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Introduction
Multiple myeloma (MM) is an incurable neoplastic plasma cell disorder, with a high ten-
dency of relapse [1]. Although the advent of new drugs like proteasome inhibitor and 
CD38 monoclonal antibody have dramatically improved the prognoses, relapse and 
resistance to therapy frequently occur. The discovery of mechanisms of relapse and 
resistance is pivotal to optimizing the clinical efficacy and prolonging survival. Multiple 
factors have been proposed to be associated with relapsed/refractory MM (R/RMM). Of 
these, in vitro experiments have shown that Non-coding RNAs (ncRNAs) play impor-
tant roles, but their clinical application value still need further exploration [2, 3].

NcRNAs are usually classified into long non-coding RNAs (lncRNAs) and small 
non-coding RNAs (sncRNAs) according to their length. Over past few decades, 
research has identified roles for ncRNAs in a variety of biological processes[4, 5]. With 
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rapidly advances in high-throughput sequencing technology and bioinformatics analy-
sis in recent years, a new class of sncRNAs derived from tRNAs are gaining increasing 
attention.

This new class of tRNA derived fragments can be broadly classified into tRNA related 
fragments (tRFs) and tRNA halves (tiRNAs). tRFs are generated from mature or precur-
sor tRNA and tiRNAs are generated by specific cleavage in the anticodon loops of mature 
tRNA [6]. According to their mapped positions on the precursor or mature tRNA tran-
script, tRFs/tiRNAs are subdivided into five types: tRF-5, tRF-3, tRF-1, tRF-2 and tiRNA. 
tRFs/tiRNAs are involved in diverse molecular processes such as gene silencing, pro-
tein translation, cell stress, and cell differentiation [7, 8]. Though the complex biological 
functions of tRFs/tiRNAs require further elucidation, they can be summarized as three 
categories: translation regulation, epigenetic regulation and RNA silencing. These three 
categories have also been a key focus in cancer research of tRFs/tiRNAs in recent years.

Increasing evidence shows that tRFs/tiRNAs contribute to cancer development and 
progression. For example, tDR-0009 and tDR-7336, which were significantly upregu-
lated in hypoxia conditions, have been found to induce doxorubicin resistance in triple-
negative breast cancer [9]. In ovarian cancer, tRF-03357 was reported to promote cell 
proliferation, migration, and invasion by downregulating HMBOX1 [10]. For hemato-
logical malignancies, limited data showed that tRFs/tiRNAs may have cancer-associated 
functions in leukemia and lymphoma [11, 12]. And so far, there are no reports on the 
role of tRFs/tiRNAs in the mechanism of recurrence and drug resistance of MM to our 
knowledge.

In this study, we explored the expression profiles of tRFs/tiRNAs in new diagnosed 
MM(NDMM) and R/RMM samples by RNA-sequencing, with Quantitative Real-time 
PCR(qPCR)validation. Then, we analyzed their biological functions to uncover their 
roles in the mechanisms of relapse and drug resistance of MM. This study may provide 
potential biomarkers and therapeutic targets for R/RMM.

Materials and methods
Clinical specimens

Bone marrow specimens were obtained from patients with MM for research according 
to a protocol approved by ethics committee of the third Xiangya hospital. All patients 
provided their written informed consent to participate in this study.20 new diagnosed 
MM (NDMM) and 22 R/RMM patients were enrolled, respectively. All NDMM patients 
met the criteria for symptomatic multiple myeloma according to diagnostic crite-
ria defined by National Comprehensive Cancer Network (NCCN). The diagnosis of 
relapsed/refractory disease was based on clinical symptoms, biochemical parameters 
and marrow evaluation. All R/RMM patients were in first relapse.

Cell culture

MM cell lines U266 and RPMI-8226 were kindly provided by the basic laboratory of 
Central South University Xiangya School of Medicine. Drug-resistant cell lines U266/
BTZ, and RPMI-8226/BTZ were induced through stepwise increase of drug concentra-
tions. Cells were cultured in RPMI1640 (HyClone, Logan, UT, USA) supplemented with 
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10% FBS (ExCell Biology,Shanghai, China) and 1% penicillin–streptomycin (HyClone). 
All cells were incubated at 37 °C in 5% carbon dioxide.

RNA Extraction and Quantitative RT‑PCR

Firstly, anti-CD138 MicroBeads (Miltenyi, Germany) were used to enrich plasma cells 
from bone marrow samples by magnetic activated cell sorting (MACS). The purity of 
separated plasma cells was identified by flow cytometry and was all above 90%. Total 
RNA was then extracted from enriched plasma cells and myeloma cells using TRIzol 
(Invitrogen, USA) according to the instruction manual. Prepared RNA was stored at 
− 80 °C. RNA samples were qualified by agarose gel electrophoresis and quantified by 
NanoDrop ND-1000 (NanoDrop, USA). RNA integrity number (RIN) was evaluated by 
Agilent BioAnalyzer 2100 and was all above 7. RNA concentration and purity were also 
assessed (Additional file  1: Table  1). qRT-PCR was performed using ViiA 7 Real-time 
PCR System (Applied Biosystems) and 2 × PCR Master Mix. The expression levels of 
each tRFs/tiRNAs were calculated and normalized by U6 small nuclear RNA (snRNA). 
The primers used are listed in Table 1.

Library preparation and sequencing

Before library preparation, total RNA samples from 5 NDMM and 5 R/RMM patients 
were pretreated to remove RNA modifications that interfere with small RNA-seq library 
construction. Then, cDNA was synthesized and amplified using Illumina’s proprietary 
RT primers and amplification primers. Subsequently, ~ 134 to 160  bp PCR amplified 
fragments were extracted and purified from the PAGE gel. Finally, the prepared librar-
ies were quantified by Agilent BioAnalyzer 2100 and sequenced using Illumina NextSeq 
500. Image analysis and base calling were performed by Solexa pipeline v1.8 (Off-Line 
Base Caller soft-ware, v1.8).

Sequencing quality were examined by FastQC and trimmed reads were aligned allow-
ing for 1 mismatch only to the mature tRNA sequences. The abundance of tRFs/tiRNAs 
were evaluated using their sequencing counts and normalized as counts per million of 
total aligned reads (CPM). The differentially expressed tRFs/tiRNAs were calculated 

Table 1 Primers for qRT-PCR of candidate tRFs/tiRNAs

Primer

tRF-60:77-Thr-TGT-1 F: 5′-AGC CAT CCC AGT AGA GCC TC-3′
R: 5′-TAT CCA GTG CAG GGT CCG AG-3′

tRF-1:22-Lys-TTT-1-M3 F: 5′-AGC CAG CCT GGA TAG CTC AGT-3′
R: 5′-AGG GTC CGA GGT ATT CGC A-3′

tRF- + 1:T17-Pro-TGG-3–2 F: 5′-TGG GTC GTG GCT ACT GTT TT-3′
R:5′-AGT GCA GGG TCC GAG GTA T-3′

tRF-57:75-Gly-TCC-1-M3 F: 5′-TTA TTC CCG GCC AAC GCA -3′
R: 5′-CAG TGC AGG GTC CGA GGT AT-3′

tRF-1:31-Lys-CTT-1-M2 F: 5′-CTT GCC CGG CTA GCT CAG T-3′
R: 5′-CAG TGC AGG GTC CGA GGT AT-3′

tRF-1:32-Lys-CTT-1-M2 F: 5′-ATT GCC CGG CTA GCT CAG T-3′
R: 5′-CGC AGG GTC CGA GGT ATT C-3′

U6 F: 5′-GCT TCG GCA GCA CAT ATA CTA AAA T-3′
R: 5′-CGC TTC ACG AAT TTG CGT GTCAT-3′
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based on the count value with R package edgeR. Pie plots, Venn plots, Hierarchical clus-
tering, Scatter plots and Volcano plots were constructed using R or Perl.

Functional Analysis of tRFs/tiRNAs

Gene targets of tRFs/tiRNAs were predicted using TargetScan algorithms [13]. DAVID 
Bioinformatics Resources 6.8 was used for Gene Ontology (GO) and Kyoto Encyclopae-
dia of Genes and Genomes (KEGG) function enrichment analysis [14]. All data were 
graphed using Cytoscape 3.7.2 and GraphPad Prism 8.0.1.

Statistical analysis

SPSS 23.0 software was used for statistical analysis. qPCR value was presented as 
mean ± standard deviation. KS test and Shapio-Wilk test were used to determine 
whether the data were normally distributed. For data that obeyed normal distribu-
tion, statistical significance was assessed using two-tail unpaired Student’s t test. Oth-
erwise, non-parametric tests (Mann–Whitney test) were used for statistical analysis. P 
value < 0.05 was considered significant.

Results
Catalogue of tRFs/tiRNAs expression in MM

After Illumina quality control and 5’, 3’-adaptor trimmed, reads with length < 14nt or 
length > 40nt were discarded. The bar diagrams show the sequence read length distribu-
tion (Fig. 1a, b). We also calculated the frequency of subtype tRFs/tiRNAs against the 
length of the sequence. The stacked bar charts show the length distribution of subtype 
(Fig. 1c, d). Clinical characteristics of all patients are shown in Table 2.
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Fig. 1 Catalogue of tRFs/tiRNAs expression profile between NDMM and R/RMM. a The average total read 
counts against the lengths of the trimmed reads in NDMM. b The average total read counts against the 
lengths of the trimmed reads in R/RMM. c The frequency of subtype against length of the tRFs/tiRNAs in 
NDMM. d The frequency of subtype against length of the tRFs/tiRNAs in R/RMM
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Differentially expressed tRFs/tiRNAs between NDMM and R/RMM groups

Our high-throughput tRFs/tiRNAs sequencing identified more than 400 commonly 
expressed tRFs/tiRNAs (CPM ≥ 20). Of these, 298 tRFs/tiRNAs were commonly 
expressed in both groups, while 68 were specifically presented in R/RMM and 43 
were specifically found in NDMM (specifically expressed tRFs/tiRNAs represent the 
CPM ≥ 20 in one group and < 20 in the other group) (Fig.  2a). Under the condition of 
fold change ≥ 1.5 and P < 0.05, of which 10 tRFs/tiRNAs were upregulated and 16 were 
downregulated. The heatmap shows hierarchical clustering of significantly differentially 
expressed tRFs/tiRNAs (Fig.  2b). The volcano and scatter plots indicate tRFs/tiRNAs 
expression variation between the two groups (Fig. 2c, d).

Table 2 baseline characteristics

ASCT Autologous stem cell transplantation

NDMM (n = 20) R/RMM (n = 22)

Age

Median—yr 59 60

Range—yr 38–75 44–76

Sex-no. (%)

Male 11 (55.0) 14 (63.6)

Female 9 (45.0) 8 (36.4)

ECOG performance status-no. (%)

0 7 (35.0) 6 (27.3)

1 11 (55.0) 13 (59.1)

2 2 (10.0) 3 (13.6)

R-ISS stage-no. (%)

I 3 (15.0) 3 (13.6)

II 6 (30.0) 7 (31.8)

III 11 (55.0) 12 (54.5)

Cytogenetics-no. (%)

High risk 6 (30.0) 10 (45.5)

 Del (17p) 4 (20.0) 7 (31.8)

 t (14;20) 2 (10.0) 3 (13.6)

 t (14;16) 2 (10.0) 2 (9.1)

Standard risk 12 (60.0) 8 (36.3)

Unknown/missing 2 (10.0) 4 (18.2)

No. of previous regimens-no. (%)

Median – 3

Range – 1–6

Previous therapy-no. (%)

Bortezomib – 18 (81.8)

Lenalidomide – 8 (36.4)

ASCT – 4 (18.2)
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tRF‑60:77‑Thr‑TGT‑1 was upregulated and tRF‑1:22‑Lys‑TTT‑1‑M3 was downregulated in R/

RMM and drug‑resistant myeloma cells

qPCR was performed to confirm the expression of three significantly upregulated or 
downregulated tRFs/tiRNAs in NDMM and R/RMM samples. The expression of all these 
six tRFs/tiRNAs were consistent with the sequencing data, while the most significantly 
upregulated and downregulated tRFs/tiRNAs were tRF-60:77-Thr-TGT-1 and tRF-1:22-
Lys-TTT-1-M3, respectively (Fig. 3a). For the further validation, we detected expression of 
tRF-60:77-Thr-TGT-1 and tRF-1:22-Lys-TTT-1-M3 in 22 R/RMM and 20 NDMM patients 
(Fig. 3b). Their expression was also detected in MM cell lines (U266, RPMI-8226) and drug-
resistant cell lines (U266/BTZ, RPMI-8226/BTZ). tRF-60:77-Thr-TGT-1 was upregulated 
and tRF-1:22-Lys-TTT-1-M3 was downregulated in both R/RMM and drug-resistant mye-
loma cells (Fig. 3c, d). There seems to be no significant difference in the expression of tRF-
60:77-Thr-TGT-1 or tRF-1:22-Lys-TTT-1-M3 among patients with different cytogenetic 
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risk in NDMM or R/RMM group. Which may be related to the relatively small sample size. 
Absolute values of RNA expression levels are shown in Additional file 2: Table 2.

Target gene prediction with bioinformatics tool

TargetScan algorithms were used to explore the putative roles of tRF-60:77-Thr-
TGT-1 and tRF-1:22-Lys-TTT-1-M3 in MM. Through this strategy, we predicted 
238 conserved targets and 159 conserved targets, respectively. The network dia-
grams constructed by Cytoscape show the genes (Fig. 4a, b).

GO enrichment analysis and KEGG pathway analysis

We performed functional enrichment analysis for target genes of tRF-60:77-Thr-TGT-1 and 
tRF-1:22-Lys-TTT-1-M3 through DAVID database. GO analysis indicated that 37 GO terms 
were enriched (P < 0.05) for both target genes of tRF-60:77-Thr-TGT-1 and tRF-1:22-Lys-
TTT-1-M3. The most enriched terms of target genes of tRF-60:77-Thr-TGT-1 were ‘plasma 
membrane’ and ‘membrane’ in cellular component (CC) category, ‘protein binding’ and ‘tran-
scription factor activity, sequence-specific DNA binding’ in molecular function (MF) category, 
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‘positive regulation of transcription from RNA polymerase II promoter’ and ‘transcription 
from RNA polymerase II promoter’ in biological process (BP) category (Fig. 5a). Whereas, 
the most enriched terms of target genes of tRF-1:22-Lys-TTT-1-M3 were ‘nucleoplasm’ and 
‘cell junction’ in CC category, ‘transcription factor activity, sequence-specific DNA binding’ 
and ‘RNA polymerase II core promoter proximal region sequence-specific DNA binding’ in 
MF category, ‘positive regulation of transcription, DNA-templated’ and ‘positive regulation of 
transcription from RNA polymerase II promoter’ in BP category (Fig. 5b).

KEGG pathway analysis showed that targets of tRF-60:77-Thr-TGT-1 might partici-
pate in Ras signaling pathway, cGMP-PKG signaling pathway, thyroid hormone signaling 
pathway and FoxO signaling pathway (P < 0.05) (Fig.  5c). For targets of tRF-1:22-Lys-
TTT-1-M3, the most enriched pathways were Ras signaling pathway, PI3K-Akt signaling 
pathway and pathways in cancer (Fig. 5d).

Discussion
MM is an incurable hematological malignancy. Even patients who are initially sensitive to 
treatment will eventually develop relapsed and refractory disease. So far, many genes or ncR-
NAs related to relapse and drug resistance of MM have been identified. For example, J Xia 
demonstrated that NEK2 induces autophagy-mediated bortezomib resistance by stabilizing 
Beclin-1 in multiple myeloma [15]. MicroRNA-497 was found to inhibit myeloma growth and 
increase susceptibility to bortezomib by targeting Bcl-2 [16]. B-Z Zhu reported that LncRNA 
HOTAIR activated the expression of NF-κB and promoted the proliferation of myeloma cells  
[17]. However, it is still unclear whether tRFs/tiRNAs are involved in the relapse and drug 
resistance of MM. Therefore, for the first time, we conducted a preliminary evaluation of the 
role of tRFs/tiRNAs in R/RMM
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Fig. 5 Functional analysis of tRFs/tiRNAs. a GO enrichment analysis of tRF-60:77-Thr-TGT-1. b GO enrichment 
analysis of tRF-1:22-Lys-TTT-1-M3. c KEGG pathway analysis of tRF-60:77-Thr-TGT-1. d KEGG pathway analysis 
of tRF-1:22-Lys-TTT-1-M3
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We used the standardized tDR naming system to name the tRFs/tiRNAs involved in this 
study [18]. The 4 parts in the name represent prefix, position, source tRNA and matching 
tRNA transcripts in turn. Two potentially significant tRFs were finally screened out by RNA 
sequencing and qPCR validation. To explore the pathological processes that they may be 
involved in, we conducted functional analysis of the predicted target genes. For tRF-60:77-
Thr-TGT-1, its predicted target genes were mainly located on membrane and implicated in 
transcription initiation, cell adhesion and migration. Whereas, target genes of tRF-1:22-Lys-
TTT-1-M3 were primarily localized in nucleoplasm. Similarly, they principally regulated 
transcription initiation by exerting transcription factor activity. This is consistent with the 
three major functional categories of tRFs/tiRNAs summarized in the previous section. The 
mechanism of tRFs/tiRNAs-mediated translation regulation is complicated. For example, it 
was reported that 5’-tiRNA-associated translational silencer Y-Box-Binding Protein 1(YB-1) 
could contribute to stress-induced translational repression [19]. A universal conserved ‘GG’ 
di-nucleotide in 5’-tRFs was also involved in the process of protein translation [20]. Moreover, 
tRFs/tiRNAs could regulate translation by interacting with ribosomes [21, 22]. The transcrip-
tional regulation mechanism of tRFs/tiRNAs in R/RMM needs further investigation.

We noticed that both tRFs were involved in the Ras signaling pathway in KEGG pathway 
analysis. The Ras pathway has been found to regulate many fundamental biological pro-
cesses, like cell proliferation, differentiation, survival, and apoptosis. Dysregulation of this 
pathway generate the emergence, development, and progression of multiple cancers [23–25]. 
In R/RMM, Ras mutations may increase from 23–54 to 45–81% compared with NDMM [26, 
27]. The Ras/ Raf/MEK/Erk pathway is associated with drug resistance and a more aggres-
sive phenotype in MM [28]. In addition, these differentially expressed tRFs/tiRNAs may also 
participate in a variety of cancer-related signaling pathways such as FoxO signaling pathway, 
PI3K-Akt-mTOR signaling pathway. FOXO3a transcription factor can be negatively regu-
lated by mTOR complex 2(mTORC2) and then induces a pro-survival response, which sug-
gests potential new mechanism of inhibition of mTORC2 in MM [29]. Sorafenib, an orally 
compound that acts predominantly by inhibition of Raf kinase and VEGF receptor 2 can 
inhibit the proliferation of MM cells. It has also been tested in combination with rapamycin 
to inhibit mTOR, and this shows synergistic effects on MM cells in vitro [30]. In short, these 
provide reference for the design of more precision and individualized clinical trials. To date, 
both up-regulated or down-regulated expression tRFs/tiRNAs has been reported to play a 
pro-tumor role in tumor tissues [10, 31]. Therefore, additional experiments need to be con-
ducted to validate these hypotheses.

There remain several limitations in this study. For example, tRFs/tiRNAs can also perform 
their biological functions through regulating miRNA activity [32]. Regrettably, current bio-
informatics methods are not able to predict the target miRNAs of tRFs/tiRNAs. Therefore, 
we failed to get the ceRNA network. We plan to explore how tRFs/tiRNAs regulate miRNA 
in MM in future molecular biology experiments. Besides, according to serum M protein, 
myeloma can be categorized into eight subclasses (type IgG, type IgA, type IgD, type IgE, 
type IgM, light chain type, non-secreted type and polyclonal type). Different types of MM 
may have different phenotypes. In this study, we used two cell lines (IgE or IgG secreting) for 
in vitro verification. Although this is the practice in most myeloma-related studies, but addi-
tional more cell lines would be beneficial to confirm the data.
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In summary, we evaluated the potential function of tRFs/tiRNAs in R/RMM and 
the results provide the basis for preclinical research. Studies on tRFs/tiRNAs are still 
in their infancy and deep insights into their roles in carcinogenesis and progression 
remain lacking. tRFs/tiRNAs have the potential as clinical biomarkers for drug resist-
ance and prognosis of MM and may be used as treatment targets in the future.
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