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ABSTRACT: Jet fuel is the primary fuel used in the aviation industry, and its quality has a direct impact on the safety and
operational efficiency of aircraft. The accurate quantitative detection and analysis of various physicochemical property indicators are
important for improving and ensuring the quality of jet fuel in the domestic market. This study used near-infrared (NIR)
spectroscopy to establish a suitable model for the simultaneous and rapid detection of multiple physicochemical properties in jet fuel.
Using more than 40 different sources of jet fuel, a rapid detection model was established by optimizing the spectral processing
methods. The measurement models were separately built using the partial least-squares (PLS) and orthogonal PLS algorithms, and
the model parameters were optimized. The results show that after the Savitzky−Golay second derivative preprocessing, the PLS
model built using the feature spectra selected by the uninformative variable elimination wavelength algorithm achieved the best
measurement performance. Compared with the PLS model without preprocessing, the range of the resulting accuracy improvement
was at least 15.01%. Under the optimal model parameters, the calibration set regression coefficient (Rc2) of the 11 jet fuel property
index models ranged from 0.9102 to 0.9763, with the root-mean-square error of calibration values up to 0.8468 °C (for flash points).
The regression coefficient (Rp2) of the validation set ranged from 0.8239 to 0.9557, with the root-mean-square error of prediction
values up to 1.1354 °C (for flash points). The ratios of prediction to deviation (RPD) values were all in the range of 1.9−3.0,
indicating high accuracy and reliability of the model. The rapid NIR analysis method established in this study enables the
simultaneous and rapid detection of multiple physicochemical properties of jet fuel, thereby providing effective technical support for
ensuring the quality of jet fuel in the market.

1. INTRODUCTION
Jet fuel is an indispensable resource in the aviation industry,
and its quality directly affects jet engine performance.
However, factors such as the high affinity between jet fuel
and water can make the quality of jet fuel susceptible to
environmental temperature and humidity fluctuations, leading
to changes in its physical and chemical properties, which in
turn affect the normal operation of the engine.1 To ensure the
quality of jet fuel in the market, the government has
established a series of standards that strictly regulate over 40
physicochemical properties and their corresponding detection
methods for jet fuel. Also, researchers have developed several
conventional analytical methods, such as gas chromatography
and liquid phase chromatography, to analyze jet fuel. These
methods can achieve accurate detection of the physical and
chemical properties of jet fuel, but they are hindered by a

lengthy detection period, complex methodology, the need for
the pretreatment of samples, and the lack of portability for the
testing equipment, which fail to fulfill the requirements of
quality inspection agencies and the petrochemical industry for
the rapid on-site analysis of jet fuel. Some rapid detection
methods were also developed, such as Raman and mid-infrared
spectroscopy. However, the fluorescence signal interference of
the Raman spectrum affects the accurate detection of jet fuel,
and the mid-infrared spectrum is more suitable for the
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detection of physicochemical properties of jet fuel with definite
characteristic absorption. Therefore, there is a need for a
simple and reliable on-site analysis method to quickly
determine the physicochemical properties of jet fuel and to
ascertain its quality compliance.
Near-infrared (NIR) spectroscopic analysis can reflect the

overtone and combination frequency absorption information
of hydrogen-containing functional groups in compounds.2 By
combining chemometric algorithms, a rapid detection model
can be established between the spectra and target properties,
thus enabling the qualitative or quantitative analysis of
samples.2−4 NIR spectroscopy is highly efficient, rapid, and
nondestructive and can simultaneously determine multiple
components. It has been widely applied in various industries,
such as chemical engineering, agriculture, and medicine.5−11 In
recent years, researchers have applied NIR spectroscopy to the
characterization and quality detection of jet fuels. By utilizing
NIR spectroscopy in conjunction with chemometrics, multi-
variate regression models have been constructed to rapidly
detect the physicochemical properties of jet fuels.12−14 Xiao et
al.15 developed a rapid analysis model for the total acid value of
jet fuel based on NIR spectroscopy using a backpropagation
neural network (BP-ANN) and partial least-squares (PLS)
regression methods. Their results showed that the determi-
nation coefficient (Rp2) of the BP-ANN model was 0.9778, and
the root-mean-square error of prediction (RMSEP) was 0.0007
mg/g. Compared with the PLS model, the Rp2 value increased
by 3.9% and the RMSEP value decreased by 17.5%. These
results indicate that the BP-ANN model method has a higher
determination accuracy and can achieve quantitative analysis of
the total acidity of jet fuels. The interval partial least-squares
(iPLS) algorithm can simultaneously consider the correlation
between multiple wavelengths and determine the advantages of
wavelength combinations with the highest predictive ability.
Yangjun et al.16 developed a rapid analysis model for the initial
boiling point of jet fuel based on NIR spectroscopy using the
iPLS and BP-ANN algorithms. The model achieved an Rp2
value of 0.9361 and validation standard error (SEV) of 1.0726
°C. Compared to the model built using full-wavelength
spectroscopy, the Rp2 value of this model improved by
36.23% and the SEV decreased by 54.85%. Therefore, the
combination of iPLS and BP-ANN models can achieve an
accurate analysis of the initial distillation point of jet fuel.
Currently, most of the reported jet fuel property index
determination models are only suitable for the single property
index, with limited reports on models that can simultaneously
determine multiple indices. The simultaneous detection of
multiple physicochemical properties of jet fuel can simplify the
on-site testing process, reduce analysis time to improve
efficiency, and provide jet fuel quality data quickly,
conveniently, and efficiently. This method can effectively
manage the production and use of jet fuel and prevent
accidents caused by quality issues. Therefore, establishing a
rapid analysis method that is highly accurate and applicable to
the simultaneous determination of multiple key property
indices of jet fuel is crucial for ensuring the quality of jet fuel in
the market.
This study presents a rapid analysis method using NIR

spectroscopy for the simultaneous detection of multiple
physicochemical properties of jet fuels. Various spectral
preprocessing methods, including Savitzky−Golay smoothing
(SG smoothing), Savitzky−Golay first derivative (SG first D),
Savitzky−Golay second derivative (SG second D), and

multiple scatter correction (MSC), were applied to the spectral
data. In addition, feature wavelength selection methods,
including variable importance projection (VIP), uninformative
variable elimination (UVE), and Monte Carlo UVE (MC-
UVE), were used to select the feature variables. Separate PLS
and orthogonal PLS (O-PLS) models were developed, and
their predictive performances were compared. The model
conditions were optimized, and the optimal model was used
for the sample analysis. The aim of this study was to prove that
the optimized model can be used to reduce the potential risk of
accidents caused by fuel quality issues.

2. RESULTS AND DISCUSSION
2.1. Spectrum Data Preprocessing Method Selection.

In addition to information about the samples, the collected
spectra contained information about environmental influences
and instrument stability. The partial effects of these factors
were visually reflected in the raw spectral plot of the jet fuel
(Figure 1). For example, within the wavelength range of 900−

1700 nm, a noticeable difference was observed in the baselines
of the spectra collected from different samples, which may be
due to variations in instrument performance or the effects of
different characteristics of samples.
To eliminate the influence of interference contained in the

raw spectra and establish a stable and reliable measurement
model, the preprocessing of raw spectra was performed. In this
experiment, four methods (SG smoothing, SG first D, SG
second D, and MSC) were employed for preprocessing the
spectral data. SG smoothing was applied to remove
fluctuations caused by noise in the spectra and produced a
more compact NIR spectrum (Figure 2a).17,18 Other than the
primary absorption peaks, the fluctuations of the miscellaneous
peaks at 1150 and 1500 nm became smoother, indicating that
SG smoothing effectively reduced the spectral fluctuations
caused by environmental factors that affected the instrument
function. SG first D and SG second D are baseline correction
methods that aim to eliminate the spectral baseline shift caused
by instrument and sample background factors,19 while
enhancing the distinguishable differences between samples.
The NIR spectra of the jet fuel after treatment using the SG
first D method are shown in Figure 2b. The trend of spectral
response changes occurred primarily in the range from 1100 to
1500 nm (the secondary octave region of methyl groups is

Figure 1. NIR spectra of the no. 3 jet fuel samples.
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predominant at 1100 nm, and the second combining region of
C−H vibrations is predominant at 1500 nm),20 and the
processed spectrum contained more spectral information than
the unprocessed spectrum. The spectrum (Figure 2c) after
processing with the SG second D method showed no clear
distinction in the overall baseline shift, indicating that the
offset effects caused by environmental factors, instrument
stability, or sample physical properties related for different
scattering were effectively eliminated. The difference in the
spectral line height between 1100 (C−H secondary octave
absorption of cyclohexane) and 1250 nm (combination of the
O−H stretching vibration and C−OH bending) reflects
different response trends of the different samples at this
wavelength.20 The SG second D method visually represented
the subtle numerical differences between the samples. MSC
reduces the impact of multiple scattering and diffuse reflection
components on the spectral quality by analyzing and
simulating different scattering mechanisms, thereby improving
the measurement accuracy of the model.21,22 Following MSC
processing, the original spectrum (Figure 2d) showed a
noticeable correction for the inherent offset between the
sample spectrum.
To validate the improvement effects of different preprocess-

ing methods on the measurement performance of the model
and select the optimal preprocessing method, the PLS and O-
PLS algorithms were used separately to build measurement
models by using full-wavelength raw and preprocessed spectra.
The evaluation of each model was performed and is shown in

Supporting Information Tables S1−S10. The models for the
11 physicochemical properties that were established based on
the full-wavelength raw spectra had an average ratio of
prediction to deviation (RPD) value of 1.3. However, the
models that were established based on the preprocessed
spectra had average RPD values greater than 1.3, with the
highest value attaining 1.7. The models that were established
based on the preprocessed spectra showed an improvement in
the RPD values, ranging from 2.56 to 28.34%. Therefore,
compared to the models that were based on the full-
wavelength raw spectra, the models that were based on the
preprocessed spectra demonstrated higher accuracy and
reliability in the overall determination of the 11 physicochem-
ical properties. The model built from the full-wavelength raw
spectra after SG second D preprocessing (Supporting
Information Table S4) had the highest values of Rc2 and Rp2
and the lowest values of the root-mean-square error of
calibration (RMSEC) and RMSEP compared with the models
built from spectra using SG smoothing, SG first D, and MSC
preprocessing methods. These results indicate that the
application of SG second D preprocessing to full-wavelength
raw spectra can effectively reduce the influence of environ-
mental factors, such as temperature and humidity, and improve
the accuracy and reliability of the model. Therefore, SG second
D was selected as the preprocessing method for NIR
spectroscopy of the jet fuel.

2.2. Optimization of the Feature Band Selection
Method. The full-wavelength spectrum contains both sample

Figure 2. NIR spectra following the pretreatment of 40 no. 3 jet fuel samples: (a) SG smooth; (b) SG first D; (c) SG second D; and (d) MSC.
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and redundant information, which can complicate the process
of building a measurement model and reduce its accuracy;
therefore, to overcome these drawbacks, characteristic wave-
length bands should be selected.23,24 In this study, the three
commonly used wavelength selection methods VIP, UVE, and
MC-UVE were used to select feature bands from the full-
wavelength NIR spectrum of jet fuel. In addition, the
performances of the models built using the feature spectra
selected by these three methods were compared.
VIP is a method that calculates the correlation between each

wavelength and the response variable for variable selection and
represents the explanatory power of each wavelength on the
response variable. A VIP value of one is the threshold; thus, if
the indicator value of a particular wavelength range is greater
than one, this wavelength range significantly contributes to the
modeling and determination results. Therefore, wavelength
ranges with VIP values greater than one are selected as feature
spectra.25,26 Figure 3a shows that the selected spectral bands
are primarily concentrated in the ranges of 1170−1250 nm
(dominated by the secondary multiplication of C−H
vibrations), 1380−1440 nm (dominated by the second
combined frequency region of C−H vibrations), and 1640−
1670 nm (corresponding to the first multiplication of C−H
vibrations and the first multiplication of O−H vibrations).20

This selected subset of spectral bands contains crucial
information about the samples and can be used as a substitute
for the full-wavelength spectral data to establish a quantitative
model for jet fuel determination.
The UVE method calculates the coefficient of variation for

each wavelength in the spectral matrix, resulting in a noise
matrix with the same dimensions as the original spectral
matrix. This noise matrix is then added to the spectral matrix.
The coefficient of variation of the spectral and noise matrix was
compared and it was determined whether each wavelength can
be used for model establishment.27,28 Based on the extremum
values of the noise matrix, a threshold range of 4.8 was set, and
the selected spectral bands had absolute coefficients of
variation within the range of 5−10, indicating a pronounced
response. The primary feature response occurred within the
range of 900−1200 nm (corresponding mainly to the
secondary frequency doubling region of C−H vibrations with
part of the tertiary frequency doubling region of C−H
vibrations), with small concentrations at 1350−1400, 1500,
and 1600 nm (1350−1400 nm is included in the combined
frequency region of C−H vibrations and 1500 nm is the
second) (Figure 3b).20

The MC-UVE method is an extension of the UVE method
that incorporates a Monte Carlo simulation to randomly

resample the data, perform feature selection, and train the
model. This method was used to assess the importance of the
feature bands selected by UVE on different data sets, thereby
avoiding errors in the model measurement caused by the
randomness of the validation data set. This helps to evaluate
the responsiveness of different feature wavelengths to different
sample sets.29 Based on the range of the simulated noise
response values, a threshold was set to perform feature
selection on the full-wavelength raw spectral data (Figure 3c).
The trends of the change and distribution of the feature bands
are similar to those shown in Figure 3b. The selected feature
bands were concentrated from 900 to 1200 (mainly secondary
multiplication of C−H vibrations), 1230 (secondary multi-
plication of C−H vibrations), and 1380 nm Figure 2c.20

Compared with the results obtained after UVE screening of the
full-wavelength raw spectra, the range from 1500 to 1600 nm
was not selected. This phenomenon suggests that during the
feature selection process, MC-UVE considered the feature
response in the 1500−1600 nm range to be unsuitable for all
samples and had a low contribution rate.
After feature bands were selected using different methods,

measurement models for 11 physicochemical property indices
were established and evaluated using the PLS and O-PLS
algorithms (Supporting Information Tables S11−S16).
Compared with the measurement models that were established
using full-wavelength spectra, the average fluctuations of Rc2
and Rp2 for the measurement models that were established
using characteristic wavelength bands that ranged from 0.83 to
2.04% and 0.43 to 14.65%, respectively. The RMSEC and
RMSEP values decreased by 2.31−26.43% and 12.61−32.54%,
respectively. The PLS model that was generated by the
spectrum processed by using the UVE algorithm showed the
most significant performance improvement (Supporting
Information Table S12). The mean Rp2 and RPD values of
the model increased from 0.7940 and 1.3 to 0.8193 and 1.6,
respectively, compared to those of the full-wavelength
spectrum model. The improvements in Rp2 and RPD values
for the 11 physicochemical property indicator models ranged
from 0.11 to 9.87% and from 1.51 to 87.91%, respectively.
These results indicate that using the UVE algorithm for feature
band selection in full-wavelength spectra can effectively
improve the decrease in model measurement accuracy caused
by the introduction of redundant information, thereby
enhancing the accuracy and reliability of the model. Therefore,
the UVE algorithm was chosen as the feature band selection
method and used in subsequent studies to explore the optimal
modeling method for determining multiple physicochemical
properties.

Figure 3. Feature selection images: (a) VIP, (b) UVE, and (c) MC-UVE.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c09994
ACS Omega 2024, 9, 16138−16146

16141

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c09994/suppl_file/ao3c09994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c09994/suppl_file/ao3c09994_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09994?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09994?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09994?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09994?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.3. Modeling Method Comparison. Choosing an
appropriate modeling method can adapt to data characteristics,
reduce modeling complexity, and improve model measurement
accuracy. To investigate the optimal modeling approach to
meet the requirements of the rapid and simultaneous detection
of multiple physicochemical properties of the jet fuel, this
study used the PLS and O-PLS methods for modeling and
model evaluation. PLS is a multivariate statistical analysis
method that considers the correlations between independent
and dependent variables to establish a linear relationship
model. O-PLS, based on PLS, separates the data into predictive
(T) and orthogonal (TO) components and selects the
predictive component to build the model.30,31

After processing the full spectrum using the SG second D
and UVE algorithms, modeling was performed using the PLS
and O-PLS methods. The modeling results are presented in
Supporting Information Tables S17 and S18. After predictive
(T) and nonpredictive (TO) decomposition of the spectral
data, the performance of the O-PLS model decreased
compared with when it was not decomposed. This
phenomenon can be attributed to the combined effect of
feature band selection and the orthogonal transformation of
the O-PLS, thus resulting in insufficient dimensions of the
input data for the model, which decreases the accuracy of the
measurement. After processing the spectral data using the SG
second D and UVE methods, the number of wavelength points
was reduced by approximately 80%. The models built using
PLS had a maximum RMSEP value of 1.1354 °C (for flash
points) and an average RPD value of 2.3. In contrast, the O-
PLS models had a maximum RMSEP value of 3.9566 °C (for
the final distillation point) and an average RPD value of 1.6.
Compared to the models built with O-PLS, the models built
with PLS showed a 70.98% decrease in the average RMSEP
and 41.59% increase in the average RPD. The accuracy and
reliability of the PLS model are higher than those of the O-PLS
model. Therefore, the PLS method was selected to establish a
rapid analysis model for several physicochemical properties of
jet fuel. In Supporting Information Table S17, the Rp2 of the SG
second D-UVE-PLS model ranged from 0.8329 to 0.9557 with
a maximum RMSEP value of 1.1354 °C (for flash points).
Compared to the PLS models obtained using other
preprocessing and feature selection methods (Supporting
Information Tables S19−S26), the SG second D-UVE-PLS
model improved the Rp2 values by 0.9−85.41% and reduced the
RMSEP values by 25.31−92.60% for the determination of
various physicochemical properties of the jet fuel. To
determine the optimal modeling scheme suitable for multiple
indicators, the parameters of the SG second D-UVE-PLS
model were optimized.

2.4. Parameter Optimization and Evaluation of the
Measurement Model. To further improve the measurement
performance of the model, the latent variable factors of the SG
second D-UVE-PLS model were optimized. The evaluation
criterion for the number of latent variable factors was based on
the average root-mean-square error of cross-validation
(RMSECV) of the 11 trait-index models. Figure 4 shows the
curve of the model measurement performance as a function of
the number of latent variable factors. When the number of
latent variable factors was six, the curve of the average
RMSECV values flattened, indicating that increasing the
number of latent variable factors did not significantly improve
the measurement performance of the model. Six latent variable
factors were used to establish the SG second D-UVE-PLS

prediction model (Table 1), which demonstrated low RMSEP
values for various physicochemical properties of the jet fuel.
Moreover, most of the property indices had RPD values
greater than two, indicating high accuracy and reliability of the
model. Therefore, under the condition of six latent variable
factors, the SG second D-UVE-PLS model accurately analyzed
11 physicochemical property indices of the jet fuel.

2.5. Practical Applications. The effectiveness of applying
the SG second D-UVE-PLS model was investigated by using
four real samples. The model measurement values of the 11
indicators for the four samples and reference values obtained
using the national standard methods (specified in “GB 6537-
2018 no. 3 jet fuel”) are listed in Table 2. The reproducibility
of each physicochemical property indicator was based on
standard methods. The measured values were obtained using
the SG second D-UVE-PLS model, and the difference between
the reference and measured values represented the error. The
accuracy of the model measurements was evaluated based on
the magnitude of the error. The errors in the determination
results for the four unknown samples were within the
reproducibility range required by the national standard
method, indicating that the SG second D-UVE-PLS model
accurately determined the 11 jet fuel indicators. Therefore, it
can satisfy the requirements for the rapid on-site detection of
the no. 3 jet fuel.

3. CONCLUSIONS
In this study, we developed a rapid analytical method for the
simultaneous detection of multiple physicochemical properties
of jet fuels using NIR spectroscopy. This method reduces field-
testing time, improves field-testing efficiency, and provides a
simultaneous, rapid, and accurate determination of 11 key
physicochemical indicators of the no. 3 jet fuel. This study
used and compared the effects of four preprocessing methods
and three feature selection methods for spectral data
processing. In addition, the PLS and O-PLS algorithms were
compared, and the best modeling method was selected by
comparing and optimizing the performance indicators of each
model. Among them, the SG second D-UVE-PLS model
showed the best performance, with Rc2 ranging from 0.9102 to
0.9763, and RMSEC values of 0.3846−0.9364 °C (distillation
values), 0.6227 kg/m3 (density), 0.5353−0.6603 mm2/s
(kinematic viscosity), 0.8978 °C (freezing point), and 1.1354
°C (flash point), for the 11 physicochemical property
indicators of the calibration set. For the validation set, Rp2
ranged from 0.8239 to 0.9557, with RMSEP values of 0.3846−

Figure 4. Mean of RMSECV as a function of the number of factors.
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0.9364 °C (distillation values), 0.6227 kg/m3 (density),
0.5353−0.6603 mm2/s (kinematic viscosity), 0.8978 °C
(freezing point), and 1.1354 °C (flash point) and the RPD
values ranged from 1.8 to 3.0. Compared with the PLS model
that was established using full-wavelength spectra, the Rc2 and
Rp
2 values improved by 2.10−82.17 and 2.40−91.65%,

respectively. The RMSEC and RMSEP values decreased by
32.30−99.14 and 15.01−88.64%, respectively. Therefore, the
SG second D-UVE-PLS model method can reduce the
influence of external factors on the spectral quality and
effectively improve the measurement accuracy and reliability of
the no. 3 jet fuel.
This study successfully established a rapid NIR analysis

method for the simultaneous determination of 11 phys-
icochemical properties of jet fuels. The differences between the
measured and reference values for each physicochemical
property indicator met the reproducibility requirements of
the national standard methods, demonstrating the high
accuracy and reliability of the measurements. This method
provides efficient and accurate technical support for rapid on-
site analysis in the production and use of jet fuels, which is
essential for research into simultaneous rapid analysis models
for multiple physicochemical properties of fuels.

4. EXPERIMENTAL SECTION
4.1. Materials. We used 2 L capacity metal buckets

specifically designed for oil sampling to collect two buckets
each of 40 samples of the no. 3 jet fuel over a period of one
month. These samples originated from 31 representative
refineries in China, including PetroChina Daqing Petrochem-
ical, SINOPEC Qilu Petrochemical, and SINOPEC Jingmen
Petrochemical, with 9 sets of samples being from different
production batches of the same refinery. Of the 40 samples
collected, one bucket was designated for sample preservation
and sealing, while the other bucket was used for experimental
purposes. After all samples were numbered, they were placed in
the sample reserve room, which is situated far from suburban
areas, in a dry, cool location that consistently maintains a
temperature of 15−25 °C throughout the year. The ratio of the
calibration set to the validation set is 3:1. After measuring all
samples with standard methods, we selected 10 groups of
samples, whose measurement indicators were evenly dis-
tributed among all samples’ measurement results, to act as the
validation set from the 40 groups of samples. The remaining 30
groups of samples were designated as the calibration set.

4.2. NIR Spectroscopy Acquisition. Spectral acquisition
was performed using a portable NIM-260R NIR spectrometer
manufactured by the National Institute of Metrology, China.

This instrument used a halogen light source (L1024,
International Light Technologies, USA) with fiber-optic add-
ons and a reflectance detector with a 1 cm optical path. The
spectrometer was preheated for 30 min and set to a wavelength
resolution of 12 nm with a wavelength range of 800−1700 nm
for spectral acquisition. The tests were performed by using air
as the background. Each sample was scanned seven times, and
the spectral scanning results were determined by averaging the
scans. To minimize the influence of instrument conditions and
environmental factors, each sample was tested five times, and
the average value was used as the input spectral variable for
modeling.

4.3. Determination of Standard Values for Physical
and Chemical Properties. The reference values of 11
physicochemical properties of jet fuel no. 3 were tested in
accordance with the standard methods specified in the “GB
6537-2018 no. 3 jet fuel”. Specific properties include: initial
and final boiling points, 10, 20, 50, and 90% distillation points,
density at 20 °C, kinematic viscosities at 20 and −20 °C, and
freezing and flash points.

4.4. Model Establishment and Evaluation. The NIM-
SPEC spectrometry software (National Institute of Metrology,
China) was used to complete the preprocessing of the spectral
data, selection of feature bands, and model establishment. The
spectral data were preprocessed using SG smoothing, SG first
D, SG second D, and MSC. Three commonly used feature
wavelength selection methods, VIP, UVE, and MC-UVE, were
employed to select feature bands from the full-wavelength NIR
spectra of the jet fuel. The preprocessed spectral data of the
calibration set samples and the corresponding reference values
of the 11 physicochemical properties were used as input
variables for the model. Jet fuel multi-index determination
models were established using PLS and O-PLS algorithms (the
PLS modeling methods used were PLS1). Using leave-one-out
cross-validation (LOOCV), we sequentially extracted sample
data from the calibration data set, established the model with
the remaining data, and then predicted with the extracted data.
After all data in the calibration set had been cycled through
once, the RMSECV was calculated using the cross-validation
predicted values and the optimal number of factors was
determined for the regression model based on the
RMSECV.32−34 The performance of the established measure-
ment model was evaluated using the coefficient of determi-
nation for the calibration set (Rc2), coefficient of determination
for the validation set (Rp2), RMSEP, and RMSEC. The accuracy
of the model was assessed using RPD. Under optimal
conditions, predictive models for 11 physicochemical indices
were established, and the performance evaluation referred to

Table 1. SG 2nd D-UVE-PLS Optimization Modeling Results of 11 Indicators

projects Rc2 RMSEC Rp2 RMSEP RMSECV RPD

initial distillation point (°C) 0.9216 0.3569 0.8288 0.3846 0.3701 2.0
10% distillation point (°C) 0.9323 0.2618 0.8801 0.5114 0.3210 1.8
20% distillation point (°C) 0.9102 0.4260 0.8696 0.6741 0.4622 2.5
50% distillation point (°C) 0.9724 0.5498 0.9347 0.9364 0.6518 2.2
90% distillation point (°C) 0.9225 0.4056 0.8662 0.5096 0.4219 2.2
final distillation point (°C) 0.9618 0.2591 0.8844 0.5144 0.3215 2.2
20 °C density (kg/m3) 0.9724 0.1815 0.9557 0.6227 0.3305 3.0
20 °C kinematic viscosity (mm2/s) 0.9763 0.0156 0.9523 0.5353 0.1208 2.7
−20 °C kinematic viscosity (mm2/s) 0.9254 0.1275 0.8349 0.6603 0.3651 2.5
freezing point (°C) 0.9681 0.2615 0.9521 0.8978 0.3012 2.2
flash point (°C) 0.9533 0.8468 0.8239 1.1354 0.9567 1.9
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the average evaluation indicators of each model. The
corresponding formulas are as follows
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the number of samples in the calibration set is n, and the
number of samples in the prediction set is m. yi is the reference
value of sample i, y is the average value of yi, and yi is the value
of sample i predicted by the model.
A high R2 value and low RMSEC and RMSEP values

indicate that the model has a strong predictive ability.35−37 A
large RPD value reflects the reliability of the model; a reliable
model can accurately determine new unknown samples. RPD
values < 1.4, between 1.4 and 2.0, and > 2 indicate that the
constructed model is unreliable, relatively reliable, and has a
high degree of reliability, respectively.38−40
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