all panels are depicted in the bottom of the figure. TH exposure occurred for 72 h upon admission to the NICU (for simplification DOL 0–2).

*p < 0.05 (KW analysis of variance with Dunn Bonferroni post-hoc analysis). DOL, day of life; GFAP, glial fibrillary acidic protein; IL, interleukin; TH, therapeutic

hypothermia; VEGF, vascular endothelial growth factor.

modeling in the NICU. Our finding that high NRBCs relate to
low BDNF may suggest a link with partial prolonged hypoxic
events in utero.

Cytokines, such as IL-6 (15, 29, 49), IL-8 (21, 49), and IL-
10 (49, 50), were the first peripheral blood and cerebrospinal
fluid biomarkers described for HIE (51), but validation against

multiple indicators of severity of HI in a longitudinal infection-
adjusted model relative to TH has not been done in a cohort this
large. There is a strong association between Sarnat scores with
IL-10 during and after TH; however, such associations do not
exist with IL-6 and IL-8. Circulating IL-10 may be the best initial
biomarker of severity of HI insult to the brain among the chosen
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FIGURE 3 | Forest plots for adjusted associations between HI severity indicators and serum biomarkers by exposure to TH. Forest plots represent relationships

adjusted for sex between (A) indicators of severity of HI insult and (B) Sarnat scores with biomarkers levels during (DOL 0–2, red) and after (DOL 4–6, blue) TH.

Admission and DOL 3 (TH-rewarming) data were not included in the adjusted analysis intended to assess the effect of TH in trajectories. β-Coefficients reaching

p-values <0.05 in mixed model analysis adjusted for sex do not cross line at zero. *p-value comparing during and after TH periods is shown. The strength of

associations, as determined by the β coefficients and CI (95%), is assessed by the distance from zero (reference line). (C) Proposed timeline to maximize utility of

serum biomarkers against Sarnat score. Time intervals of maximum utility are shown in horizontal boxes in gray for levels expected to decrease and in black for levels

expected to increase with higher HI brain injury. Red and blue zones represent the period during and after TH, respectively. Hashed box for IL-10 represent speculated

increased levels with higher HI injury.
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TABLE 5 | Summary of mixed-model adjustments for indicators of HI severity, time of biomarker, sex, and neonatal infection status.

β (95% CI) p-value Inter-p-value

Apgar 5 min VEGF TH 0.052 (−0.029, 0.133) 0.211 0.305

Post-TH 0.003 (−0.097, 0.103) 0.951

Tau TH −0.211 (−0.324, −0.098) <0.001 0.537

Post-TH −0.177 (−0.308, −0.047) 0.008

GFAP TH −0.273 (−0.418, −0.128) <0.001 0.042

Post-TH −0.179 (−0.336, −0.022) 0.025

IL-10 TH −0.101 (−0.205, 0.004) 0.06 0.542

Post-TH −0.063 (−0.191, 0.064) 0.331

Worse pH VEGF TH 0.994 (0.003, 1.984) 0.049 0.375

Post-TH 1.476 (0.284, 2.667) 0.015

Tau TH −1.344 (−2.670, −0.019) 0.047 0.624

Post-TH −1.036 (−2.541, 0.470) 0.178

GFAP TH −1.041 (−2.774, 0.692) 0.239 0.623

Post-TH −0.790 (−2.635, 1.054) 0.401

IL-10 TH −1.305 (−2.501, −0.109) 0.032 0.296

Post-TH −0.591 (−2.034, 0.852) 0.422

Base excess VEGF TH 0.045 (0.019, 0.071) 0.001 0.288

Post-TH 0.029 (−0.003, 0.061) 0.08

Tau TH −0.058 (−0.093, −0.024) 0.001 0.811

Post-TH −0.054 (−0.094, −0.015) 0.007

GFAP TH −0.062 (−0.110, −0.015) 0.01 0.806

Post-TH −0.059 (−0.109, −0.009) 0.022

IL-10 TH −0.058 (−0.093, −0.024) 0.001 0.007

Post-TH −0.006 (−0.047, 0.034) 0.758

NRBCs VEGF TH −0.058 (−0.077, −0.038) <0.001 0.305

Post-TH −0.048 (−0.068, −0.028) <0.001

Tau TH 0.022 (−0.007, 0.052) 0.139 0.001

Post-TH −0.013 (−0.043, 0.018) 0.406

GFAP TH −0.007 (−0.046, 0.032) 0.738 0.312

Post-TH −0.016 (−0.055, 0.024) 0.433

IL-10 TH 0.052 (0.026, 0.078) <0.001 0.072

Post-TH 0.029 (0.002, 0.056) 0.033

Lactate VEGF TH −0.084 (−0.125, −0.042) <0.001 0.447

Post-TH −0.066 (−0.117, −0.015) 0.011

Tau TH 0.143 (0.085, 0.200) <0.001 0.138

Post-TH 0.106 (0.041, 0.170) 0.001

GFAP TH 0.135 (0.058, 0.211) 0.001 0.483

Post-TH 0.150 (0.069, 0.231) <0.001

IL-10 TH 0.090 (0.035, 0.144) 0.001 0.311

Post-TH 0.060 (−0.005, 0.124) 0.07

Sarnat score VEGF TH −0.246 (−0.536, 0.043) 0.096 0.412

Post-TH −0.116 (−0.467, 0.235) 0.517

Tau TH 0.773 (0.407, 1.139) <0.001 0.071

Post-TH 1.088 (0.663, 1.513) <0.001

GFAP TH 0.744 (0.244, 1.243) 0.004 0.014

Post-TH 1.105 (0.574, 1.637) <0.001

IL-10 TH 0.577 (0.216, 0.939) 0.002 0.657

Post-TH 0.487 (0.051, 0.922) 0.029

Mixed-model analysis with adjustments. GFAP, glial fibrillary acidic protein; NRBCs, nucleated red blood cells; PI score, perinatal Insult score; TH, therapeutic hypothermia; VEGF,

vascular endothelial growth factor.

Bold represent p-values < 0.05.
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cytokines. Conversely, the infection-adjusted associations of
non-specific indicators of severe HI insult with proinflammatory
cytokines, IL-6 and IL-8, may suggest a systemic inflammatory
response, which becomes stronger after TH is completed. Thus,
previous associations between higher IL-6 and IL-8 with worse
neurodevelopmental outcomes in HIE patients (52) may not be
directly linked to severity of brain injury but instead to the degree
of multiorgan involvement leading to systemic inflammation,
which influences final brain outcomes (51). Altogether, worse
global HI injury, not necessarily to the brain, may lead to an early
inflammatory response with cytokine release, including IL-10, a
response that may persist or worsen after TH because of injury
to other organs. Higher IL-6, IL-8, and IL-10 on DOL 0 may
help determine severity of global HI insult, whereas persistent
elevation of IL-10 before completion of TH and thereafter, in
combination with tau and GFAP, may guide the assessment of
ongoing brain injury.

Our study has several limitations. Although recent reports
have not identified associations between timing of TH initiation
and dysfunctional cerebral autoregulation (32), injury on brain
MRI or neurodevelopmental outcomes (53), delay in the
initiation of TH may influence the trajectory of the proposed
biomarkers. In addition, systemic hypotension and disturbed
autoregulation, hypoxia, and hypercapnia may further increase
brain injury after HI and influence the strength of associations
between Sarnat scores with tau and GFAP. Clinical practice drift
has occurred over the course of this study (2009–2019), but
the influence of these changes on the longitudinal trajectory
of serum biomarker presented here is difficult to isolate.
We also were limited by blood volume available for analysis
preventing quantification of other biomarkers previously studied
in association with neonatal HIE. Although this is one of
the largest biomarker studies in neonatal HIE and ∼90% of
the whole cohort had serum samples available for analysis,
selection bias is still likely, as a subset of the sicker patients
lacked longitudinal blood samples to measure biomarkers. While
freezing and thawing of samples were limited, the samples
used in the study were frozen for several years, which may
have led to sample degradation, which could impact biomarker
levels. Lastly, the usefulness of the proposed biomarkers in
predicting the outcomes of patients treated with TH for HIE
needs future studies.

CONCLUSIONS

Understanding the influence of TH on the temporal trajectory
of serum biomarkers commonly tested to stratify severity of
neonatal HIE is an essential step in developing precision in
diagnosis of brain injury and building of predictive models.
We show the temporal effect of TH in the relationships
between serum biomarkers and traditional indicators of severity
of HI insult to the brain and other organs. Admission and
the period before completion of TH and rewarming may
prove to be optimal time points to use biomarkers to stratify
patients to modified and novel adjuvant therapeutic strategies.
Considering our analysis, we proposed screening of HIE

patients at three critical time points: (i) within the first 24 h
of life using VEGF, GFAP, and IL-10; (ii) before completion
of TH using tau, GFAP, and IL-10; and (iii) by 72 h after
completion of TH with tau and GFAP (Figure 3C). These time-
sensitive serum biomarkers would improve the stratification
of severity of HI brain injury to assign patients to novel
neuroprotective or restorative therapies for HIE and to follow
therapeutic response.
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