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Wallerian degeneration in cervical spinal cord tracts is commonly
seen in routine T2-weighted MRI after traumatic spinal cord injury
and is associated with impairment in a retrospective study
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Abstract
Objectives Wallerian degeneration (WD) is a well-known process after nerve injury. In this study, occurrence of remote
intramedullary signal changes, consistent with WD, and its correlation with clinical and neurophysiological impairment were
assessed after traumatic spinal cord injury (tSCI).
Methods In 35 patients with tSCI, WD was evaluated by two radiologists on T2-weighted images of serial routine MRI
examinations of the cervical spine. Dorsal column (DC), lateral corticospinal tract (CS), and lateral spinothalamic tract (ST)
were the analyzed anatomical regions. Impairment scoring according to the American Spinal Injury Association Impairment
Scale (AIS, A–D) as well as a scoring system (0–4 points) for motor evoked potential (MEP) and sensory evoked potential (SEP)
was included. Mann-Whitney U test was used to test for differences.
Results WD in the DC occurred in 71.4% (n = 25), in the CS in 57.1% (n = 20), and in 37.1% (n = 13) in the ST. With WD
present, AIS grades were worse for all tracts. DC: median AIS B vs D, p < 0.001; CS: B vs D, p = 0.016; and ST: B vs D, p =
0.015. More pathological MEP scores correlated with WD in the DC (median score 0 vs 3, p < 0.001) and in the CS (0 vs 2, p =
0.032). SEP scores were lower with WD in the DC only (1 vs 2, p = 0.031).
Conclusions WD can be detected on T2-weighted scans in the majority of cervical spinal cord injury patients and should be
considered as a direct effect of the trauma. When observed, it is associated with higher degree of impairment.
Key Points
• Wallerian degeneration is commonly seen in routine MRI after traumatic spinal cord injury.
•Wallerian degeneration is visible in the anatomical regions of the dorsal column, the lateral corticospinal tract, and the lateral
spinothalamic tract.

• Presence of Wallerian degeneration is associated with higher degree of impairment.
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Abbreviations
AIS American Spinal Injury Association

Impairment Scale
CS Lateral corticospinal tract
DC Dorsal column

MEP Motor evoked potential
SEP Sensory evoked potential
ST Lateral spinothalamic tract
tSCI Traumatic spinal cord injury
WD Wallerian degeneration

Introduction

Wallerian degeneration (WD) is a well-known phenomenon
and describes disintegration of axons and myelin sheaths after
the connection with the cell body is interrupted [1]. Although
originally only antegrade degeneration was described in 1850
by Waller [2], there is evidence for a common mechanism in

* Tim Fischer
tim.fischer@balgrist.ch

1 Department of Radiology, University Hospital Balgrist, Forchstrasse
340, 8008 Zurich, Switzerland

2 Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse
340, 8008 Zurich, Switzerland

https://doi.org/10.1007/s00330-020-07388-2

/ Published online: 30 October 2020

European Radiology (2021) 31:2923–2932

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-020-07388-2&domain=pdf
http://orcid.org/0000-0002-1807-9146
mailto:tim.fischer@balgrist.ch


antegrade and retrograde degeneration [3]. In this article, both
antegrade and retrograde degeneration is referred to as WD.
Common causes include cerebral infarction, WD is less com-
monly seen in hemorrhage, neoplasm, surgery, epilepsy, and
white matter disease [4, 5].

WD can be identified on routine imaging as a T2-weighted
(T2w) hyperintense signal visible after 10–14weeks with sub-
sequent shrinkage over several years [6].

On the histopathologic level, the process evolves in several
stages [7]. Histopathologic changes have been shown to pre-
cede visible changes on MRI in the cervical spinal cord and
WDbegins as early as 8 days after injury [8]. Few studies have
addressed tract-specific WD in the spinal cord with focus on
the dorsal column (DC) and the lateral corticospinal tract (CS)
using advanced MRI methods such as high angular diffusion-
weighted imaging, magnetization transfer, diffusion tensor
imaging, or fractional anisotropy [1, 4, 9–14]. However, it is
not clear whether WD can commonly be detected on the clin-
ical MRI examinations that the patients with traumatic spinal
cord injury (tSCI) receive as part of standard care.

To our knowledge, there is only little data in form of two
case reports about WD in the setting of a routine clinical MRI
[5, 15]. This is the first study that examines occurrence ofWD
in routine MRI after traumatic spinal cord injury (tSCI) and
correlation with clinical deficits.

Methods

Patients

This retrospective study included patients with tSCI that
underwent MRI of the cervical spine from January 2004 until

August 2019 and was approved by the local ethics committee.
A total of 61 patients with tSCI were initially included with at
least 3 follow-up MRI examinations (time interval between
trauma andmost recentMRI examination being at least 1 year)
who were referred to our institution for rehabilitation. Scoring
of trauma severity was done according to American Spinal
Injury Association Impairment Scale (AIS) which is based
on clinical examination according to the International
Standards for Neurological Classification of Spinal Cord
Injury [16]. These clinical and additional neurophysiological
assessments by sensory (SEP) and motor evoked potentials
(MEP) were performed between 2 and 20 days after trauma.

Study design

The study design is presented in Fig. 1. Cervical spine MRIs
were evaluated for T2w signal hyperintensity in the anatomi-
cal region of specific tracts, consistent with WD. Signal inten-
sity changewas assessed in the anatomical region of the dorsal
column (DC), the lateral corticospinal tract (CS), and the lat-
eral spinothalamic tract (ST) [17–19]. T2w signal
hyperintensity was evaluated in at least three successive
MRI examinations after trauma. If a specific hyperintense sig-
nal was visible in one or more MRI examinations, the signal
was evaluated as positive, even if a subsequent MRI was read
negative for signal change in the same location. When no
signal change was visible in all available MRI examinations
for at least 1 year, this patient was evaluated negative for WD.

Imaging and image evaluation

Most patients underwent MRI of the cervical spine on a 3T
Magnetom Skyra fit system (Siemens Healthineers). Image

Fig. 1 Flow diagram of the study design and included patients. All patients were evaluated for signal intensity change consistent with Wallerian
degeneration (WD) in the region of the dorsal column (DC), the lateral corticospinal tract (CS), and the lateral spinothalamic tract (ST)
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evaluation was performed on sagittal and axial T2w turbo
spin-echo images. Following settings were used: axial: repe-
tition time (TR) 5510 ms, echo time (TE) 93 ms, echo train
length (ETL) 16, field of view: (FOV) 160 × 160 mm, matrix
320 × 320, slice thickness 3 mm, spacing 3.6 mm. Sagittal:
repetition time (TR) 3760 ms, echo time (TE) 87 ms, echo
train length (ETL) 17, field of view (FOV) 220 × 220 mm,
matrix 384 × 384, slice thickness 2.5 mm, spacing 2.75 mm.
In cases with significant metal artifacts or before the 3T sys-
tem was installed, imaging was done on a 1.5T Avanto fit
system (Siemens Healthineers), using the following settings:
Axial: repetition time (TR) 3390 ms, echo time (TE) 112 ms,
echo train length (ETL) 15, field of view (FOV) 200 ×
200 mm, matrix 320 × 320, slice thickness 3 mm, spacing
3.5 mm. Sagittal: repetition time (TR) 3440 ms, echo time
(TE) 107 ms, echo train length (ETL) 16, field of view
(FOV) 240 × 240mm, matrix 512 × 512, slice thickness
2.5 mm, spacing 2.75 mm. In both systems, a standard radio-
frequency neck coil (20 channels) is used. Our 1.5T and 3T
systems received a technical update (Verio to Skyra fit and
Avanto to Avanto fit) in 2013. Systems originally were
installed in 2004 (Avanto) and 2010 (Verio).

Axial T2w images had to cover at least two segments
above and below the injury. Two fellowship trained radiolo-
gists with 6 and 7 years of experience in radiology and at least
1 year exclusively in neuroradiology evaluated all patients on
our institution’s Merlin PACS (Phoenix-PACS GmbH).

First, in the trauma MRI, the level of the injury and sagittal
expansion were evaluated on sagittal T2w images; clinical
information was withheld from the readers. Transverse cord
involvement was evaluated, using the Brain and Spinal Injury
Center score (BASIC) grade 0–4. Grade 0: No appreciable
cord signal abnormality; grade 1: Intramedullary T2w
hyperintensity is approximately confined to central gray mat-
ter; grade 2: Intramedullary T2w hyperintensity extends be-
yond expected gray matter margin to involve spinal white
matter, but does not involve entire transverse extent of the
spinal cord; grade 3: intramedullary T2w hyperintensity in-
volves entire transverse extent of spinal cord; grade 4: Grade
3 injury plus discrete T2w hypointense foci, consistent with
macrohemorrhage [20].

In all available follow-up examinations, tract-specific sig-
nal change was evaluated without any clinical information.
First, the level of the injury was determined on sagittal T2w.
Evaluation of the axial T2w consisted of evaluation for (1)
T2w hyperintense signal change in the region of the dorsal
column (DC) one level above the level of the injury, (2) T2w
hyperintense signal change in the region of the lateral
corticospinal tract (CS) one level below the level of the injury,
and (3) T2w hyperintense change in the region of the lateral
spinothalamic tract (ST) one above the level of the injury.
Signal abnormality was read as present or absent. Examples
for signal abnormality in each tract are shown in Fig. 2.

Clinical assessments

Severity assessment of spinal cord injuries (SCI) was per-
formed by trained rehabilitation specialists. Classification
was performed based on standardized assessment of segmen-
tal motor and sensory testing according to ISNCSCI. Clinical
assessments were done twice, 0 to 15 days after trauma and 16
to 40 days after trauma (stage very acute and acute 1 follow-up
according to the European Multicenter Study about Spinal
Cord Injury, EMSCI). This allowed to determine AIS grades
which ranged from A to D (A: motor-sensory complete; B:
motor complete, sensory incomplete; C: motor-sensory in-
complete; and D: motor-sensory incomplete, majority of key
muscles below the lesion showmovement against gravity [21,
22]).

Neurophysiological examination

In order to objectively assess long spinal tract integrity, trained
technicians and experienced physicians performed indepen-
dent neurophysiological tests of lumbar dermatomes accord-
ing to clinical standards on certified electromyography ma-
chines [23]. Examination was done between 16 to 40 days
after trauma (stage acute 1 follow-up according to the
European Multicenter Study about Spinal Cord Injury,
EMSCI). Technical setup and rating was done according to
Hupp et al [24]. Tibial nerve stimulation led to recordings of
somatosensory evoked potentials (SEP). Motor evoked poten-
tials (MEP) were recorded bilaterally from anterior tibial mus-
cles following transcranial magnetic stimulation of the corre-
sponding cortical motor areas. Latency and amplitude read-
ings were obtained according to the used standard [24]. After
normalization latencies for body height, test results were con-
verted to a simplified score as previously described [24]: mo-
tor and sensory potentials were rated with a maximum score of
2 for each side if evoked potentials were normal with respect
to latency and amplitude, one if pathological in one of these
aspects, and zero if missing. In this way for both MEP and
SEP assessments, a maximum of 4 points (2 points each side)
could be achieved.

Statistics

Statistical analysis was performed on SPSS version 21.0 (IBM
Corp). For continuous data, general descriptive statistics were
reported as means and standard deviation (SD). Normal dis-
tribution of patient age was evaluated with the Kolmogorov-
Smirnov test. For ordinal-scaled variables (AIS grades, SEP
and MEP scoring), Mann-Whitney U test was used to test for
significant differences. For statistical analysis, AIS grades A–
D were transferred to numeric (0–3), and results were trans-
ferred back to AIS grades (A–D) and reported as such. For
effect size (r), the Cohen classification was used [25]. For r >
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0.1, the effect was considered weak. R > 0.3 reflected a medi-
um and r > 0.5 a strong effect. In all tests, a p value of < 0.05
was considered to represent statistical significance. The two-
way random effects intraclass correlation coefficient (ICC)
was applied for inter-reader agreement, whereas ICC values
> 0.5 were moderate, > 0.75 were considered good agreement,
and > 0.9 as very good [26].

Results

In 17 cases, the interval between trauma and the most recent
MRI examination was less than 1 year and these cases were
excluded. MEP was not available in 8 cases and SEP in 1 case
that led to exclusion of another 9 patients, resulting in a final
set of 35 patients. In the trauma MRI, ICC for lesion level,
sagittal expansion, and BASIC score were good: (0.87),
(0.88), and (0.85).

Signal abnormality in the DC was detected by both readers
with 100% accordance, resulting in an ICC of 1. For the CS,
ICC was moderate (0.54), and for the ST, ICC was good
(0.88). Disagreements were solved by consensus reading.

Results for each patient, including demographic informa-
tion, mechanism of injury, initial MRI findings after trauma,
and visible WD in at least one out of three follow-up MRIs as
well as clinical and neurophysiological assessments, are given
in Table 1. Mean time between trauma and first imaging was
1.8 days (SD ± 2.07, minimum 0 days, maximum 8 days).

Among the 35 included patients, 26 were male, and 9 were
female. Using the Kolmogorov-Smirnov test, age was normal-
ly distributed. Mean age was 44.3 years (SD ± 3.2), minimum
14.9 years, maximum 79.9 years. Cervical spine injury level
ranged from C3 to C7. In 8.6% (n = 3), the level was C3;
22.9% (n = 8) had level C4; for 37.1% (n = 13), the level

�Fig. 2 Sagittal and axial T2w MRI of the cervical spine of five different
patients demonstrating examples of signal intensity change consistent
with Wallerian degeneration (WD) in the dorsal column (DC), the lateral
corticospinal tract (CS), and the lateral spinothalamic tract (ST). Axial
plane is indicated by the blue line on the corresponding sagittal image. a
A 19-year-old patient 348 days after motor vehicle accident (MVA) dem-
onstrating WD in the DC on axial images (white arrow). On median,
sagittal imaging, WD (white arrows) can be appreciated from the injury
upwards to the medulla oblongata. bA 22-year-old patient 109 days after
fall demonstrates WD in the DC on axial and median sagittal imaging
(white arrows). In the anterior cord, bilateral WD in the ST is seen (black
arrowheads). c A 60-year-old patient 111 days after surfing accident also
demonstrates WD in the DC (white arrow) and ST (black arrowheads) on
axial imaging. On median sagittal imaging, faint WD in the DC is seen
(white arrows). d A 50-year-old patient 323 days after MVA demon-
strates WD in the CS (white arrows) on axial imaging. On paramedian
sagittal imaging, faint WD in the CS from the injury downwards can be
appreciated (white arrows). e A 55-year-old patient 216 days after fall
demonstrates WD in the CS on axial and paramedian sagittal imaging
(white arrows)
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was at C5; 28.6% (n = 10) were injured at level C6; and 2.9%
(n = 1) at level C7.

AIS A occurred in 34.3% (n = 12), AIS B in 17.1% (n = 6),
C in 17.1% (n = 6), and AIS D in 31.4% (n = 11). The MEP
score was distributed as follows: 0 points in 54.3% (n = 19), 1
point in 2.9% (n = 1), 2 points in 17.1% (n = 6), 3 points in
11.4% (n = 4), and 4 points in 14.3% (n = 5). SEP score was 0
points in 37.1% (n = 13), 1 point in 2.9% (n = 1), 2 points in

42.9% (n = 15), 3 points in 2.9% (n = 1), and 4 points in
14.3% (n = 5).

Signal change in the spinal cord above the level of the
injury in the dorsal column (DC) was visible in 71.4% (n =
25) and not visible in 28.6% (n = 10). Below the level of the
injury, signal change in the lateral corticospinal tract (CS)
could be observed in 57.1% (n = 20) and was not visible in
42.9% (n = 15). Signal change in the lateral spinothalamic

Table 1 Included patients with demographic, clinical, neurophysiological, and imaging features

Trauma Age Gender Level Sg. length Basic AIS SEP MEP WD DC WD CS WD ST

Fall 80 years F C3 1 2 D 2 4 No No No

Fall from stairs 78 years M C4 1 2 D 2 3 No Yes No

Bicycle accident 43 years M C5 2 2 B 2 3 Yes No Yes

MWA 19 years M C5 3 4 A 0 0 Yes Yes No

MWA 50 years M C4 2 3 D 4 4 Yes Yes No

Skiing accident 73 years M C3 1 2 B 4 2 Yes Yes No

Skiing accident 41 years M C4 2 2 B 2 0 Yes Yes Yes

Bicycle accident 52 years M C4 2 2 C 0 2 No No No

Fall 30 years M C7 2 3 A 0 0 Yes Yes Yes

Parachute accident 35 years F C5 3 4 C 1 0 Yes No Yes

Diving accident 21 years M C4 2 2 A 0 0 Yes No No

Fall 78 years M CS 4 1 C 2 0 Yes No No

Diving accident 18 years Sr C6 5 4 A 0 0 Yes Yes Yes

Fall 56 years M C4 2 2 D 2 2 No No No

Fall 43 years M C6 3 3 A 0 0 Yes Yes Yes

MWA 48 years M C6 1 2 D 2 4 No No No

MWA 20 years M C6 5 4 A 0 0 Yes Yes No

MWA 31 years M C6 2 2 B 2 0 Yes Yes Yes

MWA 38 years F C5 3 2 B 3 0 No Yes No

MWA 53 years M C6 1 3 A 0 0 Yes Yes Yes

Fall 29 years M C4 4 4 A 0 0 Yes Yes Yes

MWA 28 years F C3 3 4 2 Yes Yes No

Bicycle accident 33 years M C6 3 4 A 0 0 Yes No No

Fall 54 years F CS 2 1 C 2 4 Yes Yes Yes

MWA 51 years M CS 1 1 D 2 2 No No No

Water slide accident 32 years M C6 3 4 A 0 0 Yes No No

Fall 65 years F C5 2 3 D 2 2 Yes No No

MWA 71 years M C6 1 2 D 2 3 No No No

MWA 23 years M C6 2 3 A 0 0 Yes Yes No

Fall 52 years M C4 1 0 D 4 4 No No No

Fall 22 years M C5 3 4 B 2 0 Yes Yes Yes

Fall 55 years M C5 5 4 A 0 0 Yes Yes Yes

Fall 15 years F C5 2 2 D 4 1 Yes Yes No

Surfing accident 60 years F C5 2 2 C 2 2 Yes Yes Yes

MWA 55 years F C5 2 2 D 4 3 No No No

Overview of included patients. Trauma, trauma mechanism that resulted in disability;MWA, motor vehicle accident; Level, level of injury in the cervical
spine; Sg. length, sagittal extension of spinal cord damage in trauma MRI; Basic, basic score (0 to 4) by Talbott et al, grading transverse cord
involvement; A1S, AIS grade (A to D), assessed according to ISNCSCI; SEP, SEP score (0 to 4); MEP, MEP score (0 to 4); WD DC, visible
Wallerian degeneration in the dorsal column; WD CS, visible Wallerian degeneration in the lateral corticospinal tract; WD ST, visible Wallerian
degeneration in the lateral spinothalamic tract
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tract (ST) above the level of the injury was visible in 37.1%
(n = 13) and not visible in 62.9% (n = 22). Retrograde degen-
eration was not observed. Distribution of observed WD in the
three different regions among the different AIS grades (A–D)
and the different MEP and SEP scores (0–4) is given in Fig. 3.

In a considerable number of cases, signal change was
present in more than one region. A display of co-
appearances of signal change in the different anatomical
regions is given in Fig. 4. When WD was visible, always
the entire tract visible in the MRI examination did show
WD (DC and ST above the lesion, CS below the lesion).
We did not find affected and unaffected parts of the spe-
cific tracts in the same patients.

Relation between typical spinal cord signal intensity
change and clinical severity

Mann-Whitney U test was used to evaluate for differences in
the presence or absence of WD in the different anatomical
regions of the cervical cord in AIS grades as well as MEP
and SEP scores. Results are given in Table 2.

AIS grades were significantly different depending on
the presence or absence of signal intensity change in the
DC (p < 0.001). Median in the presence of hyperintense

signal change was 1 (lower quartile 0.0; upper quartile
2.0), which is equivalent to AIS B; median in the absence
of hyperintense signal change was 3 (2.75; 3.0), which is
equivalent to AIS D. Calculation revealed a strong effect
(r = 0.62). For CS, differences were significant (p =
0.016); median in the presence of hyperintense signal
change was 1 (0.0; 2.0), equivalent to AIS B; without
hyperintense signal intensity change, median was 3 (1.0;
3.0), equivalent to AIS D. Effect size was medium (r =
0.41). Significant differences were observed for the ST
(p = 0.015) with an abnormal signal, median was 1 (0.0;
1.5) equivalent to AIS B. When the spinal cord appeared
normal, median was 2.5 (0.0; 3.0) equivalent to AIS D.
Effect size was medium (r = 0.41).

MEP scores were related to hyperintense signal change in
the DC (p < 0.001), where WD was associated with a median
score of 0 points (0.0; 1.5); median score with normal signal
was 3 points (2.0; 4.0). Effect size was strong (r = 0.58).
Association of MEP score with CS was significant (p =
0.032). Median score in the presence of hyperintense signal
changewas 0 points (0.0; 1.75); in the absence of hyperintense
signal change, median was 2 points (0.0; 3.0). Effect size was
medium (r = 0.36). Statistical significance was not reached for
the ST (p = 0.067).

Fig. 3 Distribution of observed WD among the different AIS grades as
well as MEP and SEP scores. Out of 35 patients, signal intensity change
in the DC was observed in an absolute number of 25, and in the CS and

the ST in 20 and 13 cases, respectively. In cases with WD, this figure
shows the distribution among the different AIS grades (A–D) and among
the MEP and SEP scores (0–4 points)
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Evaluation of the SEP score reached statistical significance
only for the dorsal column (p = 0.031); median was 1 point
(0.0; 2.0) when signal was abnormal and 2 points (2.0; 3.25)
when signal was normal. Effect size was moderate (r = 0.36).
No correlation was found for SEP score with hyperintense
signal change in CS but a trend for association of signal inten-
sity change with ST (p = 0.092).

Discussion

This study showed that Wallerian degeneration (WD) in the
dorsal column (DC), the lateral corticospinal tract (CS), and
in the lateral spinothalamic tract (ST) is commonly visible

on T2-weighted MRI after traumatic cervical spine injury
(tSCI). The presented data suggests a correlation between
visible WD and clinical and neurophysiological impair-
ment after trauma.

The concept of degeneration of an axon and its myelin sheath
(or glia) distal to axonal injury was first described by Waller in
1850 after sectioning the glossopharyngeal nerve of frogs. It is
well known in peripheral nerve injury and following spinal le-
sion; in contrast, the term “diaschisis” was introduced by von
Monakow in 1914 representing a concept of focal neurological
depression remote from the original site of damage, but anatom-
ically connected by fiber tracts. Nowadays, crossed cerebellar
diaschisis and WD revealed by MRI is the most widely known
occurrence of this phenomenon [4].

Fig. 4 Cross-sectional drawing of the cervical cord and approximate
anatomic location of the dorsal column (DC), the lateral corticospinal
tract (CS), and the lateral spinothalamic tract (ST) of the cervical cord
in a cross-sectional drawing. Smaller drawings indicate patterns of co-

appearances ofWD among the three tracts: Affected tracts are highlighted
in blue.WD in the STwas only observed in combinationwith other tracts.
Cross-sectional drawing of the cervical cord adapted from Nathan et al
[17, 18]

Table 2 ASIA classes and MEP and SEP score in the presence or absence of WD

ASIA MEP SEP

Median p r Median p r Median p r

DC B vs D < 0.001 0.62 0 vs 3 < 0.001 0.58 0 vs 2 0.031 0.36

CS B vs D 0.016 0.41 0 vs 2 0.032 0.36 ns

ST B vs D 0.015 0.41 ns ns

Median of ASIA classes and MEP and SEP scores in the presence or absence of WD in the DC, PT, or ST. p value represents statistical significance, r
value represents effect strength. For statistical analyses, ASIA classes were transferred to numeric (0–3), and results were transferred back to classes for
reporting.WD, Wallerian degeneration;MEP, motor evoked potential; SEP, sensory evoked potential;DC, dorsal column;CS, lateral corticospinal tract;
ST, lateral spinothalamic tract; ns, not significant
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After tSCI, tract-specific patterns of anterograde degenera-
tion are found in histopathological preparations corresponding
to signal alteration remote from the lesion in spinal MR imag-
ing [2, 7, 17, 18]. Signal intensity change in the dorsal column
on MRI has been shown as early as 7 weeks after injury [8].
Histopathologic changes could be observed as early as 8 days
after injury without signal abnormality on MRI and showed
the fasciculus gracilis above the lesion filled with axonal de-
bris, whereas the fasciculus cuneatus was normal. As for the
corticospinal tract below the injury, histopathological changes
were visible after 12 days post injury while MRI changes
could be observed after 7 weeks. Axonal debris was visible
next to a normal spinocerebellar tract [8].

Advanced MRI techniques such as diffusion-weighted im-
aging (DWI) and diffusion tensor imaging (DTI) are used to
depict early changes, attributed to acute WD [4, 11, 12, 14].
Other advanced techniques include magnetization transfer.
Measurement of magnetization transfer ratios (MTR) in the
dorsal spinal cord was able to predict sensory disability, where-
as measures in the ventrolateral spinal cord predicted motor
disability [9]. There is proof that tract alteration is not only an
antegrade phenomenon since DTI technique has shown axonal
degeneration parallel to the corticospinal tract above the level of
the lesion and its association with disability [1]. In sum, there is
increasing evidence on the value of advanced MRI techniques
in providing prognostic information [4].

Tract-specific Wallerian degeneration is commonly
seen in routine MRI after tSCI

The presented data shows that appearance of tract-specific
antegrade and retrograde degeneration, which we both refer
to as WD, is a common phenomenon in routine MRI after
severe tSCI. Especially WD in the DC remote from the injury
can be seen in almost three quarters of the cases (71.4%) and
can be appreciated with great confidence, represented by an
absolute agreement between both readers. In the setting of a
significant trauma history, misinterpretation is unlikely; still,
mimics do exist: Deficiency syndromes, typically vitamin B12

[27, 28] can result in subacute combined degeneration
(SACD) that can look identical. Different pathologies include
demyelination, such as multiple sclerosis [29], but especially
neuromyelitis optica because of its longitudinal cord extent
[30] or inflammation such as in sarcoidosis [31].

Compared to the DC, identification of pathology in the
CS or the ST was more difficult to detect, which is repre-
sented by an ICC of 0.54 and 0.88, respectively. Due to
tract anatomy of the CS and the ST, there is only a small
area of signal change on cross-sectional imaging, if WD is
present. Unlike WD in the DC, pathology in the CS and
ST was often visible as dot-like hyperintensities only.

Signal intensity change reflecting WD in the CS could
be observed in about one-half of the cases (57.1%).
Mimics of this signal change include spinal ischemia, typ-
ically affecting the anterior spinal artery represented by
the owl-eyes or snake-eyes sign [32], although in most
cases, only few segments are involved. In this study, in
the majority of the cases, WD of the CS occurred in com-
bination with WD of the DC and ST. WD in the ST oc-
curred only in combination with at least WD of the DC; in
most cases, all three described types of WD were present.
To our knowledge, no reasonable alternative exists for this
specific pattern.

Occurrence of Wallerian degeneration in the cervical
cord is associated with clinical impairment

Analyses showed that appearance ofWD in the three different
locations is associated with a higher degree of clinical impair-
ment, reflected by the AIS grades. Median AISwithout visible
degeneration was D, with degeneration, AIS was B.

MEP and SEP scores were different in the presence or ab-
sence of WD in the DC (0 vs 3 and 0 vs 2 points). MEP scores
were also different in the presence or absence of WD in the CS
(0 vs 2 points), while there was no significant difference for the
SEP scoring. This could reflect the fact that the CS is only
transmitting motor signals and a degeneration would not affect
sensory transmission. Because of the overlap of WD in the
different tracts, this conclusion is arguable and is also in con-
trast with high correlation of MEP score with WD in the DC.
However, coincidental occurrence of WD in more than one
tract would well be in line with a high likelihood of tSCI caus-
ing diffuse, extensive white matter damage in the spinal cord.

In line with these results, previous diffusion tensor imaging
data in tSCI patients and correlation with clinical and electro-
physiological measures suggested WD of spinal tracts remote
from the injury site [14].

Limitations

This study has the following limitations: although there is some
evidence for tract-specific impairment, because of the large
overlap between the three investigated regions, it was not pos-
sible to correlate tract degeneration with specific types (senso-
ry/motor) of impairment more precisely. The visual localization
and specification of spinal tracts is limited by low resolution
and fibers of other origin are located in close proximity to, or
interspersed with, the aforementioned tracts (for example fibers
from the rubrospinal and reticulospinal tracts run anterolateral
to the CS [18]). Hence, we acknowledge that the anatomical
description used for the regions of interest should be under-
stood as an approximation to real tract anatomy.
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In this study, the onset of visible WD in routine MRI
was highly variable; unfortunately, it was not possible
to identify a typical time frame, when WD first occurs
or to correlate its first occurrence with clinical features.
Moreover, as imaging intervals between the included
patients were unequal, it was not possible to systemati-
cally evaluate how the signal progresses over the time.
Both questions may be addressed in a future, prospec-
tive study design.

Summary statement

This study shows that WD especially in the dorsal column is a
common phenomenon after severe spinal trauma, which can
be detected by routine MRI with high confidence. Diagnosis
in the appropriate clinical setting is straightforward. If
Wallerian degeneration is present, it is associated with higher
degree of clinical impairment.
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