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Abstract

Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized
epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in
a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera)
represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of
specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in
laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and
specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To
investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat
species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also
conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat
species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has
undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency
hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in
three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone
adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and
essential nutrients.
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Introduction

Myosin VI (encoded by the Myo6 gene), a member of the actin

filament-based molecular motor proteins, is the only myosin

known to move towards the minus end of the actin filament thus

far [1] and appears to be involved in a wide range of cellular

functions such as clathrin-mediated endocytosis, cell migration,

vesicular membrane traffic, cell migration and mitosis [2,3].

Myo6 is expressed in the actin-rich cuticular plate of inner

and outer hair cells of the ear and is fundamental for the

development and maintenance of stereocilia [2,4,5]. At least

three mutations in Myo6 have been associated with non-

syndromic deafness in humans probably because of disruptions

to the structure and function of stereocilia [6,7]. Bats use

echolocation, usually involving ultrasonic frequencies for orien-

tation and often for foraging [8]. Echolocating bats perhaps

have the most sensitive high-frequency hearing among mam-

mals, and echolocation calls emitted by most echolocating bats

range in dominant frequency from 11 kHz to over 200 kHz [9].

Such excellent auditory performance making echolocating bats

fascinating mammals for studying genes associated with hearing.

Recently, many studies have revealed that some genes

associated with hearing have undergone positive selection in

echolocating bats and cetaceans [10,11,12,13,14,15,16]. Consid-

ering the important role of Myo6 in hearing, it is reasonable to

hypothesize that the Myo6 may also be a target gene for positive

selection in bats that use laryngeal echolocation compared with

species that do not use laryngeal echolocation (the Old World

fruit bats in the family Pteropodidae).

Myo6 is also expressed abundantly in the photoreceptor cells

and retinal pigment epithelial (RPE) cells in the retina [17,18].

Moreover, evidence from myosin VI functional null Snell’s waltzer

(sv/sv) mice showed that myosin VI contributes to the normal

functioning of retinal electrophysiology [17]. Thus myosin VI also

plays an unknown but important role in vision. It was suggested

that laryngeal echolocating bats use echolocation rather than

vision as major means of perceiving their environment [19,20,21].

However, in addition to using olfaction [22], pteropodids without

the ability of laryngeal echolocation presumably rely more on

vision for orientation and finding food than other laryngeal

echolocating bats. Thus it is also reasonable to hypothesize that

positive selection may act on Myo6 in pteropodids, as species in this

lineage use vision primarily for orientation.
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Moreover, myosin VI is highly expressed in polarized epithelial

cells such as kidney proximal tubule cells and intestinal

enterocytes, where it is associated with clathrin-mediated endocy-

tosis [23,24,25]. In the kidney, large amounts of glomerular-

filtered serum proteins are reabsorbed by proximal tubule cells

relying on a process called receptor (megalin/cubulin)-mediated

endocytosis [26]. A recent study revealed that myosin VI plays an

important role in this process via vesicle formation and the

transportation of vesicles towards early endosomes [27]. Renal

proximal tubule reabsorption is very important for health, being

responsible for the clearance of the vast majority of proteins

filtered by the glomerulus. The impairment of this process will

cause proteinuria, an excess of serum proteins in the urine [26].

More importantly, as many serum proteins are carrier proteins

binding many essential components including vitamins and trace

elements, receptor-mediated endocytosis also accounts for the

preservation of many essential serum components such as vitamin

D, vitamin B12 and iron [26,28,29,30,31].

Among the bats (Chiroptera), Old World fruit bats and New

World fruit bats (Phyllostomidae) have independently evolved

a high-carbohydrate but low-nitrogen diet comprising mainly fruit

and/or nectar [32]. Although some New World fruit bats are

known to supplement their diet with insects [33,34] and Old

World fruit bats also accidentally or even deliberately consume

insects [35,36], recent studies with stable-isotope analyses showed

that Old World fruit bats and New World fruit bats in the

subfamily Stenodermatinae are predominantly frugivorous

[32,34]. Most fruits that frugivorous bats mainly eat contain only

0.2–1.4% dry weight protein [37]. Nectar also contains only traces

of amino acids [38]. Besides, fruits are also lacking many essential

vitamins, especially fat-soluble vitamins such as vitamin D and

vitamin B12 [39]. Captive pteropodids fed on fruit-only diets show

nutrient deficiencies and even neurological impairment caused by

vitamin B12 deficiency [40,41]. Hence, how Old World fruit bats

subsist on diets with low contents of protein and essential nutrients

has long been of interest, and earlier studies focusing on behavior

and physiology revealed some clues [42,43,44]. Because Myo6 is

involved in the critical importance of receptor-mediated endocy-

tosis [27] for the preservation of protein and essential nutrients

such as vitamins [26], we hypothesized that the Myo6 gene may

have undergone positive selection in the Old World fruit bats and/

or the New World fruit bats.

In this study, we sequenced the coding region of the Myo6 gene

from 15 bat species, and studied the molecular evolution of this

gene in bats and other mammals. We also used real-time PCR

assay to determine patterns of gene expression in a range of

organs, including the eye, cochlea and kidneys, to understand

where in the body proteins with potential functional significance

are expressed. With the combination of molecular evolutionary

analyses and real-time PCR assay, we intend to test our hypotheses

that Myo6 has undergone positive selection in echolocating bats for

their high-frequency hearing, in Old World fruit bats for their

effective vision and/or in Old World fruit bats and New World

fruit bats for the preservation of protein and essential nutrients.

Materials and Methods

Ethics Statement
Our procedures involving animals were in accordance with the

guidelines of Regulations for the Administration of Laboratory

Animals (Decree No. 2 of the State Science and Technology

Commission of the People’s Republic of China on November 14,

1988). Bats were sacrificed by cervical dislocation and their tissues

were sampled immediately. Protocols were approved by the

Animal Ethics Committee of East China Normal University (ID

No: 20101002). The neotropical bat species were sampled in

Mexico during April, 2010 for our previous study [45] with

assistance from Professor Rodrigo A. Medellı́n and Dr. Rafael

Avila-Flores of the Instituto de Ecologı́a, Universidad Nacional

Autónoma de México, under the scientific collecting license

number FAUT-0250, issued in the name of their collaborator, Dr.

Gerardo Suzán.

Taxonomic Coverage
We sequenced the coding region of the Myo6 gene from 15 bat

species covering eight of the 17 extant chiropteran families. From

the suborder Yinpterochiroptera, we included three Old World

fruit bats from the family Pteropodidae that do not use laryngeal

echolocation (Cynopterus sphinx, Rousettus leschenaultii and Eonycteris

spelaea). Also from the Yinpterochiroptera we sampled five

insectivorous echolocating bats from sister families to the Old

World fruit bats: Megaderma lyra (Megadermatidae), Rhinolophus

ferrumequinum and R. pusillus (Rhinolophidae) and Hipposideros pratti

and H. armiger (Hipposideridae). For echolocating bats from the

suborder Yangochiroptera, we studied two New World fruit bats

Artibeus lituratus and Leptonycteris yerbabuenae (Phyllostomidae) and

five insectivorous bats representing three families: Tadarida plicata

(Molossidae), Myotis ricketti and Pipistrellus abramus (Vespertilionidae)

and Mormoops megalophylla and Pteronotus parnellii (Mormoopidae).

The family Mormoopidae is sister to the New World fruit bats. All

new Myo6 sequences were deposited to GenBank and accession

numbers are JX023444-JX023458.

We also obtained available published Myo6 sequences of nine

other mammal species from GenBank to provide a greater

phylogenetic coverage for molecular evolutionary analyses: Homo

sapiens (NM_004999), Pan troglodytes (XM_001144940), Mus

musculus (NM_001039546), Rattus norvegicus (XM_001061392), Bos

taurus (NM_001206072), Canis familiaris (XM_862495), Ailuropoda

melanoleuca (XM_002923922), Equus caballus (XM_001503608) and

Sus scrofa (NM_214021). Details on echolocation and food habits

for all bat species and their corresponding Myo6 accession

numbers are listed in Table S1.

Isolation, Amplification and Sequencing
For these 15 bat species, total RNA was isolated from brain

tissue (stored at 280uC) using Trizol reagent (Invitrogen) following

the standard protocol, and 5 ug total RNA was reverse-transcribed

into cDNA by SuperScriptTM III Reverse Transcriptase kit

(Invitrogen). The coding sequence of the Myo6 gene was divided

into four overlapping fragments (,1000 bp for each) (Figure S1),

and four pairs of primers were designed to amplify these four

fragments (Table S2). All PCR products were isolated using a 1%

agarose gel and purified with a Gel Extraction Kit (Qiagen), then

ligated into pGEM-T easy vector (Promega), cloned and

sequenced using the Terminator kits (Applied Biosystems) on an

ABI 3730 DNA sequencer. Then the sequences of four fragments

were assembled together to obtain the full length of Myo6 coding

sequences. Considering the specific expression of Myo6 isoforms in

brain and polarized epithelial cells such as kidney proximal tubule

cells reported in a previous study [25], we cloned the fourth

fragment of Myo6 coding sequences from kidney cDNA for six bat

species: C. sphinx and R. leschenaultii for the Old World fruit bats, R.

ferrumequinum and H. armiger as representatives of yinpterochir-

opteran laryngeal echolocating bats and M. ricketti and Scotophilus

kuhlii for yangochiropteran laryngeal echolocating bats. S. kuhlii (a

close relative of P. abramus also from the family Vespertilionidae)

was used because we did not have kidney tissue from P. abramus.

Comparisons of isoforms from brain and kidney tissues showed

Myo6 Evolution in Old World Fruit Bats
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that the only differences between kidney and brain isoforms was

that isoform expressed in the brain contained a 9aa small insertion

and those from kidney contained a 32aa large insertion (Figure

S1), which was congruent with the results from a previous study

[25].

Phylogenetic Reconstruction
The nucleotide sequences of 24 species were aligned using

ClustalX [46] and coding sequences were translated to amino

acids using MEGA4 [47]. Then the Bayesian phylogenetic tree

was reconstructed based on the aligned nucleotide sequences using

MrBayes 3.1.2 [48] with the TIM3+I+C nucleotide substitution

model selected by jModelTest0.1 [49]. For the Bayesian analysis,

we performed 10,000,000 generations of MCMC and sampled

every 100 generations, with the first 2,000,000 generations

discarded as burn-in, since the standard deviations of split

frequencies were stable below 0.01 after 2,000,000 generations

of MCMC performances. All other options and priors were the

default settings of MrBayes 3.1.2 software.

Molecular Evolution Analyses
Since the potential occurrence of recombination could adversely

affect the power and accuracy of phylogenetic reconstruction [50]

and the detection of positive selection [51], we first detected

whether there was evidence of recombination in our dataset before

molecular evolutionary analyses. We conducted GARD [52] in the

HyPhy package [53] to detect the evidence of statistically

supported recombination breakpoints (thus recombination).

A species topology with 24 mammals was constructed based on

the accepted species relationships [54,55,56]. To test for positive

selection in Myo6, we estimated the rate of nonsynonymous

substitutions (dN) and synonymous substitutions (dS) using PAML

CODEML [57].

We first performed two-ratio models, in which the dN/dS ratios

(termed as omega or v) was allowed to differ between the

foreground and the background. Firstly, to test selection pressure

of Myo6 gene in echolocating bats, separate two-ratio models were

conducted with the foreground branch set as the ancestral branch

leading to Chiroptera (all bats), Yinpterochiroptera, Yinpterochir-

optera echolocating bats and Yangochiroptera, respectively. We

also conducted two-ratio models on the ancestral branch leading

to Old World constant frequency (CF) rhinolophids (species from

the families of Hipposideridae and Rhinolophidae), because

species of this lineage could emit CF echolocation calls at high-

duty-cycles [58] and strong evidence of positive selection has

recently been found acting on a key hearing gene (Prestin) in this

lineage [10,14,16]. Finally, we also conducted two-ratio models on

the ancestral branches leading to the Old World fruit bats and the

New World fruit bats, respectively. In all cases, the one-ratio

model, which assumes the equal dN/dS ratio among all branches,

was performed as a null model.

We also applied the test 2 of branch-site model A to detect

positively selected sites along particular branches [59]. In this

model, the phylogeny is separated into two portions: the fixed

branches are set as foreground and the remaining branches as

background. Four site classes of codons are assumed (class 0, class

1, class 2a and class 2b). Class 0 and class 1 codons are assumed to

evolve under purifying selection (0,v0,1) and neutral selection

(v1 = 1) respectively throughout the phylogeny. Class 2a and class

2b evolve under, respectively, purifying and neutral selection on

the background, but are grouped together as class 2 and allowed to

evolve under positive selection (v2.1) on the foreground. The null

model was the modified branch-site model A with the v2 fixed as

1. We applied the test 2 of branch-site model A to the above seven

ancestral branches which were tested by two-ratio models, i.e.,

ancestral branches leading to Chiroptera, Yinpterochiroptera,

Yinpterochiroptera echolocating bats, Yangochiroptera, Old

World CF rhinolophids, Old World fruit bats and New World

fruit bats. All the results of alternative and null hypotheses were

compared using likelihood ratio tests (LRTs).

In addition to the methods of PAML, two alternative

approaches were used to detect the evidence of positive selection

in our dataset. First, the random effects branch-site model

(Branch-site REL) [60] was applied in the HyPhy package [53]

to examine site-wise variation across branches. Since no uniform

section pressure was enforced across all background branches

assumed to be not under positive selection, this method might be

more robust to errors. Second, using the Datamonkey web server

(http://www.datamonkey.org/), we conducted the GA-Branch

method [61], in which a range of v classes were assigned to

branches without a priori designation of focal lineages of interest.

Real-time PCR
Real-time PCR assays were performed to determine the

expression of the Myo6 gene in major bat tissues. Three

representative bat species were used: C. sphinx (a frugivorous bat

from the Old World fruit bats), R. ferrumequinum (an insectivorous

yinpterochiropteran echolocating bat) and M. ricketti (an in-

sectivorous yangochiropteran echolocating bat). Adult individuals

of these three bat species were sampled from the wild in China.

Individuals were sacrificed humanely after capture and brain, eye,

cochlea, heart, lung, liver, stomach, intestine, kidney and pectoral

muscle tissues were stored in liquid nitrogen immediately for RNA

preservation. For each species, three adult individuals were used

for replication. Total RNA was isolated using Trizol reagent

(Invitrogen) following the protocol, and cDNA was synthesized

from 5 ug total RNA using SuperScriptTM III Reverse Transcrip-

tase kit (Invitrogen). Gene expression was analyzed using

SYBRHPremix Ex TaqTM (TaKaRa) in the ABI PRISM 7300

real-time PCR system (Applied Biosystems) following the protocol

(See Table S2 for primer information). The amount of cDNA

template for each tissue was fixed to 100 ng. The PCR products

were sequenced for confirmation. The amount of Myo6 were

normalized to the Gapdh gene [62,63] and arbitrarily calibrated to

pectoral muscle for each species using the 22DDCt method [64].

The Kruskal-wallis test was used to test for significant differences

of the Myo6 mRNA expression levels within ten tissues for each

species. And pairwise comparison was done by the two-tailed

nonparametric Mann-Whitney U test, when the Kruskal-wallis test

yielded a statistically significant value (P,0.05). P-value ,0.05 was

considered as significant.

Results

Our final Myo6 gene sequence dataset comprised 24 taxa,

including three Old World fruit bats (Pteropodidae), two

frugivorous New World fruit bats (Phyllostomidae) and other ten

insectivorous laryngeal echolocating bats. The alignment of Myo6

coding sequences comprised 3861 nucleotides, equating to 1287

amino acids, of which 169 amino acids (,13%) were variable in

eutherian mammals (Figure S2).

Our Bayesian phylogenetic reconstruction based on the coding

sequences of Myo6 revealed a tree in which the major groupings

agreed with the accepted mammal species tree (Figure 1). Hence

the species of Pteropodidae (C. sphinx, R. leschenaultii and E. spelaea)

grouped with species in the family Rhinolophidae (R. ferrumequinum

and R. pusillus), Hipposideridae (H. pratti and H. armiger) and

Megadermatidae (M. lyra) to comprise the clade Yinpterochir-

Myo6 Evolution in Old World Fruit Bats
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optera [Bayesian posterior probability (BPP) = 1.00]. Other bats

(T. plicata, M. megalophylla, P. parnellii, M. ricketti, P. abramus, A.

lituratus and L. yerbabuenae) grouped together and comprised the

clade Yangochiroptera (BPP = 1.00) (Figure 1A). We found no

evidence of recombination breakpoints (i.e. recombination) in our

dataset and hence excluded any potentially adverse influences of

recombination in our phylogenetic reconstructions and subsequent

molecular evolutionary analyses.

In order to detect selection pressures acting on the Myo6 gene in

echolocating bats, Old World fruit bats and New World fruit bats,

we conducted a number of two-ratio model tests to seven branches

(branch A,G in Figure 1B). Results of all two-ratio model tests are

shown in Table 1. Our results of two-ratio models which set the

foreground as the ancestral branch leading to Chiroptera,

Yinpterochiroptera, Yangochiroptera, Yinpterochiroptera echolo-

cating bats and Old World constant frequency (CF) rhinolophids

(branches marked with A, B, C, D and E in Figure 1B),

respectively, showed no elevated v values on these ancestral

branches compared with the v values of the corresponding

background branches (Table 1). These results indicated that no

selective pressure change of Myo6 was occurred in those major

focal branches leading to echolocating bats. The two-ratio model

test for New World fruit bats (the branch marked with G in

Figure 1B) exhibited similar results, with the two-ratio model

which set the ancestral branch leading to New World fruit bats as

the foreground showing no significantly better fit than the null

(one-ratio) model [likelihood ratio test (LRT) statistic

(2D,) = 0.012, df = 1, P.0.05] (Table 1). However, the two-ratio

model which designed the ancestral branch of Old World fruit bats

(the branch marked with F in Figure 1B) as foreground was

a significantly better fit to the dataset than the one-ratio model

(2D,= 19.611, df = 1, P,0.001) (Table 1). The estimated v value

on the ancestral branch of Old World fruit bats was an order of

magnitude greater than that of background (0.135 versus 0.037,

respectively, Table 1), indicating a selection pressure change acting

on Myo6 in the Old World fruit bats.

Then we performed the test 2 of branch-site model A to detect

the positively selected sites on the above seven ancestral branches

leading to different lineages of bats. Results of all tests 2 of the

branch-site model A are shown in Table 2. No evidence of positive

selection was detected on five focal branches leading to

echolocating bats (branch A, B, C, D and E in Figure 1B) with

the exception of the ancestral branch leading to yinpterochir-

opteran echolocating bats. Statistically supported evidence of

positive selection (2D,= 8.21, df = 1, P= 0.004) was detected on

the ancestral branch leading to Yinpterochiroptera echolocating

Figure 1. Unconstrained Bayesian phylogenetic tree and species topology. (A) Unconstrained Bayesian phylogenetic tree based on Myo6
gene coding sequences, under the model of TIM3+I+C. Values on the nodes are posterior probabilities. (B) The species tree of 24 mammals based on
accepted bat species relationships (see Materials and Methods). Seven branches tested both by the two-ratio model tests and the branch-site model
A tests were marked by A, B, C, D, E, F and G, respectively.
doi:10.1371/journal.pone.0062307.g001
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bats, however, only one positively selected site was found [260Q,

Bayes Empirical Bayes (BEB) values = 0.998] (Table 2). However,

a strong signature of positive selection was detected by branch-site

model A test on the ancestral branch of Old World fruit bats

(2D,= 4.39, df = 1, P= 0.036) (Table 2). Twelve positively selected

sites were detected on the ancestral branch of Old World fruit

bats, of which two had BEB values .0.95 (677V and 1165I)

(Table 2). As a comparison, we also performed the branch-site

model A test on the ancestral branch of New World fruit bats,

considering this taxon had evolved feeding habits similar to the

Old World fruit bats. However, no evidence of positive selection

was detected on that branch (Table 2). Alternative methods based

on branch-site (REL) and branch (GA-branch) comparisons failed

to detect positive selection in the Old World fruit bats and other

branches tested above (data not shown).

We also calculated the posterior probabilities of positively

selected sites for each amino acid of Myo6 on the above seven

branches which tested both by two-ratio model tests and branch-

site model A tests. In accordance with the results of branch-site

model tests, significant evidence of positive selection was found on

ancestral branch leading to Old World fruit bats (Figure 2).

In order to examine the distribution pattern and potential

influences of the positively selected sites detected in the ancestral

branches leading to yinpterochiropteran echolocating bats (one

amino acid site) and Old World fruit bats (12 amino acid sites),

respectively, we mapped these amino acid sites onto the myosin VI

protein secondary structure constructed in previous studies

[18,65,66,67,68]. Of the 13 positively selected sites, nine were

distributed on the motor domain (147V, 260Q, 300H, 521S, 534S,

560V, 677V, 678G and 791Y), two on the coiled-coil region (903V

and 913G) and two on the globular domain after large and small

insertions (1165I and 1169K) (Figure 3).

We also performed Real-time PCR assays to determine the

expression of Myo6 mRNA in ten tissues of three representative bat

species: C. sphinx, R. ferrumequinum and M. ricketti. Myo6 was

ubiquitously expressed in all these ten tissues of three bat species.

For C. sphinx, expression levels of the Myo6 gene among ten tissues

were significantly different (P,0.001, df = 9, Kruskal-wallis test),

and the highest expression of the Myo6 gene occurred in the kidney

(Figure 4A). For R. ferrumequinum and M. ricketti, the Myo6

expression levels within ten tissues were also significantly different

(P,0.001 and P,0.01, respectively, df = 9, Kruskal-wallis test),

and the highest expression of the Myo6 gene were also found in the

kidney (Figure 4B and 4C). However, for R. ferrumequinum, the

expression of the Myo6 in the kidney was not significantly higher

than that of the stomach (P= 0.275, Mann-Whitney U test)

(Figure 4B). And for M. ricketti, the expression of the gene in the

kidney was not significantly higher than that of the lung (P= 0.127,

Mann-Whitney U test) (Figure 4C). These results indicating that

the Myo6 gene might play an important role in kidney function,

especially in the frugivorous Old World fruit bat, C. sphinx.

Discussion

Results from two-ratio model tests showed that no selection

pressure change was found in major focal branches leading to

echolocating bats and also the New World fruit bats. However, the

results of two-ratio model tests revealed a significantly greater

value of v (dN/dS) on the ancestral branch of Old World fruit bats

compared with the rest of the tree, indicating a selection pressure

change acting on Myo6 in this lineage. The subsequent branch-site

model A test revealed that Myo6 has undergone adaptive evolution

in the ancestral branch leading to Old World fruit bats.

Our results of real-time PCR showed the highest expression of

Myo6 gene in the kidney in C. sphinx (Figure 4), indicating that

proteins produced by this gene may be involved in kidney function

in frugivorous Old World fruit bats. However, we could not show

the expression levels of Myo6 isoforms separately in each tissue,

since the primers we used were designed based on the sequences of

the conserved tail domain after both large and small insertions.

However the primer design is unlikely to influence Myo6

expression patterns shown with our real-time PCR results,

considering the Myo6 isoforms with 32aa large insertion and 9aa

small insertion were specifically expressed in polarized and

unpolarized cells, respectively [25]. Our results show discrepancies

with a previous study, in which the highest levels of Myo6

expression was found in the brain, pancreas, prostate, testis and

small intestine but not in the kidney of human tissues studied by

northern blot methods [5]. The discrepancy might be caused by

methodological differences, but is more likely to reflect differences

in expression patterns in bats compared with humans.

That the Myo6 gene functions in hearing is supported by

overwhelming evidence, as mutations cause non-syndromic

deafness in humans [5,6,7,69]. The evolution of echolocation

and its associated high-frequency hearing makes laryngeal

echolocating bats a fascinating mammal group for molecular

evolutionary studies of hearing genes. Many genes associated with

hearing have recently been proved to have undergone positive

selection in echolocating bats and also in echolocating cetaceans

[10,11,12,13,14,15,16,70]. However, our results from the branch-

site model A tests showed no significant evidence of positive

selection in the major focal branches leading to echolocating bats,

although one statistically supported positively selected site (260Q)

Table 1. Results of two-ratio model tests of selection pressure on the Myo6 gene in bats.

Model np , v0
a vFix

a Model Compared 2D, P

A. One ratio: v0 47 215988.40 0.039 =v0

B. Two ratios: v0, vA 48 215987.25 0.039 0.0001 B vs. A 2.293 .0.05

C. Two ratios: v0, vB 48 215987.58 0.039 0.0001 C vs. A 1.644 .0.05

D. Two ratios: v0, vC 48 215986.36 0.039 0.0001 D vs. A 4.072 0.044

E. Two ratios: v0, vD 48 215988.40 0.039 0.036 E vs. A 0.005 .0.05

F. Two ratios: v0, vE 48 215988.33 0.039 0.0497 F vs. A 0.138 .0.05

G. Two ratios: v0, vF 48 215978.59 0.037 0.135 G vs. A 19.611 ,0.001

H. Two ratios: v0, vG 48 215988.39 0.039 0.037 H vs. A 0.012 .0.05

avFix (vA, vB, vC, vD, vE, vF and vG) and v0, are the v ratios for branches A, B, C, D, E, F, G and other branches, respectively (see Figure 1B).
doi:10.1371/journal.pone.0062307.t001
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was found in the ancestral branch of Yinpterochiroptera

echolocating bats (Table 2). These results indicate that although

the Myo6 gene is fundamental for the development and

maintenance of stereocilia [2,4,5], this gene was not a potential

target of positive selection and thus may not contribute to the

evolution of high-frequency hearing in echolocating bats.

On the contrary, our results of branch-site model A tests

revealed strong evidence for positive selection acting on the

ancestral branch of Old World fruit bats, a lineage that does not

possess laryngeal echolocation [8]. These results suggest that the

Myo6 gene may be involved in other important physiological

functions rather than hearing in Old World fruit bats. Some

studies have reported that the Myo6 gene is also abundantly

expressed in the retina and is required for the normal functioning

of photoreceptor cells [17,18]. In accordance with these observa-

tions, our real-time PCR assays also detected the expression of the

Myo6 gene in the eyes of C. sphinx, R. ferrumequinum and M. ricketti,

although the expression levels were all relatively low (Figure 4).

Since they lack the ability of laryngeal echolocation, Old World

fruit bats are more dependent on vision for perceiving their

environment than are their echolocating relatives [19,20,21]. Thus

we could not role out the possibility that the positive selection of

the Myo6 gene may have been driven by the requirement for more

effective vision in Old World fruit bats. In photoreceptors, the

Myo6 gene is highly expressed in the margins of the inner segments

and the outer surface of the ellipsoid mitochondrial mass [17,18].

Table 2. Results of branch-site model A tests for detection of positively selected sites in selected branches.

Branch-site modela npb Parameters , P Positively selected sitesc

Null hypothesis for branch A 49 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 1 Not allowed

Alternative hypothesis for
branch A

50 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 None

Null hypothesis for branch B 49 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 1 Not allowed

Alternative hypothesis for
branch B

50 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 None

Null hypothesis for branch C 49 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 .0.05 Not allowed

Alternative hypothesis for
branch C

50 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 None

Null hypothesis for branch D 49 P0 = 0.933, P1 = 0.033, P2a = 0.033, P2b = 0.001
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215874.88 0.004 Not allowed

Alternative hypothesis for
branch D

50 P0 = 0.965, P1 = 0.034, P2a = 0.001, P2b = 0.00003
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 238.51, v2b = 238.51

215870.77 260Q (0.998)

Null hypothesis for branch E 49 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 .0.05 Not allowed

Alternative hypothesis for
branch E

50 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 None

Null hypothesis for branch F 49 P0 = 0.907, P1 = 0.030, P2a = 0.061, P2b = 0.002
Background: v0 = 0.021, v1 = 1.00, v2a = 0.021, v2b = 1.00
Foreground: v0 = 0.021, v1 = 1.00, v2a = 1.00, v2b = 1.00

215866.41 0.036 Not allowed

Alternative hypothesis for
branch F

50 P0 = 0.954, P1 = 0.031, P2a = 0.014, P2b = 0.00046
Background: v0 = 0.021, v1 = 1.00, v2a = 0.021, v2b = 1.00
Foreground: v0 = 0.021, v1 = 1.00, v2a = 6.679, v2b = 6.679

215864.21 147V, 300H, 521S, 534S, 560V,
677V (0.981), 678G, 791Y, 903V,
913G, 1165I (0.972), 1169K

Null hypothesis for branch G 49 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 1 Not allowed

Alternative hypothesis for
branch G

50 P0 = 0.966, P1 = 0.034, P2a = 0.00, P2b = 0.00
Background: v0 = 0.022, v1 = 1.00, v2a = 0.022, v2b = 1.00
Foreground: v0 = 0.022, v1 = 1.00, v2a = 1.00, v2b = 1.00

215875.92 None

aSee Figure 1B for branch labels.
bnp, number of parameters.
cPositively selected sites detected by branch-site model A test are referred to Megaderma lyra in branch D and to Rousettus leschenaultii in branch F, respectively. Sites
with Posterior probability values.0.95 are highlighted with underline. Site positions were referred to the Myo6 amino acid sequence alignment of all species (Figure S2
and Figure S3).
doi:10.1371/journal.pone.0062307.t002
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Myo6 gene might be involved in the localization of mitochondria

which may be important for dark current generation by the

sufficient supply of ATP to Na+, K+-ATPases on the inner segment

plasma membrane [17,18]. In retinal pigment epithelial (RPE)

cells, Myo6 might play an important role in transportation of

lysosomes which are responsible for the normal daily digestion of

photoreceptor disc membrane [17]. Considering those potential

important roles of the Myo6 gene in retinal, we could not role out

the possibility that the positive selection of this gene in Old World

fruit bats might relate to the evolution of their effective visual

Figure 2. Site-wise posterior probabilities of positive selection for sites along the Myo6 sequence of selected branches. The posterior
probability value of 0.5 is indicated by the red dashed line in each plot.
doi:10.1371/journal.pone.0062307.g002
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system to enhance their visual sensitivity at dim-light environment.

Because the evidence for the exact role that Myo6 plays in vision is

still unclear, more studies on its function are needed to determine

the possible role of this gene in vision in Old World fruit bats.

A large number of studies have recently identified an important

role for myosin VI in clathrin-mediated endocytosis in polarized

epithelial cells such as kidney proximal tubule cells and intestinal

enterocytes (see Introduction). Thus another possible explanation

for positive selection acting on Myo6 in Old World fruit bats is the

adaptation of receptor-mediated endocytosis in kidney proximal

tubule cells. Myo6 is highly expressed in the kidney where it located

in the brush border of renal proximal tubule cells [24], which is

also supported by our real-time PCR results (Figure 4). Moreover,

the study of myosin VI functional null Snell’s waltzer (sv/sv) mice

revealed that myosin VI plays an important role in kidney

proximal tubule protein reabsorption, as sv/sv mice showed an

albuminuria phenotype [27]. The significantly high expression of

the Myo6 gene in the kidney of C. sphinx (Figure 4A) strongly

indicated the important role of this gene in kidney function in Old

World fruit bats. Although some studies observed that Old World

fruit bats accidentally or even deliberately consume insects,

a predominantly frugivorous food habit has recently been

confirmed by studies with stable-isotope analyses (see Introduc-

tion). Thus, the low protein content in the special diets of Old

World fruit bats [37,42,71] highlights the significance of protein

preservation by this mechanism in Old World fruit bats compared

with insectivorous, omnivorous and carnivorous bats. Although

renal proximal tubule reabsorption is highly efficient, small

quantities of protein would still naturally be lost in urine in

healthy humans and other animals [72,73,74]. Thus, it is plausible

that Old World fruit bats have evolved a more efficient receptor-

mediated endocytosis for protein preservation to adapt to their low

protein diets.

Alternatively, the positive selection of Myo6 in Old World fruit

bats might relate to the preservation of essential nutrients such as

vitamin D [25-(OH) vitamin D3] and vitamin B12 rather than

proteins. 25-(OH) vitamin D3 is filtered by glomeruli as a complex

with vitamin D-binding protein (DBP) and then reabsorbed into

proximal tubule cells by receptor-mediated endocytosis [26,28,30].

Then 25-(OH) vitamin D3 is transported to mitochondria and

hydroxylated into 1,25-(OH)2 vitamin D3, which is the active form

of vitamin D for the regulation of metabolism [28,30,75]. Thus,

receptor-mediated endocytosis is of great importance for the

preservation and activation of vitamin D, since defects in this

process would cause vitamin D deficiency and disease [28,30].

Similarly, vitamin B12 is filtered and then reabsorbed as a complex

with transcobalamin (TC) [31]. The reabsorption and accumula-

tion of vitamin B12 by receptor-mediated endocytosis is of great

importance for vitamin B12 homeostasis [26,31,76]. Since fruit is

known to be devoid of both these fat-soluble vitamin components

[39], Old World fruit bats (especially frugivorous bats) are thought

to be naturally in a state of vitamin D and vitamin B12 deficiency

[77,78,79]. Thus, it is reasonable to assume that the adaptive

change of Myo6 in Old World fruit bats might relate to the

evolution of their efficient receptor-mediated endocytosis for the

preservation and homeostasis of essential fat-soluble vitamins or

other similar components which are deficient in plant food

resources.

The 12 positively selected sites detected by branch-site model A

tests in the Old World fruit bats (Table 2) are mainly distributed in

the motor domain region (eight sites), the coiled-coil domain (two

sites) and the globular tail domain (two sites) (Figure 3). The motor

domain is known to be important for the minus-end directed

movement [1,80], and mutations in this domain could cause

motor activity impairment and subsequent transportation blocking

[81,82,83]. Notably, for these eight sites distributed in the motor

domain region, we found that the residue 147V was located close

to the nucleotide-binding site and 677V and 678G were within the

predicted actin-binding site (Figure 3). Residue 300H was

distributed in the putative motor domain unique insert 1 region,

which is thought to be involved in the modulation of nucleotide

binding and release [67]. Residue 791Y was distributed in the

reverse gear region which is involved in the lever-arm redirection

and thus responsible for the reverse movement of myosin VI

[66,67]. The coiled-coli region is thought to mediate the

dimerization of myosin VI [84], and the globular tail domain is

necessary for cargo-targeting [85]. Thus, the positively selected

sites might influence the activities of these regions and therefore

the efficiency of the myosin VI protein. Among these 12 positively

selected sites, nine amino acid changes at positions 147, 534, 560,

Figure 3. Distribution of positively selected sites detected on the ancestral branches of Yinpterochiroptera echolocating bats and
the Old World fruit bats in the secondary structure of myosin VI protein. Protein structure was constructed based on previous studies (see
Results). The positively selected site found on the ancestral branches of Yinpterochiroptera echolocating bats is highlighted with blue line. Twelve
positively selected sites detected in the Old World fruit bats are highlighted with red lines.
doi:10.1371/journal.pone.0062307.g003
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677, 678, 791, 903, 913 and 1169 were found to be specific to the

Old World fruit bats compared with other bats and mammal

groups (Figure S3). The amino acid change from hydrophilic

Threonine (T) to hydrophobic Valine (V) at position 677 (Figure

S3) might enhance the capability of binding/recognition of

hydrophobic ligands [86]. The amino acid change from Cysteine

(C) to Tyrosine (Y) at position 791 (Figure S3) involved the

introduction of an extra aromatic side chain, and might enhance

the ability of stacking interactions with other aromatic side chain

[86]. The amino acid change from Glutamine (Q) to Lysine (K) at

position 1169 (Figure S3) introduced a positively-charged amino

group, and might be involved in the binding of negatively-charged

ligands [86]. In the absence of direct biochemical evidence, we are

unable to assign more significance to these amino acid changes in

the Old World fruit bats. More studies are needed to determine

what functional changes in the myosin VI protein may result from

mutations at these sites.

In addition, the New World fruit bats which belong to the

family Phyllostomidae, especially the members of the subfamily

Stenodermatinae, have also evolved a predominantly frugivorous

feeding habit similar to that of Old World fruit bats [32].

However, no positively selected site was detected on the ancestral

branch of this lineage (Table 2), and also in the species of A.

lituratus which belongs to the subfamily Stenodermatinae (data not

shown). These results might reflect the fact that the Old World

fruit bats evolved such special diets slightly earlier than did the

New World fruit bats (nearly 28mya versus almost 20mya) [56].

Moreover, another plausible explanation for these results might be

that fruit available to the Old World fruit bats and the New World

fruit bats was different during the time of their radiations.

Neotropical regions possess a greater diversity of food plants and

more stable plant food resources than do Palaeotropical regions

[87]. Thus it is possible for species of New World fruit bats to

selectively ingest mixed fruit species to obtain sufficient proteins

[88] without the evolution of an adaptive mechanism for the

preservation of protein and essential nutrients as found in Old

World fruit bats. It is interesting to note that, other molecular

evolutionary studies focusing on genes in bats (and other

mammals) in relation to their diets also show a similar discrepancy

between the Old World and the New World fruit bats [89,90]. For

instance, the glucose transporter 4 (GLUT4, encoded by Slc2a4)

which plays a crucial role in glucose homeostasis has undergone

adaptive changes only in the Old World fruit bats in relation to

their high sugar diet but not in the New World fruit bats [89].

In conclusion, our results show that the Myo6 gene, which was

widely considered as a hearing gene, has undergone adaptive

evolution in the Old World fruit bats without laryngeal

echolocation and associated high-frequency hearing. Positive

selection on Myo6 in Old World fruit bats may be related to their

specialized diets. In combination with the high levels of expression

of Myo6 in kidney tissue, our results provide evidence that Myo6

has undergone adaptive evolution in Old World fruit bats in

relation to receptor-mediated endocytosis for the preservation of

protein and essential nutrients. As receptor mediated-endocytosis

is a multistep process and involves many molecules other than

myosin VI [2,3,66], more studies are needed to delineate what

genes in addition to Myo6 may also contribute to the specialized

dietary adaptations of Old World fruit bats.

Supporting Information

Figure S1 Myosin VI protein structure showing the
differences of Myo6 isoforms from brain and kidney. (a)

A cartoon illustrating the four overlapped fragments for PCR. The

Myo6 coding sequence was divided into four overlapped fragments,

for each fragment a pair of primers were designed for

amplification. (b) Schematic of myosin VI structure with the large

Figure 4. Expression levels of Myo6 mRNA in ten tissues among
three representative bat species. (A) Cynopterus sphinx, (B)
Rhinolophus ferrumequinum and (C) Myotis ricketti. The amount of
Myo6 in each tissue were normalized to the Gapdh gene and arbitrarily
calibrated to muscle for each species using the 22DDCt method. For
each species, three individuals were used for replication. Error bars
show the standard deviation (SD). The asterisk (*) indicates P-value
,0.05 (two-tailed nonparametric Mann-Whitney U test).
doi:10.1371/journal.pone.0062307.g004
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and small insertions in tail domain are shown. (c) Comparison of

amino acid sequences of Myo6 isoforms from brain and kidney.

The sequences framed are the large insertion (32aa) in the kidney

isoform and the small insertion (9aa) in the brain isoform.

(TIF)

Figure S2 Alignment of the amino acid sequences of the
Myo6 gene from 24 mammals (only the variable sites are
shown).
(TIF)

Figure S3 Alignment of the full amino acid sequences of
the Myo6 gene from 24 mammals. Twelve positively selected

sites detected in the Old World fruit bats are highlighted by red

squares and indicated with asterisks on above of alignment

columns.

(PDF)

Table S1 List of species analyzed in this study.

(DOC)

Table S2 Information of primers used for Myo6 coding

sequences PCR and real-time PCR.

(DOC)
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