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Abstract 

Background  Antimicrobial resistance poses a significant threat to global health, with its spread intricately 
linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow 
among the One Health sectors is essential for better control of antimicrobial resistance.

Results  In this study, we investigated regional ARG transmission among humans, food, and the environment 
in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant 
bacterial isolates in 592 samples. A total of 40 ARG types and 743 ARG subtypes were identified, with a predominance 
of multidrug resistance genes. Compared with microbes from human fecal samples, those from food and envi-
ronmental samples showed a significantly higher load of ARGs. We revealed that dietary habits and occupational 
exposure significantly affect ARG abundance. Pseudomonadota, particularly Enterobacteriaceae, were identified 
as the main ARG carriers shaping the resistome. The resistome in food samples was found more affected by mobile 
genetic elements (MGEs), whereas in environmental samples, it was more associated with the microbial composition. 
We evidenced that horizontal gene transfer (HGT) mediated by plasmids and phages, together with strain transmis-
sion, particularly those associated with the Enterobacteriaceae members, drive regional ARG flow. Lifestyle, dietary 
habits, and occupational exposure are all correlated with ARG dissemination and flies and food are important poten-
tial sources of ARGs to humans. The widespread mobile carbapenemase gene, OXA-347, carried by non-Enterobacte-
riaceae bacteria in the human gut microbiota, requires particular attention. Finally, we showed that machine learning 
models based on microbiome profiles were effective in predicting the presence of carbapenem-resistant strains, 
suggesting a valuable approach for AMR surveillance.
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Conclusions  Our study provides a full picture of regional ARG transmission among the One Health sectors 
in a county-level city in China, which facilitates a better understanding of the complex routes of ARG transmission 
and highlights new points of focus for AMR surveillance and control.

Keywords  One Health, Antimicrobial resistance gene, Mobile genetic element, Transmission pathway, 
Carbapenemase

Background
The increase in antimicrobial resistance (AMR) poses a 
significant challenge to healthcare systems, raising con-
cerns regarding global public health, and food safety [1, 
2]. The dissemination and spread of AMR is complex, 
involving antimicrobial resistance gene (ARG) flow 
across all three One Health sectors (animals, humans, 
and environments). Understanding the emergence and 
transmission of ARGs and/or antimicrobial-resistant 
bacteria (ARB) among these sectors as well as their inter-
faces such as food and water, is a prerequisite for better 
control of AMR.

Through culture-dependent and -independent 
approaches, specific ARG dissemination pathways espe-
cially those from animals to humans have been proposed. 
For example, plasmid-mediated colistin resistance was 
first identified mainly in isolates from animals and then 
was found widely spread across animals, humans, and 
environments [3]. The dissemination of AMR among 
the One Health sectors can be largely attributed to the 
mobility of ARGs carried by mobile genetic elements 
(MGEs), which can then be vertically propagated through 
clonal spread. This process has occurred for many clini-
cally important ARGs, including the carbapenemase gene 
blaNDM-1 [4], the colistin resistance gene mcr-1 [5], and 
the tigecycline resistance genes tet(X3) and tet(X4) [6, 7]. 
Diverse MGEs, such as plasmid and foodborne patho-
gens (especially members of the Enterobacteriaceae), are 
frequently evidenced to be involved in the dissemination 
of these ARGs [8].

With the development of high-throughput sequenc-
ing, genomics, and metagenomics have been increasingly 
incorporated into One Health studies, enabling inves-
tigation of the abundance, transmission, and distribu-
tion of ARGs across different sources [9, 10]. Through 
whole-genome sequencing analyses of Escherichia coli 
isolates, the Australian silver gull was found to host dif-
ferent carbapenemase genes that may be anthropogenic 
sources [11], while the KPC-2-producing Serratia marc-
escens clone found in farm animals could potentially 
contribute to the clinical isolates present in nosocomial 
settings (i.e., healthcare environments where infections 
are acquired during hospital stays) [12]. Recently, the 
global distribution of ARGs was profiled by collecting 
thousands of metagenomic sequencing datasets from six 

types of habitats, and nearly 24% of the detected ARGs 
were concluded to pose a health risk to humans [13]. 
Although these findings enhance our understanding of 
AMR dynamics, most of the studies were based on large 
areas and/or time scales, which may not reveal the ecol-
ogy of AMR at high resolution. Additionally, relatively 
fewer AMR studies have focused on the dissemination 
and spread of AMR at One Health interfaces in geo-
graphically proximate ecosystems. Assessment of the 
risk of AMR acquisition in humans, as a result of human 
behaviors such as dietary habits and occupational expo-
sure, is continually needed.

In this study, we investigated regional AMR 
transmission in a Chinese city by analyzing the 
metagenomic sequencing data and the genomes of car-
bapenem-resistant isolates collected from humans, food, 
and the environment. We identified key MGEs and bacte-
ria in mediating ARG transmission and proposed poten-
tial new transmission pathways for ARG transmission 
from food and the environment to humans.

Results
Habitat‑specific profiles of the antibiotic resistome
We collected 592 samples from nine different human 
subgroups, three food subgroups, and six environ-
mental subgroups in Dengfeng, Henan Province, 
China for antibiotic resistome and ARG flow analy-
ses (Fig. 1a and Additional file 2: Table S1). We iden-
tified 40 ARG types and 743 ARG subtypes. The 
most abundant ARG types identified were multid-
rug resistance genes (151 ARG subtypes; accounting 
for 27.5% of the total ARG abundance), followed by 
the macrolide-lincosamide-streptogramin (MLS; 90 
subtypes; 24.6%), tetracycline (52 subtypes; 14.2%), 
aminoglycoside (78 subtypes; 7.7%), and beta-lactam 
resistance genes (138 subtypes; 6.3%) (Fig.  1b and 
Additional file  2: Table  S2). Samples of different ori-
gins (human, food, and the environment) displayed 
different resistome profiles (Additional file 1: Fig. S1a 
and Additional file 2: Table S3). The most obvious dif-
ference was that compared with human samples, food 
(pork, chicken, and vegetable/fruit), soil, surface water, 
and fly microbes showed a very high load of multid-
rug resistance genes (from 1.460 to 5.236 ARG cop-
ies per 16S rRNA gene copy). Interestingly, microbes 
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Fig. 1  The resistome profiles of the 592 samples. a Design of the sample collection in Dengfeng City, Henan Province, China, involving three 
groups, 18 subgroups, and 592 samples. b The proportion of antimicrobial resistance gene (ARG) types (top panel) and the number of ARG 
subtypes in each ARG type (bottom panel). c The ARG abundance in the three groups. The abundance of ARGs was transformed as a “copy of ARG 
per copy of 16S rRNA gene”. d Biomarker ARGs in samples from various subgroups, were identified using the extremely randomized tree algorithm. 
Heatmap visualizes the Z score distribution according to the abundance of each ARG. Clustering was performed using K-means clustering via the R 
package “ComplexHeatmap”. The right annotation shows the type of each ARG. e The Shannon indices of ARGs in the three groups. f Principal 
coordinate analysis (PCoA) of the resistome profiles for each sample in the three groups (PERMANOVA, P < 2.2 × 10−16, and R2 = 10.9%). g The 
abundance of the bacteriophages B40-8 and crAssphage in samples from various subgroups (measured in terms of coverage per Gb)
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from food and the environment contained a signifi-
cantly higher load of ARGs than those from human 
feces (Kruskal–Wallis test, P = 2.9 × 10−14; Fig.  1c), 
especially for multidrug (P < 2.2 × 10−16), aminoglyco-
side (P = 7.0 × 10−16), unclassified (P < 2.2 × 10−16), and 
bacitracin (P < 2.2 × 10−16) resistance genes (Additional 
file 1: Fig. S1b and Additional file 2: Table S4).

In humans, dietary habits and occupational exposure 
were found to affect ARG abundance, especially for 
the top 20 most abundant ARG types (Kruskal–Wallis 
tests, P < 0.05; 90.0%, 18/20; Additional file  1: Fig.  S1c 
and Additional file  2: Table  S5). For example, samples 
from boarding students showed a higher load of beta-
lactam resistance genes; samples from pork abstainers 
exhibited a lower load of glycopeptide resistance genes; 
samples from livestock farmers carried a higher load of 
phenicol resistance genes. Specific aminoglycoside and 
tetracycline resistance genes were detected at higher 
levels in the human fecal samples, including tetM, 
tetW, tet(W/NW), tetO, tet40, AAC(6’)-Ie-APH(2’’)-Ia, 
BANAP, and APH(2’’)-If (Fig. 1d).

Diversity analyses indicated that ARG alpha diver-
sity, as measured by the Shannon index, was lower 
in human fecal samples than in samples from other 
groups (Kruskal–Wallis test, P < 2.2 × 10−16; Fig.  1e), 
while at the subgroup level, samples from poultry 
feces, flies, and wastewater had higher Shannon indices 
(Kruskal–Wallis test, P < 2.2 × 10−16; Additional file  1: 
Fig.  S2a); among the human samples, compared with 
omnivores, vegan communes exhibited higher ARG 
alpha diversity (P = 1.9 × 10−4). Beta diversity analysis 
revealed the clustering of samples from human, food, 
and environmental sources into three distinct groups 
(adonis, P < 0.001, R2 = 36.4%; Fig.  1f and Additional 
file  2: Table  S6), highlighting the influence of habitat 
on the ARG composition. Principal coordinate analy-
sis (PCoA) revealed significant differences in ARG 
subtypes according to the Axis1 values between the 
human and animal fecal samples and the other samples 
(Kruskal–Wallis test, P < 2.2 × 10−16; Additional file  1: 
Fig.  S2b), with the exception of wastewater samples. 
We then compared the Bray–Curtis distances between 
the resistome profiles of the human fecal samples and 
other samples. Our PCoA analyses were supported by 
the comparison of Bray–Curtis distances, which indi-
cated human fecal samples were more similar to animal 
feces and wastewater samples compared to other sam-
ples (Additional file  1: Fig.  S2c). A further analysis of 
the abundance of the Bacteroides bacteriophages B40-8 
and crAssphage, indicators of fecal contamination [14], 
were highly represented in the fecal and wastewater 
samples (Kruskal–Wallis test, P < 2.2 × 10−16; Fig. 1g and 
Additional file 2: Table S7).

Pseudomonadota members are the primary drivers 
that shape the resistome
We next analyzed the microbiome profiles from the 
metagenomic sequencing data to establish the connec-
tions between microbial and ARG compositions. At the 
phylum level, a total of 31 phyla with varied abundance 
among samples from different sources was identified 
(Fig.  2a). Bacillota (with a relative abundance of 53.0%) 
and Bacteroidota (34.7%) were the dominant phyla in 
human fecal samples, whereas the Pseudomonadota 
occupied a higher proportion in food (43.0%) and envi-
ronmental samples (31.3%). By binning the metagenomic 
contigs, we generated 6067 strain-level metagenome-
assembled genomes (MAGs, 99.0% average nucleotide 
identity [ANI]) and 1302 species-level MAGs (95.0% 
ANI) from a total of 14,787 MAGs. Among these spe-
cies, 230 species were identified as putative novel species 
(Additional file 1: Fig. S3a and Additional file 2: Table S8). 
Diversity analyses revealed significantly lower Shan-
non indices for food samples than for human and envi-
ronmental samples (Kruskal–Wallis test, P < 2.2 × 10−16; 
Fig.  2b), and the microbial compositions differed sig-
nificantly among the three groups of samples (PER-
MANOVA, P = 0.001, R2 = 10.9%; Fig. 2c and Additional 
file 2: Table S9). We then performed Procrustes analysis 
to assess the extent to which the microbial composition 
influenced the resistome profiles and found a signifi-
cant correlation between the resistome profiles and the 
microbial composition (P = 0.001, R2 = 74.0%; Fig.  2d). 
Further, we applied a random forest model to identify 
the main contributors (at different taxonomic levels) 
influencing the resistome profiles. The results showed 
that E. coli, a typical member of Pseudomonadota at the 
species level, was determined to be the main taxon dis-
tinguishing the resistome profiles (Fig.  2e, f and Addi-
tional file  2: Tables  S10–S11). Differences in abundance 
between the various groups of samples revealed the fol-
lowing: the food samples were higher in the abundance of 
Gammaproteobacteria (P < 2.2 × 10−16), Enterobacterales 
(P = 2.5 × 10−12), and Enterobacteriaceae (P = 1.2 × 10−6) 
than the other two groups of samples, while the environ-
mental samples exhibited higher abundances of Pseu-
domonadota (P < 2.2 × 10−16) and Gammaproteobacteria 
(P < 2.2 × 10−16) than the human fecal samples, and E. coli 
(P = 1.5 × 10−7) and Escherichia (P = 6.3 × 10−7) were more 
abundant at the species and genus levels in the human 
fecal samples (Fig.  2f and Additional file  2: Table  S11). 
Spearman’s correlation analyses further verified the close 
associations between the abundance of these taxa and 
the abundance and diversity of the ARGs (P < 0.05; Fig. 2g 
and Additional file 2: Table S12). We compared the rela-
tive contributions of vertical and horizontal transfer of 
ARGs, and found that in food samples, the resistome was 
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more affected by MGEs, whereas in environmental sam-
ples, it was more associated with the microbiome (Addi-
tional file 1: Fig. S3b).

To reveal the putative bacterial host of ARGs, we 
assembled the sequence reads into contigs and used 
these contigs for taxonomic assignment. After sequence 

Fig. 2  Relationship between the microbiome and the resistome. a The relative abundance of taxa at the phylum level within the microbial 
communities of samples from various subgroups. b The Shannon diversity of the microbial communities in samples from various groups. c PCoA 
of samples from various groups. d The correlation between the microbiome and the resistome revealed by Procrustes analysis. Different colored 
nodes represent different groups; squares and circles represent the microbial profiles and the resistome profiles, respectively. e The variable 
importance of the top 20 taxa was determined by the random forest model using the mean decrease Gini value. A higher value indicates a stronger 
connection between the taxon and the resistome profile. f The relative abundance of six taxa in samples from the three groups. g Spearman’s 
correlations between the abundance of the six taxa and the abundance (left panel) and Shannon index (right panel) of the resistome profiles 
(P < 0.05). The length of each bar represents the correlation coefficient
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assembly and ARG annotation, we identified a total 
of 162,001 ARG-carrying contigs (ACCs) containing 
183,720 ARGs from all 592 samples. Taxonomic assign-
ment based on sequence information classified 20.4% of 
the ACCs at the genus or species level; however, one-
third of the ACCs could not be classified, even at the 
phylum level (Additional file 1: Fig. S3c). A total of 54,831 
ACCs, accounting for 33.8% of the total ACCs, could be 
binned into MAGs, of which, 14,367 had accurate taxo-
nomic assignments according to the taxonomic informa-
tion of the associated MAGs (Additional file 1: Fig. S3d). 
Overall, we finally assigned ~ 25.0% of the ACCs to the 
species or genus level (Additional file  1: Fig.  S3e and 
Additional file 2: Table S13). We then computed the ARG 
load index at different taxonomic levels, i.e., the pro-
portion of ARGs assigned to each taxon divided by the 
average relative abundance of the corresponding taxon. 
At the phylum level, Pseudomonadota was found to be 
the main ARG carrier (load index was 1.5), followed by 
Bacillota (0.8), Actinomycetota (0.3), and Bacteroidota 
(0.2) (Additional file 2: Table S14). At the class and order 
levels, Gammaproteobacteria (1.6) and Enterobacterales 
(1.1), respectively, both belonging to Pseudomonadota, 
contributed to the highest load of ARGs.

The enrichment of ARGs in Enterobacteriaceae plasmids 
and prophages/phages
MGEs such as plasmids and prophages/phages are 
known as a reservoir for ARGs. A total of 13.0% 
(21,134/162,001) of our assembled ACCs were predicted 
to be plasmid sequences, and 2.0% (3234/162,001) of 
ACCs contained prophage/phage sequences (Fig.  3a, b). 
These sequences together carried 12.3% (22,571/183,720) 
of the total ARGs. The proportions of plasmid sequences 
differed among human, food, and environmental sam-
ples (Kruskal–Wallis test, P < 2.2 × 10−16), with food sam-
ples exhibiting the highest ratio of plasmid sequences 
compared with human fecal and environmental samples 
(Fig.  3c). Seen from the ARG composition, the plasmid 
sequences in food, fly, and surface water samples were 
found to carry more multidrug resistance genes (Addi-
tional file 1: Fig. S4a). Replicon-based typing of the plas-
mid sequences identified 113 plasmid types that were 
associated with 102 ARG subtypes (Additional file  1: 
Fig.  S4b), with IncQ1 (n = 20), and rep_cluster_1232 
(n = 10) were the top frequently encountered replicons. 
To investigate the potential of these plasmid types in dis-
seminating ARGs, we searched the PLSDB database for 
the replicons we identified in our samples and annotated 
the ARGs carried by the known plasmid sequences (Addi-
tional file  1: Fig.  S4c). In total, 291 ARG subtypes were 
found to be carried by the 113 plasmid types, and plas-
mids with replicon of IncHI2A/rep_cluster_1088 carried 

the highest number of ARG subtypes (n = 106), followed 
by IncFIB (n = 101) and IncR (n = 77). Among these 291 
subtypes in the database, 24.4% (n = 71) were found car-
ried by the plasmids found in our samples. Interestingly, 
we found eight ARG subtypes carried by our plasmids 
that have not been reported previously (Fig. 3d and Addi-
tional file 2: Table S15). For example, we showed that tetL 
gene encoding tetracycline efflux protein can be carried 
by rep_cluster_1018/rep_cluster_1118, rep_clsuter_1118, 
and rep_cluster_2013 type plasmids.

The prophage/phage fragments found in our sam-
ples were predominantly from the family Peduoviridae 
(11.3% in human fecal samples, 33.8% in food samples, 
and 21.5% in environmental samples; Additional file  1: 
Fig.  S5a–c). Glycopeptide and peptide resistance genes 
were found to be more abundant in prophages/phages 
from both human and fecal samples, while the unclassi-
fied DNA binding protein H-NS was highly represented 
in phages from food samples (Additional file 1: Fig. S5d 
and Additional file 2: Table S16). The glycopeptide resist-
ance gene vanU and the peptide resistance gene ugd 
were the two common phage/prophage ARGs found in 
all three groups of samples. Taking human fecal samples 
as an example, we found that the frequency of occur-
rence of each ARG among our samples was highly con-
sistent with that in the Gut Phage Database (GPD) of 
human gut phages (Spearman’s correlation, R2 = 0.852, 
P = 5.8 × 10−12; Fig.  3e). We then predicted the hosts 
of the prophages/phages and found that Bacillota and 
Pseudomonadota were found to be the main hosts of the 
phages at the phylum level (Additional file  1: Fig.  S5e), 
and Enterobacteriaceae was the main host at the family 
level (Fig. 3f ), especially for prophages/phages in samples 
from chickens, flies, and surface water (Additional file 1: 
Fig. S5f ). A total of 24 ARG subtypes were found carried 
by the Enterobacteriaceae prophages/phages, including 
genes encoding multidrug and tetracycline resistance.

Regional AMR dissemination mediated by horizontal gene 
transfer (HGT) and strain transmission
We then investigated ARG transmission among different 
habitats by clustering the ARG nucleotide acid sequences 
from various sources at 100.0% identity and constructed 
ARG-sharing networks (Additional file  1: Fig.  S6a and 
Additional file 2: Tables S17–S19). According to the ARG 
risk ranks classified previously [13], we categorized the 
328 ARG subtypes into six groups (from high- to low-risk 
ranks): Q1 (n = 88), Q2 (n = 45), Q3 (n = 35), Q4 (n = 42), 
RI = 0 (n = 79), and Unknown (n = 41) (Additional file  2: 
Table  S20). We found that ARG subtypes in Q1 had 
higher sharing frequencies than ARG subtypes in other 
categories (Kruskal–Wallis test, P < 2.8 × 10−13; Addi-
tional file  1: Fig.  S6b and Additional file  2: Table  S21). 
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Additionally, there was a higher ratio of ARGs shared 
between human fecal samples and food, animal fecal, 
wastewater, and fly samples (Fig.  4a), especially those 
in the Q1 category (Additional file 1: Fig. S6c). This was 
also the case when different human subgroups were sepa-
rately compared with the food and environmental sub-
groups (Fig. 4b). Typically, compared with other human 
subgroups, the human fecal samples from the vegetarian 
subgroup exhibited the highest ratio of ARGs shared with 
vegetables or fruits (41.9%), while the lowest ratio with 
pork (4.2%). A total of 78 ARGs (Q1) were found to be 
shared in at least one comparison pair between fly, pork, 
vegetables/fruits, and different human subgroups (Fig. 4c 

and Additional file  2: Table  S22), and interestingly, flies 
shared a relatively high ratio of ARGs with food process-
ing workers. Taken together, these results highlight the 
important role of the high-risk ARGs in AMR spread.

We then used StrainPhlAn to create maps of strain-
sharing events between samples to reveal regional strain 
transmission. We showed that 257 species-level genome 
bins (SGBs) were present in at least 20 samples (Addi-
tional file  2: Table  S23). The most prevalent SGB was 
Agathobacter rectalis (n = 328) from the family Lach-
nospiraceae, followed by Blautia wexlerae (n = 311), 
Faecalibacterium prausnitzii (n = 299), Prevotella copri 
(n = 298), and Blautia_A faecis (n = 298). Among six 

Fig. 3  ARGs carried by plasmids and prophages/phages. a The source of ACCs (chromosome, plasmid, or phage). b Proportion of plasmids 
and prophages/phages in all ACCs. c Proportion of plasmid sequences in all ACCs of samples from the three groups. d Comparisons of the plasmid 
replicon-related ARGs discovered in our study with those discovered in the PLSDB database. RC, an abbreviation of rep_cluster; different colors 
represent the outcomes of the comparison (shared, appeared in both our study and the PLSDB database; present, appeared only in our study; 
database, appeared only in the PLSDB database). e Spearman’s correlation between the ratios of ARGs carried by prophages/phages in the human 
samples of this study and in the Gut Phage Database. f Co-occurrence network of the ARGs carried by the prophages/phages sequences 
and the predicted phage hosts. The blue squares represent the families of bacteria; the orange circles represent the ARGs; and the gray lines 
represent the associations between the ARGs and the phage hosts
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Fig. 4  ARG-sharing network and clonal spread. a The ratio of ARGs that are shared between human subgroups and food/environmental subgroups, 
relative to the total shared ARGs between human fecal samples and food/environmental samples. b The proportion of ARGs that are shared 
with different food/environmental subgroups in different human subgroups. c ARG subtypes are shared between samples from different human 
subgroups and samples from vegetables, fruits, pork, and flies. Only ARG subtypes from the risk rank Q1 were considered. d Strain-level phylogenies 
of seven species of the family Enterobacteriaceae. Each node represents a sample containing the corresponding strain. Different colors represent 
samples from different sources. Blue lines indicate that these samples possess the same strain (normalized phylogenetic distance, nGD < 0.1). The 
annotations are the number of samples containing the corresponding strain
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species of Enterobacteriaceae, E. coli (SGB10068) was the 
most prevalent species in our samples (n = 249), consist-
ing of three different strain lineages (I to III). Lineage I 
was the largest group present in 235 samples from mul-
tiple sources, across human, fly, food (pork, chicken, 
vegetables, and fruits), and wastewater. For other spe-
cies in Enterobacteriaceae, the same strain lineage of 
Klebsiella pneumoniae, K. michiganensis, K. ornithino-
lytica, Clostridium freundii, and Enterobacter hormae-
chei was also found shared among samples of different 
origins, mainly human, food (chicken, pork, vegetables, 
and fruits) and fly. Notably, flies may play an important 
role in the transmission of Enterobacteriaceae strains, 
as samples from flies appeared in almost all of the main 
strain lineages in the phylogenetic trees (Fig. 4d). Apart 
from the Enterobacteriaceae, strain transmission events 
between human and other samples were also detected 
for species from other families, including C. perfringens, 
Enterococcus faecium, Weissella confusa, and Streptococ-
cus pasteurianus (Additional file 1: Fig. S7). For example, 
one C. perfringens strain was found in 51 samples across 
human, vegetable/fruit, fly, pork, and chicken, represent-
ing a typical regional strain transmission event of oppor-
tunistic pathogen.

The regional dissemination of carbapenemase genes
To further reveal regional ARG transmission, we selected 
carbapenemase genes as representative ARGs. We iden-
tified a total of 111 subtypes of carbapenemase genes 
in the ACCs from all of our samples (Additional file  2: 
Table S24). OXA-347 (n = 308) was found to be the most 
prevalent gene carried by the ACCs (Additional file  1: 
Fig.  S8a), being predominantly present in human and 
animal fecal samples, and wastewater (Additional file  1: 
Fig. S8b, c).

To uncover the potential transmission of carbapene-
mase genes, we analyzed the sharing events of these genes 
across various sources. A total of 200 unique sequence 
types were identified from the top 20 frequently encoun-
tered carbapenemase genes (1 to 30 distinct sequence 
types per gene), clustering with a cut-off of 100.0% nucle-
otide identity (Additional file 1: Fig. S9). Among these 20 
genes, 11 genes were found to be shared among samples 
of different sources, suggesting complex dissemination 
pathways of these genes. For example, OXA-347, OXA-1, 
OXA-85, and CfiA2 showed a high sharing ratio between 
feces and wastewater. Interestingly, ACT-12 and ORN-1 
showed a high sharing ratio between food and fly sam-
ples, suggesting that flies may serve as mediators for ARG 
cross-transmission. Of note, a sequence type of OXA-50 
was detected in poultry feces, livestock farmers, and food 
processing workers. There were rare instances of shar-
ing events between chicken or pork and poultry or pork 

abstainers. Interestingly, vegans who live together were 
more likely to carry specific carbapenemase genes, such 
as SHV-27, ORN-1, and ACT-28, possibly due to person-
to-person transmission.

We next isolated carbapenem-resistant Enterobacte-
riaceae strains from our 592 samples. In total, 45 resist-
ant isolates affiliated with nine bacterial species were 
identified from 42 samples (Fig. 5a and Additional file 2: 
Table S25). The annotation results indicated that 17 car-
bapenemase gene subtypes were carried by these iso-
lates, among which six subtypes, namely, IMP-4, NDM-3, 
NDM-5, OXA-805, SFO-1, and SHV-61, were only found 
in the pure culture isolates, not in the metagenomic data. 
The carbapenemase genes recovered from these iso-
lates accounted for only a small fraction of the subtypes 
found in the metagenomic data (n = 111), indicating the 
presence of other carriers besides Enterobacteriaceae 
members.

We then clustered each species by including the cor-
responding genomes of the isolates and MAGs that 
were assembled from the metagenomic sequencing data. 
We observed potential transmission of the same strain 
(ANI ≥ 99.0%) harboring different carbapenemase genes 
across different sample sources (Fig.  5b and Additional 
file 2: Table S26). For example, the E. coli strain cluster 1 
carrying different carbapenemase genes (such as NDM-
1, NDM-5, OXA-1, OXA-10, and CTX-M-27) was widely 
distributed among 141 samples covering human fecal 
samples and another seven subgroups (except for sam-
ples from surface water and wastewater). Similar situa-
tions were also found for E. coli strain clusters 2 and 3 
containing NDM-1 or NDM-5, and the K. pneumoniae 
strain cluster carrying SHV-61 or SHV-33. A strain of 
K. ornithinolytica harboring three carbapenemase genes 
(SFO-1, ORN-1, and NDM-1) was found to only be pre-
sent in fly and human samples, again suggesting the sig-
nificant role of fly-mediated transmission of ARGs.

Our metagenomic data showed that carbapenemase 
gene OXA-347 was prevalent in human and animal 
fecal samples, however, we did not recover isolates car-
rying carbapenemase gene OXA-347, probably because 
the SuperCARBA medium used mainly targets Entero-
bacteriaceae bacteria. To determine the host range and 
potential dissemination of OXA-347, we searched for 
this gene among the complete genomes in the data-
base (Additional file  1: Fig.  S10). The OXA-347 gene 
was present in 12 bacterial species associated with two 
known types of plasmid replicons (rep_cluster_663 and 
rep_cluster_1097) in three Bacteroides species (B. fra-
gilis, B. thetaiotaomicron, and B. xylanisolvens) (Fig. 5c 
and Additional file  2: Table  S27) and two unknown 
types of plasmids in Myroides albus and Sphingobac-
terium faecium. Additionally, the chromosome-located 
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OXA-347 gene was found to be frequently flanked by 
insertion sequences such as IS1380, IS91, and IS1595. 
These results suggest a high spread risk of OXA-347 
via horizontal gene transfer. Out of the 12 bacterial 
species possessing OXA-347, four were found to be 

common inhabitants in both human feces and waste-
water samples (Fig. 5d).

Fig. 5  Distribution and transmission of carbapenemase genes. a Phylogenetic tree of 45 carbapenem-resistant isolates was collected in this 
study. The right panel shows the presence of specific carbapenemase genes. b Clusters of MAGs and the isolate genomes in the seven species. 
We clustered each species by including the corresponding genomes of the isolates and the MAGs with a cut-off of 99.0% ANI. Only the species 
found both in MAGs and isolates are present. Different colored circles represent the various sources of the MAGs. Blue squares represent the source 
of the chromosomes. The gray line indicates that the connected MAG and isolate were obtained from the same sample. The rounded blue 
rectangles indicate groups containing the same strain as the origin of the genomes (ANI ≥ 99.0%). The carbapenemase genes found in the isolate 
genomes are labeled. c The co-occurrence network depicts the relationships between the OXA-347 gene and the associated microbes, plasmids, 
and insertion sequences. The blue rectangles represent the microbes; the green hexagon represents the OXA-347 gene; the orange triangles 
represent the plasmid replicons; and the red circles represent the insertion sequences. d Prevalence of the potential OXA-347-carrying microbial 
species revealed in c. Only six species were detected in our data
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Prediction of carbapenem‑resistant strains using 
a machine learning model
We finally constructed random forest models to evaluate 
the potential of utilizing metagenomic sequencing data 
for predicting carbapenem-resistant strains. The results 
showed that all prediction models could achieve an area 
under the curve (AUC) exceeding 0.90 when constructed 
based on microbiome profiles, resistome profiles, or a 
combination of both (Fig.  6a–c). Notably, microbiome 
profiles proved to be robust indicators with an AUC of 
0.939 and a specificity of 0.595. Among the identified 
predictors, Aeromonas hydrophila, Bacilli bacterium, 
Alistipes putredinis, and Blautia wexlerae were consid-
ered strong contributors (Fig. 6d).

Discussion
In this study, we revealed the regional ARG flow among 
humans, food, and the environment in a county-level city 
in China by applying a One Health sampling approach. 
The key findings from this study were (1) antibiotic 
resistomes are habitat-specific, and human or animal 
fecal contamination is an important factor that influences 
the wastewater ARG composition; (2) Enterobacteriaceae 
bacteria together with their plasmids and bacteriophages 
are the main ARG carriers; (3) flies and food may be 
important mediators for the regional spread of ARGs; (4) 
HGT and strain transmission independently or jointly 
contribute to regional AMR dissemination; (5) the car-
bapenemase gene OXA-347 is widely present among 
human and animal gut microbiomes; and (6) a microbi-
ome profile-based machine learning model can predict 
the presence of carbapenem-resistant strains in metagen-
omic samples.

We found that Pseudomonadota bacteria, especially 
those from the Enterobacteriaceae, are the primary driv-
ers that shape the resistome, which is consistent with 
a previous study [15]. The Enterobacteriaceae family 
encompasses numerous pathogens commonly identi-
fied in clinical cultures and poses a major risk to human 
health as a result of their role as primary reservoirs for 
ARGs [16]. Our findings indicate that members of the 
Enterobacteriaceae are also the major ARG carriers in 
non-clinical settings, supporting the use of Enterobac-
teriaceae as indicators for AMR surveillance worldwide 
[17]. Additionally, we showed that Enterobacteriaceae 
carrying carbapenemase genes (SHV-61, NDM-1, OXA-
1) were present in surface water, pork, and fly samples, 
highlighting the potential of regional Enterobacteriaceae-
mediated dissemination of clinically important ARGs.

HGT mediated by MGEs is recognized as the major 
reason for AMR dissemination. ARGs found in MGEs are 
even more “global” than microbes, as illustrated by the 
ability of mobile ARGs to cross habitat boundaries [18]. 
The higher ratio of plasmids sequences in food samples 
we presented here suggests the higher risk of ARG trans-
mission from food to humans (Fig. 3c). Besides plasmids, 
we showed that Enterobacteriaceae prophages/phages 
were also important ARG carriers in both our samples 
and the GPD database (Fig. 3e–f), supporting the signifi-
cant role of phages in the transfer of ARGs [19]. Although 
HGT greatly contributes to ARG dissemination among 
microbial communities, strain transmission or clone 
spread can be regarded as a major route for regional epi-
demics of both AMR and infections. This was strongly 
supported by our finding that a single E. coli strain 
(SGB10068 Lineage I) was present in 235 samples from 
multiple sources, and an E. coli strain (cluster 1) carrying 

Fig. 6  Random forest model to predict the presence of carbapenem-resistant isolates. Performance of the random forest models used to predict 
the presence of carbapenem-resistant isolates, utilizing either microbiome profiles, resistome profiles, or a combination of both. The performance 
indicators, including the area under the curve (a), sensitivity (b), and specificity (c), were computed based on the results obtained from a tenfold 
cross-validation. The numbers displayed at the top represent the mean values of these three indicators. d The importance of the top 20 taxa 
was determined by the random forest model built on the microbiome profiles
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carbapenemase genes was widely distributed among 141 
samples. Notably, different carbapenemase genes were 
found to be carried by the same strain [i.e., E. coli strain 
(cluster 1)], suggesting HGT events (Fig. 4d). These find-
ings imply that regional AMR dissemination involves 
strain transmission accompanied by HGT and ARG 
exchange on MGEs such as plasmids and prophages/
phages. Additionally, the underestimation of carbapen-
emase genes by metagenomics may reflect the fact that 
many are harbored in microbes, especially ARB that are 
difficult to cultivate.

In this study, we observed a high prevalence of the car-
bapenemase gene OXA-347 in human and animal feces, 
as well as in wastewater. OXA-347 is associated with phe-
notypic resistance to penicillin, cephalosporins, and imi-
penem [20]. This gene has been found in species from the 
genera Bacteroides, Myroides, and Capnocytophaga from 
various sources [20–22]. In wastewater samples from 
the swine feedlots, OXA-347 was found the most abun-
dant beta-lactam resistance gene [23], and compared 
with swine fecal samples, the abundance of OXA-347 
was significantly higher in the human gut microbiome 
[24]. Notably, consistent with our results, recent genomic 
analyses suggest that OXA-347 is likely located on MGEs, 
indicating its potential ability to move between microbes. 
Although OXA-347 is currently not considered a major 
clinical concern, given the fact that the administration of 
antibiotics led to an increase in the abundance of OXA-
347, possibly via HGT under selection pressure in the 
human microbiome [25], future research to evaluate its 
potential risk to human health should be a priority.

The dissemination of AMR among humans, animals, 
and environments includes both direct and indirect path-
ways involving various One Health interfaces [26]. Stud-
ies have suggested that food may act as a reservoir of ARB 
[27], indicating the critical role of diet in the transmis-
sion of ARGs from food to humans. This was evidenced 
by our finding that vegetarians shared more ARGs from 
vegetables or fruits than from pork. We also showed that 
vegetable/fruit microbes carried a relatively higher abun-
dance of ARGs, probably because vegetables are accessi-
ble to microbial contamination via different routes such 
as manure fertilization and wastewater irrigation [28]. In 
addition to diet, we identified flies as a key environmental 
factor that facilitates ARG dissemination. Fly microbes 
were found to carry the highest relative abundance of 
ARGs among all the subgroup samples, and frequently 
shared Enterobacteriaceae strains as well as carbapen-
emase genes with other samples (Fig. 4d). As a result of 
their omnivorous diet and breeding habits [29], flies may 
play a significant but neglected role in the spread and 
transmission of pathogens and ARGs among the One 
Health sectors. Our findings highlight the importance 

of the vegetable- and fly-mediated ARG transmission 
routes and strongly suggest that these may be new points 
of intervention for the control of ARG spread. Addition-
ally, we found potential person-to-person transmission 
of carbapenemase genes among vegan communes and 
showed the flow of the carbapenemase gene along the 
food supply chain (Additional file  1: Fig.  S9), providing 
specific examples of the impact of lifestyle, dietary habits, 
and occupational exposure on the transmission of ARG 
to humans. Taken together, these results highlight the 
potential routes of the AMR spread, especially through 
the food-chain dissemination pathway and occupational 
exposure.

Conclusions
In summary, we give a landscape of regional ARG flow 
among humans, food, and the environment in a city in 
China. We highlight that the resistome profiles in sam-
ples of different origins showed habitat specificity, and 
Pseudomonadota members are the major contributors 
shaping the resistome through strain transmission and/
or MGEs (plasmids and prophages or phages)-mediated 
HGT. We suggest that lifestyle, dietary habits, and occu-
pational exposure are all risk factors that contribute to 
the spread of ARGs to humans. We also have evidence 
that the integration of metagenomic sequencing data and 
machine learning techniques could serve as a valuable 
approach for the surveillance of carbapenem-resistant 
strains. Collectively, the regional antimicrobial resist-
ance gene flow we presented here provides real evidence 
of the AMR dynamics among the One Health sectors, 
and our findings highlight new points of focus for AMR 
surveillance and control in the future. We should stress 
that efforts are still needed to probe seasonal influences 
on the regional antimicrobial resistance gene flow, which 
was not taken into account in this study.

Methods
Sample collection
From October 2018 to April 2019, we collected a total 
of 592 samples from Dengfeng, Henan Province, China 
(Additional file 3), deriving from humans, food, and the 
environment. In detail, we collected fecal samples from 
individuals with various dietary patterns, including 
omnivores (n = 49), vegetarians (n = 49), pork abstainers 
(n = 50), chicken abstainers (n = 46), and aquatic prod-
uct abstainers (n = 44). We also collected fecal samples 
from humans with different lifestyles or occupational 
exposures, including vegan communes (n = 68), board-
ing students (n = 48), food processing workers (n = 50), 
and livestock farmers (n = 50). Additionally, 51 sam-
ples from various food sources were collected, includ-
ing pork (n = 13), chicken (n = 11), and vegetables and 
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fruits (n = 27); and 87 samples from different environ-
ments were collected, including soil (n = 10), surface 
water (n = 9), wastewater (n = 4), flies (n = 20), poultry 
feces (n = 24), and swine feces (n = 20). All samples were 
used for culturing carbapenem-resistant microbes and 
metagenomic sequencing.

DNA extraction and metagenomic sequencing
For metagenomic sequencing, DNA extraction was per-
formed using the QIAamp Power Fecal DNA Kit (Qiagen, 
Hilden, Germany), following the manufacturer’s instruc-
tions. The DNA concentration was measured using a 
Qubit dsDNA Assay Kit and Qubit 2.0 fluorometer (Life 
Technologies, CA, USA), and the integrity was assessed 
using 0.8% agarose gel electrophoresis. Libraries were 
constructed using the MGIEasy FS DNA Library Prep 
Set (MGI Tech, Shenzhen, China). A paired-end library 
with an insert size of ~ 350 bp was constructed for each 
sample and sequenced on the MGISEQ-2000RS platform 
(MGI Tech). To avoid potential contamination indicated 
in a previous study [30], we also incorporated negative 
controls during the processes of library construction and 
metagenomic sequencing. The metagenomic sequencing 
of the 592 samples generated a total of 3492.7 Gb (6.0 Gb 
per sample after quality control, with a standard devia-
tion of 1.9 Gb).

Microbiome profiling and resistome profiling
For the metagenomic sequencing data, we excluded 
low-quality bases and residual adapter contamination 
using Trim Galore (https://​github.​com/​Felix​Krueg​er/​
TrimG​alore). To remove human DNA contamination, 
the sequencing data were mapped to the human genome 
(hg38) using Bowtie2 v2.3.5.1 [31]. Taxonomic profiling 
of the metagenomic sequencing samples was performed 
using MetaPhlAn v4.0.2 [32] with default parameters. 
The construction of the sample-specific strains of all spe-
cies was performed on the samples using StrainPhlAn 
v4.0.2 [33]. We considered SGBs that met the following 
criterion: present in at least three samples in one sub-
group of both human and food or environmental origin. 
To detect strain-sharing events, we first calculated the 
SGB-specific normalized phylogenetic distance (nGD) 
using pyphlan (https://​github.​com/​Segat​aLab/​pyphl​an). 
Strain boundaries were set to below the threshold of 0.1 
of the nGD. Resistome profiling of the samples was per-
formed using deepARG v2 [34] with the pipeline short-
read pipeline to predict ARGs directly from short reads. 
The diversity of the microbiome and the resistome was 
calculated using the R package vegan v2.6–4.

The presence of the crAssphage genome was regarded 
as an indicator of human or animal fecal contamina-
tion [35]. We used Bowtie v2.3.5.1 [31] to align the clean 

metagenomic sequencing reads to the reference genomes 
of Carjivirus communis (JQ9955537.1) and Bacteroides 
phage B40-8 (NC_011222.1), as recommended previously 
[14]. The average coverage of each phage genome was 
calculated using SAMtools v1.9 [36]. Subsequently, the 
phage coverage was normalized by the data size of each 
sample (copies/Gb) to compare the profiles among the 
samples from various sources.

ExtrARG [37], a machine-learning approach using the 
extremely randomized tree algorithm, was utilized to 
identify discriminatory ARGs. Values with an importance 
greater than 0.004 were considered biomarkers from 
various sources. To identify the taxa that were associated 
with the resistome profiles, we applied feature selection 
by sorting the mean decrease in Gini values generated by 
the R package randomForest v4.7–1.1.

Metagenomic assembly and genome binning
The clean reads from each set of metagenomic sequenc-
ing data were independently assembled using MEGAHIT 
v1.1.3 [38]. For metagenomic binning, three methods, 
namely MetaBAT2 v2.12.1 [39], Maxbin2 v2.2.6 [40], 
and Concoct v1.0.0 [41], were used. A superior bin set 
from multiple original binning predictions was produced 
using the bin_refinement [42] module of metaWRAP 
v1.3.2 [43]. This module combines the three original 
binning predictions. The completeness and contamina-
tion of each bin from the superior bin set were evaluated 
using CheckM v1.0.12 [44]. Then, bins with a complete-
ness of ≥ 70.0% and a contamination rate of ≤ 10.0% were 
retained. All MAGs were dereplicated at 99.0% ANI and 
95.0% ANI using dRep v2.6.2 [45]. The bin annotation 
pipeline of CAT v5.2.3 [46] was used to assign taxonomy 
to MAGs. A genome was classified as a novel species if 
the ANI output was less than 95.0%. We also compared 
the MAGs with the isolate genomes by clustering at 
99.0% ANI. The phylogenetic trees were inferred using 
PhyloPhlAn v3.0.60 [47].

Correlations between the MGEs and the microbiome
To determine the correlations between the resistome 
and both the microbiome (at the phylum level) and the 
MGEs in Additional file 1: Fig. S3b, the abundance matri-
ces were analyzed through Procrustes analysis and a 
“protest” test. Here, the abundance of MGEs and the 16S 
rRNA sequence for each sample was calculated by map-
ping to the MobileGeneticElement [48] and SILVA [49] 
databases, respectively. The MGE profiles were normal-
ized by the copies of MGEs per 16S rRNA gene.

ARG annotation and taxonomic assignment of ACCs
The gene contents in the assembled contigs were pre-
dicted using GeneMark-HM v2.07 [50], and ARGs were 

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/SegataLab/pyphlan
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further predicted using the “DeepARG-LS” mode of 
deepARG. To maintain consistency with the taxonomic 
assignment of the MAGs, we also utilized the contig 
annotation tool in CAT to predict the taxonomic assign-
ment of the ACCs. To reveal the risk ranks of the dis-
covered ARGs, the ARGs identified by deepARG were 
re-annotated against CARD [51] to ensure consistency 
with the risk rank assignments made in a previous study 
[13]. The ARG load index at different taxonomic levels 
was calculated using the following formula: the propor-
tion of ARGs assigned to each taxon divided by the aver-
age relative abundance of the corresponding taxon.

Analyses of plasmid and prophage/phage sequences
We used geNomad v1.5.2 [52], a classification and anno-
tation framework, to find plasmid and prophage/phage 
sequences from the ACCs. Taxonomic assignment of the 
phage fragments generated from ACCs was performed 
using PhaGCN2 [53], followed by host prediction using 
HostG [54]. Because some segments of the ACCs con-
tained both prophage fragments and microbial genomes, 
we extracted the ARGs located within the prophage 
fragments using local scripts. The predicted plasmid 
sequences were typed using the mob_typer method 
implemented in MOB-suite v3.1.0 based on the replicon, 
relaxase, and cluster assignment [55]. This method pro-
vides in silico predictions of the replicon family, relaxase 
type, mate-pair formation type, and predicted transfer-
ability of the plasmid. The ARG annotation of the pre-
dicted prophage/phage-related and plasmid-related 
ACCs followed the aforementioned guidelines.

To reveal the prophage/phage-associated ARGs on a 
global scale, we downloaded the GPD [56], a collection of 
142,809 non-redundant viral genomes obtained by min-
ing a dataset of 28,060 globally distributed human gut 
microbiomes. The ARG annotation followed the same 
pipeline as mentioned above. We established the poten-
tial connections between the plasmid replicon types and 
the ARGs through further analysis of the PLSDB data-
base [57], a plasmid database obtained from the NCBI 
nucleotide database, which comprises 34,513 sequences.

Determination of ARG‑sharing networks
Over a shorter time span, the substitution rate of bacte-
ria typically falls within the range of ~ 1 single nucleotide 
polymorphism per genome per year [58]. Thus, as sug-
gested by a previous study [59], the recently transmitted 
ARGs should have identical sequences (100.0% identity) 
between two sources, considering the length of the ARGs. 
To identify potential ARG transmission among various 
sources, we conducted the following steps: (1) cluster-
ing of the DNA sequences of the ARGs discovered in the 
metagenomic assemblies from each source, with 100.0% 

identity and 85.0% coverage, using the scripts provided 
by checkV v1.0.1 [60] to generate the non-redundant set 
of ARGs from various sources; and (2) comparing the 
non-redundant sets of ARGs from various sources and 
constructing the ARG-sharing network between human 
and other samples.

Isolation and antimicrobial susceptibility testing 
of carbapenem‑resistant strains
SuperCARBA (CHROMagar, Paris, France) was used to 
isolate carbapenem-resistant bacteria, mainly Entero-
bacteriaceae. Colonies with various morphologies were 
selected from each Petri dish. A matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry 
system (Zybio Inc., Chongqing, China) was used for the 
early identification of isolates.

Antimicrobial susceptibility testing of 28 antimi-
crobial agents (amikacin, amoxicillin-clavulanate, 
ampicillin-sulbactam, aztreonam, cefazolin, cefepime, 
cefoperazone-sulbactam, cefoxitin, ceftazidime, ceftriax-
one, cefuroxime, chloramphenicol, ciprofloxacin, colistin, 
ertapenem, gentamicin, imipenem, levofloxacin, merope-
nem, minocycline, moxifloxacin, nitrofurantoin, norflox-
acin, piperacillin-tazobactam, tetracycline, tigecycline, 
tobramycin, and trimethoprim-sulfamethoxazole) was 
performed using the agar dilution method following the 
standards and guidelines of the Clinical and Laboratory 
Standards Institute M100-2022 (V32) [61]. E. coli ATCC 
25922 and Enterococcus faecalis ATCC 29212 were used 
as quality control strains in each run.

To obtain a more comprehensive view of carbap-
enem resistance gene carriage in bacteria, we analyzed 
the carbapenemase genes in complete genomes (41,185 
genomes) downloaded from the National Center for 
Biotechnology Information (NCBI, July 29th, 2023) by 
CARD. We then used ISEScan v1.7.2.3 [62] to identify 
the insertion sequence elements surrounding the carbap-
enemase gene OXA-347. To determine the association 
between insertion sequences and ARGs on plasmids, the 
adjacent sequences, i.e. 5  kb upstream and downstream 
of ARGs, were extracted as previously suggested [63].

Genome sequencing and bioinformatic analyses 
of the isolates
For whole-genome sequencing, the genomic DNA of the 
49 carbapenem-resistant isolates was extracted using a 
Wizard Genomic DNA Extraction Kit (Promega, Madi-
son, WI, USA). The DNA concentration was measured 
using a Qubit dsDNA Assay Kit and a Qubit 2.0 fluorom-
eter (Life Technologies), and the integrity was assessed 
using 1.0% agarose gel electrophoresis. Libraries were 
constructed using the MGIEasy FS DNA Library Prep Set 
(MGI Tech, Shenzhen, China). A paired-end library with 
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an insert size of 350 bp was constructed for each sample 
and sequenced on the MGISEQ-200RS platform (MGI 
Tech, Shenzhen, China).

Before assembling the microbial genomes, we per-
formed quality control using Trim Galore (https://​github.​
com/​Felix​Krueg​er/​TrimG​alore). The sequence reads 
were assembled using Unicycler v0.4.8 [64] with default 
parameters, followed by annotation using Prokka v1.13.3 
[65]. To remove duplicate genomes from the same sam-
ple, we estimated genome similarity by calculating the 
pairwise Mash distance using Mash v2.3 [66] and remov-
ing the duplicated genomes with MASH distances less 
than 0.001. Phylogenetic trees of all isolates were con-
structed using PhyloPhlAn with the default parameters. 
We estimated maximum likelihood trees for microbial 
genomes of the same species from isolates and MAGs 
using IQ-TREE 2 v2.1.4-beta [67]. The best-fitting substi-
tution model was automatically selected using the Mod-
elFinder [68] program implemented in IQ-TREE 2 and 
performed with 1000 bootstrap replicates. The ARGs 
from the microbial genomes were annotated against 
CARD. All draft genomes of the isolates and MAGs 
belonging to the same strain were clustered at 99.0% ANI 
using dRep.

Predictive random forest models
Random forest models were utilized to forecast the pres-
ence of carbapenem-resistant isolates based on micro-
biome profiles, resistome profiles, or a combination of 
both, across 592 samples. To assess the predictive perfor-
mance of these random forest classification models, we 
used three indicators (AUC, sensitivity, and specificity), 
derived from a tenfold cross-validation in this study. In 
this process, the dataset was randomly divided into 10 
equal subsets. During each iteration, nine subsets were 
used for model training, while the remaining subset was 
used for prediction. The values of each iteration were 
recorded. These analyses were performed using the R 
packages randomForest v4.7–1.1 and caret v6.0–94.

Statistical analysis and visualization
Differential analyses were performed by Wilcoxon rank 
sum tests or Kruskal–Wallis tests. When analyzing more 
than two groups, multiple comparisons were conducted 
using the R package agricolae v1.3–7. For beta diversity 
statistical analyses, the “adonis” function from the R 
package vegan v2.6–4 and the “pairwise.adonis” function 
from the R package pairwiseAdonis v0.4.1 were utilized. 
We employed Procrustes analysis to establish correla-
tions among various profiles using the “procrustes” func-
tion of the R package vegan v2.6–4. The correlations were 
determined by the “protest” function of the R package 

vegan v2.6–4. The correlations between two variables in 
this study were calculated using the R function “cor.test”.

The intersecting sets were analyzed using the R pack-
age UpSetR v1.4.0 [69]. The co-occurrence networks 
were visualized using Cytoscape v3.10.1 [70]. The heat-
maps were visualized using the R package ComplexHeat-
map v2.16.0 [71]. The phylogenetic trees were visualized 
using the R package ggtree v3.8.2 [72] or iTOL v5 [73]. 
Figures were visualized primarily using the R packages 
ggplot2 v3.4.4 and patchwork v1.1.3.

Abbreviations
ACC​	� ARG-carrying contig
ANI	� Average nucleotide identity
AUC​	� Area under the curve
AMR	� Antimicrobial resistance
ARB	� Antimicrobial-resistant bacteria
ARG​	� Antimicrobial resistance gene
GPD	� Gut Phage Database
HGT	� Horizontal gene transfer
MAG	� Metagenome assembled genome
MGE	� Mobile genetic element
MLS	� Macrolide-lincosamide-streptogramin
NCBI	� National Center for Biotechnology Information
nGD	� Normalized phylogenetic distance
PCoA	� Principal coordinate analysis

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​024-​01983-x.

Additional file 1: Fig. S1: The abundance of the ARG types. (a) Average 
abundance of the main ARG types in various subgroups. (b) The abun-
dance of the top 10 ARG types in the three groups. (c) The abundance of 
the 40 ARG types in all subgroups. Left panels: the ARG types (n = 20) with 
relative higher abundance; right panels: the ARG types (n = 20) with rela-
tive lower abundance. Fig. S2: Diversity analysis of the resistome profiles. 
(a) The Shannon indices of the resistome profiles. (b) Axis 1 values of PCoA 
of the resistome profiles from various subgroups. (c) Bray–Curtis distances 
between the resistome profiles of various human fecal samples and those 
from food and environmental samples. Figure S3: Metagenome-assem-
bled genomes and ACC taxonomic assignment. (a) Phylogenetic tree of 
the 1,302 MAGs at the species level. A total of 14,787 MAGs (complete-
ness ≥ 70.0% and contamination ≤ 10.0%) were constructed in this study. 
The novel species are labeled with light blue bars in the outer ring. The 
color of the inner ring represents the class level of the MAG. (b) Procrustes 
analysis of the correlations between the resistome and both MGEs and 
the microbiome in the three groups. The correlations were calculated by 
the function “protest” in R package vegan. (c) Proportion of taxonomic 
assignment of the ACCs by the software CAT. CAT exploits homology 
searches of individual open reading frames to classify ACCs directly. (d) 
The taxonomic assignment performance of the two methods based on 
the 54,831 ACCs, which were binned into MAGs out of 162,001 ACCs. (e) 
Proportion of the taxonomic assignment of the ACCs with the integration 
of taxonomic information of MAGs. Figure S4: Plasmid-associated ARGs. 
(a) The proportion of ARG types carried by plasmids in the different sub-
groups. (b) Co-occurrence network between plasmid replicon types and 
the ARGs revealed by the ACCs. The brown rounded rectangles represent 
the plasmid replicons, the colored circle nodes represent the ARG types, 
and the gray lines represent the associations between the ARGs and the 
plasmid replicons. (c) An expanded association between the ARGs identi-
fied in (b) and the plasmid types identified by integrating the results from 
the PLSDB database. The brown squares represent the plasmid replicons; 
the colored circles represent the ARG types; and the gray lines represent 
the associations between the ARGs and the plasmid replicons. Figure 
S5: Analysis of the prophages/phages identified from ACCs. The ratio of 
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different taxa of prophage/phage identified in samples from human 
(a), food (b), and environmental (c) sources. (d) Proportion of ARGs 
carried by phage/prophage fragments. Host prediction of prophage 
fragments at the phylum (e) and family (f ) levels. Figure S6: Analysis of 
the ARG-sharing events. (a) ARG-sharing network. A cluster of shapes 
represents an ARG subtype shared among certain subgroups. The 
color of each node indicates the subgroup, while the different shapes 
represent human, food, and environmental samples. The size of the 
circle corresponds to the frequency of shared events. (b) Frequency 
of ARG-sharing events in the different risk ranks. Unknown represents 
the ARGs without a classification. (c) The ratio of ARGs found in food 
and environmental subgroups shared with human fecal groups. Figure 
S7: Strain-level phylogenies of species present in all 592 samples. Each 
node represents the main strain of a sample. Different colors represent 
various subgroups. Light blue rectangles indicate phylogenetic trees of 
the same strain (nGD < 0.1). The annotations are the number of samples 
harboring the same strain. Figure S8: Distribution of carbapenemase 
genes found in the metagenomic sequencing data. (a) The prevalence 
rates of the top 20 carbapenemase genes in all 592 samples. The ratio 
of positive samples for carbapenemase genes in the three groups 
(b) and the 17 subgroups (c). The numbers labeled on cells represent 
the ratio of positive samples for each carbapenemase gene. Figure 
S9: Phylogenetic trees of the top 20 carbapenemase genes. In the 
phylogenetic tree, each branch represents a sequence type of the 
carbapenemase gene. Orange circle nodes in the phylogenetic trees 
represent the reference carbapenemase gene sequences from CARD. 
Heatmap illustrates the prevalence of each sequence type in the differ-
ent subgroups, and the color of the cells reflects the number of positive 
samples. The red border of each cell represents the sharing events of 
the carbapenemase gene across the different subgroups. Figure S10: 
Co-occurrence network of carbapenemase genes and their associated 
hosts identified in complete genomes. The carbapenemase genes 
includes those from both metagenomic sequencing data and the strain 
genomic data in our study. The blue nodes represent microbes; the 
orange nodes represent plasmid replicons, the green nodes represent 
the ARGs, and the gray lines represent the locations of the ARGs.

Additional file 2: Table S1: Sample information and sequencing 
statistics, related to Fig. 1a. Table S2: Statistics of the top 10 ARG types, 
related to Fig. 1b. Table S3: Average abundance of the Top 10 ARG 
types in different subgroups (copies per copy of 16S rRNA gene), 
related to Fig. S1a. Table S4: Statistical tests for the abundance of ARG 
types among different groups, related to Fig. S1b. Table S5: Statisti-
cal tests for the abundance of the 40 ARG subtypes (Kruskal–Wallis 
test), related to Fig. S1c. Table S6: Pairwise permutational multivari-
ate ANOVA (PERMANOVA) for resistome profiles in the three groups, 
related to Fig. 1f. Table S7: Abundance of bacteriophages B40-8 and 
crAssphage, related to Fig. 1g. Table S8: Taxonomic assignment of the 
MAGs, related to Fig. S3a. Table S9: Pairwise permutational multivari-
ate ANOVA (PERMANOVA) for the microbial compositions, related to 
Fig. 2c. Table S10: Variable importance, related to Fig. 2e. Table S10 
Variable importance, related to Fig. 2e. Table S11: Statistical tests for 
the abundance of the six taxa, related to Fig. 2f. Table S12: Correlations 
between the abundance of the six taxa and the abundance/alpha-
diversity of the resistome profiles, related to Fig. 2g. Table S13: Raw and 
improved taxonomic assignment of ACCs, related to Fig. S3e. Table S14: 
ARG load index of the ACCs at different taxonomic levels. Table S15: 
Plasmid replicons and their associated ARGs shared between human 
and food/environment, related to Fig. 3d. Table S16: Main ARGs carried 
by the phages/prophages, related to Fig. S5d. Table S17: Statistics of 
ARG sequence types in different subgroups. Table S18: Sharing events 
in the ARG-sharing network, related to Fig. S6a. Table S19: Statistics 
of the ARGs in the ARG-sharing network, related to Fig. S6a. Table 20: 
Number of ARGs from different risk ranks. Table S21: Statistics of ARGs 
shared between human and both food and environmental samples. 
Table S22: Number of sharing events between human and three poten-
tial sources, related to Fig. 4c. Table S23: Prevalence of SGBs detected in 
the present study, related to Fig. 4d and Fig. S7. Table S24: Number of 
carbapenemase genes found in the ACCs, related to Fig. S8a. Table S25: 
Antimicrobial susceptibility testing of carbapenem-resistant strains. 

Table S26: Clusters of the isolate genomes and the MAGs, related to 
Fig. 5b. Table S27: Host and genetic environment of OXA-347 revealed in 
the 14,875 complete genomes, related to Fig. 5c

Additional file 3: Introduction to Dengfeng

Acknowledgements
Not applicable.

Authors’ contributions
X.L., Y.Y.Z., D.W., Y.H., and B.K. designed and supervised the study; Y.F., X.L., and 
Y.H. planned the methodology; Y.F. wrote the draft; Y.W., X.L., D.W., Y.H., and B.K., 
edited and reviewed the draft and provided critical comments; J.Z., H.L., J.X., 
Z.L., M.W., Y.P., T.T., G.Y., Y.Z., J.L., G.Q., Y.M., and W.G. carried out the experiments 
and collected the samples; Y.F., M.Z., and A.L.T.Z.L. performed the data analysis 
and visualization of the analyzed data, and X.L., and B.K. acquired the funding. 
All of the authors read and approved the final manuscript.

Funding
This work was supported by the National Key Research and Development 
Program of China (2022YFC2303900) and the major projects of the National 
Natural Science Foundation of China (22193064).

Data availability
All of the sequencing data have been deposited in the National Microbiol-
ogy Data Center under accession numbers NMDC10018630 (https://​nmdc.​
cn/​resou​rce/​genom​ics/​proje​ct/​detail/​NMDC1​00186​30) and NMDC10018667 
(https://​nmdc.​cn/​resou​rce/​genom​ics/​proje​ct/​detail/​NMDC1​00186​67).

Declarations

Ethics approval and consent to participate
This study was conducted in compliance with the recommendations of the 
Declaration of Helsinki and the Ethics Committee of the Institute of Infectious 
Disease Prevention and Control, Henan Center for Disease Control and Preven-
tion (ethical approval number: 2015-YM-006–02).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 State Key Laboratory of Animal Nutrition and Feeding, College of Animal 
Science and Technology, China Agricultural University, Beijing 100193, China. 
2 National Key Laboratory of Intelligent Tracking and Forecasting for Infectious 
Diseases, National Institute for Communicable Disease Control and Preven-
tion, Chinese Center for Disease Control and Prevention, Beijing 102206, 
China. 3 Institute of Infectious Disease Prevention and Control, Henan Center 
for Disease Control and Prevention, Zhengzhou 450016, China. 4 Dengfeng 
Center for Disease Control and Prevention, Dengfeng, Zhengzhou 452470, 
China. 5 School of Light Industry Science and Engineering, Beijing Technol-
ogy and Business University, Beijing 100048, China. 6 School of Public Health, 
Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, 
China. 7 NHC Key Laboratory of Food Safety Risk Assessment, China National 
Center for Food Safety Risk Assessment, Beijing 100022, China. 

Received: 11 June 2024   Accepted: 19 November 2024

References
	1.	 Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and 

combating antibiotic resistance from One Health and Global Health 
perspectives. Nat Microbiol. 2019;4:1432–42.

	2.	 Hu Y, Liu D, Jin X, Feng Y, Guo Y. Synthetic microbiome for a sustainable 
poultry industry. Innovation. 2023;4:100357.

https://nmdc.cn/resource/genomics/project/detail/NMDC10018630
https://nmdc.cn/resource/genomics/project/detail/NMDC10018630
https://nmdc.cn/resource/genomics/project/detail/NMDC10018667


Page 17 of 18Feng et al. Microbiome            (2025) 13:3 	

	3.	 Liu J-H, Liu Y-Y, Shen Y-B, Yang J, Walsh TR, Wang Y, et al. Plasmid-mediated 
colistin-resistance genes: mcr. Trends Microbiol. 2024;32:365–78.

	4.	 Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 
positive bacteria in the New Delhi environment and its implications for 
human health: An environmental point prevalence study. Lancet Infect 
Dis. 2011;11:355–62.

	5.	 Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of 
plasmid-mediated colistin resistance mechanism MCR-1 in animals and 
human beings in China: A microbiological and molecular biological 
study. Lancet Infect Dis. 2016;16:161–8.

	6.	 He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-
mediated high-level tigecycline resistance genes in animals and humans. 
Nat Microbiol. 2019;4:1450–6.

	7.	 Sun J, Chen C, Cui C-Y, Zhang Y, Liu X, Cui Z-H, et al. Plasmid-encoded 
tet(X) genes that confer high-level tigecycline resistance in Escherichia 
coli. Nat Microbiol. 2019;4:1457–64.

	8.	 Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecast-
ing the dissemination of antibiotic resistance genes across bacterial 
genomes. Nat Commun. 2021;12:2435.

	9.	 Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, et al. 
Genomic surveillance for antimicrobial resistance-a One Health perspec-
tive. Nat Rev Genet. 2024;25:142–57.

	10.	 Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome-wide 
analysis of antibiotic resistance genes in a large cohort of human gut 
microbiota. Nat Commun. 2013;4:2151.

	11	 Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, et al. 
Urban wildlife crisis: Australian silver gull Is a bystander host to wide-
spread clinical antibiotic resistance. eSystems. 2022;7:e0015822.

	12.	 Valiatti TB, Bessa-Neto FO, Santos FF, Silva RGB, Veiga R, Cassu-Corsi D, 
et al. Clonal dissemination of highly virulent Serratia marcescens strains 
producing KPC-2 in food-producing animals. One Health. 2023;17:100591.

	13.	 Zhang Z, Zhang Q, Wang T, Xu N, Lu T, Hong W, et al. Assessment 
of global health risk of antibiotic resistance genes. Nat Commun. 
2022;13:1553.

	14.	 Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A 
highly abundant bacteriophage discovered in the unknown sequences 
of human faecal metagenomes. Nat Commun. 2014;5:4498.

	15.	 Munk P, Knudsen BE, Lukjacenko O, Duarte ASR, Van Gompel L, 
Luiken REC, et al. Abundance and diversity of the faecal resistome in 
slaughter pigs and broilers in nine European countries. Nat Microbiol. 
2018;3:898–908.

	16	 Pan Y, Zeng J, Li L, Yang J, Tang Z, Xiong W, et al. Coexistence of antibiotic 
resistance genes and virulence factors deciphered by large-scale com-
plete genome analysis. mSystems. 2020;5:e00821-19.

	17.	 Baker M, Zhang X, Maciel-Guerra A, Dong Y, Wang W, Hu Y, et al. Machine 
learning and metagenomics reveal shared antimicrobial resistance 
profiles across multiple chicken farms and abattoirs in China. Nat Food. 
2023;4:707–20.

	18.	 Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, Navar-
rete KM, et al. Interconnected microbiomes and resistomes in low-
income human habitats. Nature. 2016;533:212–6.

	19.	 Debroas D, Siguret C. Viruses as key reservoirs of antibiotic resistance 
genes in the environment. ISME J. 2019;13:2856–67.

	20.	 Zangenah S, Andersson AF, Özenci V, Bergman P. Genomic analysis 
reveals the presence of a class D beta-lactamase with broad substrate 
specificity in animal bite associated Capnocytophaga species. Eur J Clin 
Microbiol Infect Dis. 2017;36:657–62.

	21.	 Ming D-S, Chen Q-Q, Chen X-T. Analysis of resistance genes in pan-
resistant Myroides odoratimimus clinical strain PR63039 using whole 
genome sequencing. Microb Pathog. 2017;112:164–70.

	22.	 Schlesinger DJ, Shoemaker NB, Salyers AA. Possible origins of CTnBST, a 
conjugative transposon found recently in a human colonic Bacteroides 
strain. Appl Environ Microbiol. 2007;73:4226–33.

	23.	 Wang M, Xiong W, Liu P, Xie X, Zeng J, Sun Y, et al. Metagenomic insights 
into the contribution of phages to antibiotic resistance in water sam-
ples related to swine feedlot wastewater treatment. Front Microbiol. 
2018;9:2474.

	24.	 Wang C, Song Y, Tang N, Zhang G, Leclercq SO, Feng J. The shared 
resistome of human and pig microbiota is mobilized by distinct genetic 
elements. Appl Environ Microbiol. 2021;87:e01910-e1920.

	25.	 Willmann M, El-Hadidi M, Huson DH, Schütz M, Weidenmaier C, Aut-
enrieth IB, et al. Antibiotic selection pressure determination through 
sequence-based metagenomics. Antimicrob Agents Chemother. 
2015;59:7335–45.

	26.	 Hu Y, Gao GF, Zhu B. The antibiotic resistome: gene flow in environments, 
animals and human beings. Front Med. 2017;11:161–8.

	27.	 Losasso C, Di Cesare A, Mastrorilli E, Patuzzi I, Cibin V, Eckert EM, et al. 
Assessing antimicrobial resistance gene load in vegan, vegetarian and 
omnivore human gut microbiota. Int J Antimicrob Agents. 2018;52:702–5.

	28.	 Heaton JC, Jones K. Microbial contamination of fruit and vegetables and 
the behaviour of enteropathogens in the phyllosphere: A review. J Appl 
Microbiol. 2008;104:613–26.

	29.	 Stelder JJ, Kjær LJ, Jensen LB, Boklund AE, Denwood M, Carlsen M, et al. 
Livestock-associated MRSA survival on house flies (Musca domestica) and 
stable flies (Stomoxys calcitrans) after removal from a Danish pig farm. Sci 
Rep. 2021;11:3527.

	30.	 Olomu IN, Pena-Cortes LC, Long RA, Vyas A, Krichevskiy O, Luellwitz R, 
et al. Elimination of “kitome” and “splashome” contamination results in 
lack of detection of a unique placental microbiome. BMC Microbiol. 
2020;20:157.

	31.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9:357–9.

	32.	 Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo 
M, et al. Extending and improving metagenomic taxonomic profil-
ing with uncharacterized species using MetaPhlAn 4. Nat Biotechnol. 
2023;41:1633–44.

	33.	 Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-
level population structure and genetic diversity from metagenomes. 
Genome Res. 2017;27:626–38.

	34.	 Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. 
DeepARG: A deep learning approach for predicting antibiotic resistance 
genes from metagenomic data. Microbiome. 2018;6:23.

	35.	 Salazar C, Giménez M, Riera N, Parada A, Puig J, Galiana A, et al. Human 
microbiota drives hospital-associated antimicrobial resistance dissemina-
tion in the urban environment and mirrors patient case rates. Microbi-
ome. 2022;10:208.

	36.	 Li H. A statistical framework for SNP calling, mutation discovery, associa-
tion mapping and population genetical parameter estimation from 
sequencing data. Bioinformatics. 2011;27:2987–93.

	37.	 Gupta S, Arango-Argoty G, Zhang L, Pruden A, Vikesland P. Identifica-
tion of discriminatory antibiotic resistance genes among environmental 
resistomes using extremely randomized tree algorithm. Microbiome. 
2019;7:123.

	38.	 Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-
node solution for large and complex metagenomics assembly via suc-
cinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

	39.	 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adap-
tive binning algorithm for robust and efficient genome reconstruction 
from metagenome assemblies. PeerJ. 2019;7: e7359.

	40	 Wu YW, Simmons BA, Singer SW. MaxBin 2.0: An automated binning 
algorithm to recover genomes from multiple metagenomic datasets. 
Bioinformatics. 2016;32:605–7.

	41.	 Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. 
Binning metagenomic contigs by coverage and composition. Nat Meth-
ods. 2014;11:1144–6.

	42.	 Song WZ, Thomas T. Binning-refiner: improving genome bins through 
the combination of different binning programs. Bioinformatics. 
2017;33:1873–5.

	43.	 Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for 
genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.

	44.	 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: 
Assessing the quality of microbial genomes recovered from isolates, 
single cells, and metagenomes. Genome Res. 2015;25:1043–55.

	45.	 Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and 
accurate genomic comparisons that enables improved genome recovery 
from metagenomes through de-replication. ISME J. 2017;11:2864–8.

	46.	 von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. 
Robust taxonomic classification of uncharted microbial sequences and 
bins with CAT and BAT. Genome Biol. 2019;20:217.



Page 18 of 18Feng et al. Microbiome            (2025) 13:3 

	47	 Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. 
Precise phylogenetic analysis of microbial isolates and genomes from 
metagenomes using PhyloPhlAn 3.0. Nat Commun. 2020;11:2500.

	48.	 Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Lars-
son DGJ, et al. Maternal gut and breast milk microbiota affect infant 
gut antibiotic resistome and mobile genetic elements. Nat Commun. 
2018;9:3891.

	49.	 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA 
ribosomal RNA gene database project: improved data processing and 
web-based tools. Nucleic Acids Res. 2012;41:590–6.

	50	 Lomsadze A, Bonny C, Strozzi F, Borodovsky M. GeneMark-HM: Improving 
gene prediction in DNA sequences of human microbiome. NAR Genom 
Bioinform. 2021;3:lqab047.

	51.	 Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, 
et al. CARD 2023: Expanded curation, support for machine learning, and 
resistome prediction at the Comprehensive Antibiotic Resistance Data-
base. Nucleic Acids Res. 2023;51:D690–9.

	52.	 Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, et al. Identification 
of mobile genetic elements with geNomad. Nat Biotechnol. 2023. https://​
doi.​org/​10.​1038/​s41587-​023-​01953-y.

	53.	 Shang J, Jiang J, Sun Y. Bacteriophage classification for assembled contigs 
using graph convolutional network. Bioinformatics. 2021;37:i25-33.

	54.	 Shang J, Sun Y. Predicting the hosts of prokaryotic viruses using GCN-
based semi-supervised learning. BMC Biol. 2021;19:250.

	55	 Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-
sequence-based plasmid typing and its utility to prediction of host range 
and epidemiological surveillance. Microb Genom. 2020;6:mgen000435.

	56.	 Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley 
TD. Massive expansion of human gut bacteriophage diversity. Cell. 
2021;184:1098-1109.e9.

	57.	 Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T, Müller R, et al. 
PLSDB: Advancing a comprehensive database of bacterial plasmids. 
Nucleic Acids Res. 2022;50:D273–8.

	58.	 Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution 
of bacterial pathogens. Nat Rev Microbiol. 2016;14:150–62.

	59.	 Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, et al. 
Elevated rates of horizontal gene transfer in the industrialized human 
microbiome. Cell. 2021;184:2053-2067.e18.

	60.	 Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. 
CheckV assesses the quality and completeness of metagenome-assem-
bled viral genomes. Nat Biotechnol. 2021;39:578–85.

	61.	 CLSI. Performance standards for antimicrobial susceptibility testing, 33rd 
edition. Clinical and Laboratory Standards Institute. 2023.

	62.	 Xie Z, Tang H. ISEScan: Automated identification of insertion sequence 
elements in prokaryotic genomes. Bioinformatics. 2017;33:3340–7.

	63	 Wang X, Zhang H, Yu S, Li D, Gillings MR, Ren H, et al. Inter-plasmid 
transfer of antibiotic resistance genes accelerates antibiotic resistance in 
bacterial pathogens. ISME J. 2024;18:wrad032.

	64.	 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial 
genome assemblies from short and long sequencing reads. PLoS Com-
put Biol. 2017;13:e1005595.

	65.	 Prokka ST. Rapid prokaryotic genome annotation. Bioinformatics. 
2014;30:2068–9.

	66.	 Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, 
et al. Mash: Fast genome and metagenome distance estimation using 
MinHash. Genome Biol. 2016;17:132.

	67.	 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von 
Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylo-
genetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

	68.	 Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 
ModelFinder: Fast model selection for accurate phylogenetic estimates. 
Nat Methods. 2017;14:587–9.

	69.	 Conway JR, Lex A, Gehlenborg N. UpSetR: An R package for the 
visualization of intersecting sets and their properties. Bioinformatics. 
2017;33:2938–40.

	70.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: A software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13:6.

	71.	 Zuguang Gu. Complex heatmap visualization iMeta. 2022;1: e43.

	72	 Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, et al. Ggtree: a serialized data 
object for visualization of a phylogenetic tree and annotation data. iMeta. 
2022;1:e56.

	73	 Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylo-
genetic tree display and annotation. Nucleic Acids Res. 2021;1:gkab301.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1038/s41587-023-01953-y

	Regional antimicrobial resistance gene flow among the One Health sectors in China
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Habitat-specific profiles of the antibiotic resistome
	Pseudomonadota members are the primary drivers that shape the resistome
	The enrichment of ARGs in Enterobacteriaceae plasmids and prophagesphages
	Regional AMR dissemination mediated by horizontal gene transfer (HGT) and strain transmission
	The regional dissemination of carbapenemase genes
	Prediction of carbapenem-resistant strains using a machine learning model

	Discussion
	Conclusions
	Methods
	Sample collection
	DNA extraction and metagenomic sequencing
	Microbiome profiling and resistome profiling
	Metagenomic assembly and genome binning
	Correlations between the MGEs and the microbiome
	ARG annotation and taxonomic assignment of ACCs
	Analyses of plasmid and prophagephage sequences
	Determination of ARG-sharing networks
	Isolation and antimicrobial susceptibility testing of carbapenem-resistant strains
	Genome sequencing and bioinformatic analyses of the isolates
	Predictive random forest models
	Statistical analysis and visualization

	Acknowledgements
	References


