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Abstract

A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated
spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were
never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these
data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data
generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has
identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key
functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction,
migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression
may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory
impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal
aging related non-syndromic learning or spatial learning impairments such as ASLI.
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Introduction

Aging and age-associated cognitive impairments are complex

and multifactorial and involve both genetic as well as

environmental determinants. Both in humans and in animal

models the process of normal aging often results in cognitive

decline, with or without the presence of any aging related

neurological disorders. Disorders related to cognitive impair-

ments range from non-syndromic benign senescent forgetfulness

to the syndromic memory loss that characterizes Alzheimer’s

disease [1,2,3]. These manifestations are highly heterogeneous

and individual, family, and population specific. They continue

to increase with the current trend in longevity in most

populations [4,5,6]. As such they are emerging as a major

societal challenge. Attempts in the last decade to gain insight

into aging and age-associated learning impairments have been

aided by advances in genome-wide methods and technologies,

particularly gene expression involving microarrays. Further, the

hippocampus in the brain is integral to memory function

including spatial memory both in humans and in rodents [7,8].

It is greatly affected by aging, and is among the first to be

affected during dementia [9,10,11,12]. The microarray technol-

ogy has been used widely, more specifically, to understand the

gene expression changes related to aging and age-associated

memory impairments in the hippocampus in humans [13] using

post-mortem tissues [14] and in animal models such as rodents

after behavioural training [4,9,15]. Results show that learning

induces a complex reprogramming of gene expression, which is

also affected by the aging processes. Moreover, the results of the

individual studies are heterogeneous and often difficult to

interpret. They often highlight different gene sets and pathways,

have limited conclusions, and do not consider their broader

implications that may go beyond individual experiments. It is

therefore desirable to integrate results from these studies

towards a consensus view of the genes affected and the

molecular mechanisms underlying brain aging and age-associ-

ated learning impairments. This is now possible because of the

availability of considerable amount of original microarray data

in the public microarray data repositories, as well as the

availability of improved statistical analytical methods. This study

focuses on age-associated spatial learning impairment (ASLI). It

uses original results from all available microarray gene

expression data involving ASLI in rats using an inverse-variance

meta-analysis approach [16]. The results establish that a large

number of genes are differentially expressed across age and

across spatial learning impairment. More importantly, they

allow identification of pertinent lists of aging and ASLI related

genes. Further, the follow up analysis has offered a novel insight

into the underlying molecular pathways associated with aging

and age-related non-syndromic memory impairments such as

ASLI.
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Methods

Data Selection
In order to reduce heterogeneity among studies selected for this

meta-analysis we followed a conservative data selection process.

We focused on datasets generated from carefully designed

behavioural studies involving hippocampus dependent ASLI in

Fischer 344 strain of male rats (Rattus norvegicus) as assessed by the

Morris Water Maze (MWM). We mainly used the GEO (http://

www.ncbi.nlm.nih.gov/geo/) and the ArrayExpress (http://www.

ebi.ac.uk/array express/) microarray data repositories to search

for microarray gene expression datasets using the keyword

‘‘memory and brain’’. We also used the PubMed literature

database to search for relevant studies (Figure 1). Affymetrix raw

data (CEL files) for the selected studies were either directly

downloaded from the GEO website or obtained through personal

communication with the original authors.

Data Preprocessing
All arrays were first assessed for image quality using the dChip

software [17] (http://biosun1.harvard.edu/complab/dchip/). Mi-

nor contaminations present in a few of the arrays were corrected

using the built in image gradient correction algorithm in dChip.

The data quality was assessed using the RNA degradation ratios,

relative log expression (RLE), and normalized unscaled standard

errors (NUSE) plots using the simpleaffy and affyPLM packages in

Bioconductor (http://www.bioconductor.org/) following standard

procedures [18]. Arrays with bad quality e.g. variable background

brightness, uneven hybridization, etc., or arrays having greater

than 15% array outlier values were excluded. Within-study

normalization and expression measurement were performed using

the RMA methods [19] with default options in the affy package in

R [20]. Within-study batch correction was performed using the

Empirical Bayes method also known as the ComBat [21], which

has been shown to produce better results than other comparable

methods [22,23]. Array hybridization dates were retrieved from

CEL files and used as processing batches to perform batch

Figure 1. Data selection process. Search in the public microarray data repositories identified 38 microarray datasets involving cognitive
impairments. We excluded 19 datasets that were either not relevant to our study or were not associated with any publication. We excluded 14 more
studies as they involved different learning paradigms, test conditions, and outcomes in mice. We finally selected five studies that dealt with
hippocampus dependent age-associated spatial learning in rats.
doi:10.1371/journal.pone.0069768.g001
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correction. Age and spatial learning impairment were used as

covariates.

Data Integration
A common probe-set file that contains best matching pairs of

probe-sets representing the same gene in the two chip types i.e.

rgu34a and rae230a was downloaded from the Affymetrix website

(www.affymetrix.com). Applying the common file, probe-sets from

all studies belonging to the two different chip types were merged

into three categories as follows: i) rg_exclu, probe-sets exclusive to

the rgu34a chip type, ii) all5_com, probe-sets common among all

five studies, and iii) rae_exclu, probe-sets exclusive to the rae230a

chip type. Each probe-set specific data and their analysis outcome

from all studies were combined in two ways (Figure 2): a) effect size

integration, which combined the estimated effect size results and b)

direct data integration, which combined the preprocessed data first

before any analysis.

a) Effect size (ES) integration. Meta-analysis, which

combines the results of independent but related studies in a

relatively inexpensive way, has the ability to increase the statistical

power to obtain a more precise estimate of gene expression

differences. Though there are many ways to combine the results

across studies, platform, and species [23,24,25], combining effect

sizes using an inverse-variance method [26,27] is considered to be

the most comprehensive approach for meta-analysis of gene

expression microarrays [24]. Therefore, we estimated effect sizes

on the within-study batch-corrected data using the random effect

size (ES) model as follows. First, for each probe-set, study-specific

sample sizes, mean expression measures, and standard deviations

were computed for each comparison. In order to understand the

effect of age and spatial learning impairment, data were analyzed

in two ways, e.g. by comparing samples across age (aged vs. young,

AY) and across learning impairment (aged-impaired vs. aged-

unimpaired, IU), respectively. Next, the meta package in R (http://

cran.r-project.org/web/packages/meta/meta. pdf) was used to

calculate each study-specific standardized mean difference (SMD)

(Cohen’s d) for each probe-set, and later, probe-set SMDs for all

studies in each category (e.g. rg_exclu, all5_com, and rae_exclu)

were pooled utilising Hedges’ adjusted g [16] to obtain the final

random ES for each probe-set. Effect size values for all probe-sets

from all three categories were then combined together, annotated,

and summarized. Duplicate probe-sets and multiple probe-sets

annotated to the same gene were summarized by keeping the

probe-set with the lowest p-value (of the z-value) for the gene [28].

Uninformative probe-sets were filtered out by removing probe-sets

whose expression values had a coefficient of variation of zero

across all arrays and probe-sets with a p-value (of the ES z-value)

greater than 0.1. The p-values of the treatment effect for all probe-

sets were adjusted for Benjamini and Hochberg (BH) multiple

testing correction [29] in R.

b) Direct data integration. This was done by a cross-study

and cross-platform normalization process by first combining data

separately for each category (e.g. rg_exclu, all5_com, and

rae_exclu) and then adjusting data across all studies. For each

category, data were adjusted similarly as within-study batch

correction, however, considering individual studies as separate

batches. Next, differential expression (DE) analysis was performed

by comparing the data in two ways as above e.g. AY and IU using

the limma software package [30]. Significantly differentially

expressed genes from all three categories were combined together,

annotated, and summarized as described above. Duplicate and

multiple probe-sets issues and multiple testing corrections were

also handled similar to the ES analysis.

Functional and Pathway Analysis
Functional and pathway analysis was performed mainly using

the Ingenuity Pathway Analysis (IPA) software (http://www.

ingenuity.com). Data sets containing identifiers of significant (p-

value #0.05) differentially expressed genes from AY or IU

comparisons with their corresponding ES estimates (as fold-

change values) and p-values were used as input. Identifiers that

were successfully mapped to their corresponding objects in the IPA

knowledge base were considered for functional, network, and

canonical pathway analysis.

For functional analysis the mapped identifiers that were

associated with biological functions and/or diseases in the IPA

Knowledge Base were considered. Right-tailed Fisher’s exact test

was used to calculate a p-value determining the probability that

each biological function and/or disease assigned to the data set is

due to chance alone. The expression levels (up- or down-

regulation) for all of the input genes in each function annotation

category were compared with the information stored for those

genes in the IPA Knowledge Base to predict whether the

expression patterns correspond to the activation state (decreased

or increased) for that category.

For network analysis the mapped identifiers were overlaid onto

a global molecular network developed from information contained

in the IPA Knowledge Base. Networks of network eligible

molecules were then algorithmically generated based on their

connectivity. Next, the functional analysis of a network identified

the biological functions and/or diseases that were most significant

to the molecules in the network based on the association of the

network molecules with the biological functions and/or diseases in

the Ingenuity Knowledge Base. Right-tailed Fisher’s exact test was

used to calculate a p-value determining the probability that each

biological function and/or disease assigned to that network is due

to chance alone.

Canonical pathways analysis identified the pathways from the

IPA library of canonical pathways that were most significant to the

gene lists. All the mapped identifiers from the data set that were

associated with a canonical pathway in the Ingenuity Knowledge

Base were considered for the analysis. The significance of the

association between the data set and the canonical pathway was

measured in two ways: a) a ratio of the number of molecules from

the data set that map to the pathway divided by the total number

of molecules that map to the canonical pathway is displayed. b)

Fisher’s exact test was used to calculate a p-value determining the

probability that the association between the genes in the dataset

and the canonical pathway is explained by chance alone.

Results

Data Selection, Preprocessing, and Integration
Search in the public microarray data repositories reveals that

there is a large body of microarray data available involving

cognitive impairments (Figure 1). Review of the resulting articles

reveals that the goals of these studies are varied and include

different learning paradigms, test conditions, subjects, and tissue

types. After careful examinations of these datasets and following

suitable data selection guidelines (see method), we identified five

individual studies consisting of a total of 287 arrays (one animal

per assay), which used two different Affymetrix chip types,

RG_U34a and RAE230a (Table 1). The data represented young

and aged rats that were learning unimpaired and aged rats that

were learning impaired from a set of results published during 2003

to 2009. The selected datasets referred to as BL [31], B7 [4], R7

[32], B8 [15], and K9 [33] in this study allowed us to assess a

combined gene expression changes related to aging, as well as
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ASLI in rats across multiple studies. These studies investigated

spatial learning tasks in young (3–6 months old) and aged (24–26

months old) animals using the MWM as the training and

assessment protocol. The BL and K9 studies were similar in

design where only the unimpaired young and impaired aged

animals were considered for comparison. The B7, R7, and B8

studies were similar in design where both young and aged groups

had impaired and unimpaired animals as well as additional

controls, e.g. cage controls, stress controls, and controls for visual

impairment. A total of 265 arrays were finally selected following

quality assessment (see methods, data preprocessing).

Hierarchical clustering analysis with normalized data shows that

batch effects are clearly evident in all studies even after

normalization (see Figures 3 and 4 for some representative results).

Arrays that were hybridized on the same date as a batch are

clustered together in the dendrogram. We used an Empirical

Bayes method implemented in ComBat to remove batch effects.

Batch effects were completely removed from the BL, B7, and K9

data and considerably removed from the B7 and B8 data. Data

were integrated between the rgu34a chip which had a total of 8799

probe-sets and rae230a chip that had a total of 15923 probe-sets.

After data integration, the rg_exclu category contained 2356

probe-sets exclusive to the rgu34a array only. The all5_com

category included 6384 rgu34a unique probe-sets mapping to

5435 rae230a unique probe-sets that are common among all five

studies. Finally, the rae_exclu category contained 10,431 probe-

sets exclusive to the rae230a array type.

Gene Identification and Functional Analysis
a) Aged vs. young (AY). In order to assess the effect of aging,

a comparison was made between aged vs. young animals. After

combining probe-sets from all three categories and after summa-

rization we had ES estimates for 10,619 unique annotated genes.

After filtering, there were 3235 genes left, of which 2245 genes

were found significant with a p-value #0.05 (Table S1) and 1753

genes were found significant after BH multiple testing correction

(pBH.ES #0.05). Among the 1753 genes, 874 genes have an I2

(ratio of true heterogeneity to total variation) value of 0% while

1347 genes have an I2 value under 40%. Table 2 shows the top 10

most up- and down-regulated genes in the aged animals compared

to the young animals. The forest plots of two representative genes

C3 (complement component) (up-regulated) and Tubb2b (tubulin,

beta 2B class IIb) (down-regulated) are presented in Figure 5A and

B, respectively. DE analysis was performed on the data sets in

parallel to the ES analysis. Using the 3235 genes from the ES

analysis, the log fold-change (logFC) and p-values (pDE) for the

corresponding differentially expressed genes were pulled out and

BH adjusted similar to that of ES data. This resulted in a total of

1946 genes (pDE ,0.05) and 1569 genes after BH adjustment

(pBH.DE ,0.05).

Functional and Pathway analysis were performed using the IPA

software. For this analysis, we considered the significant genes

based on unadjusted p-value (pES #0.05) of the random effect

size, which resulted in a total of 2245 genes. These genes were

used as input in the IPA of which 2240 were mapped to their

corresponding object in the IPA Knowledge Base. The functional

analysis identified the biological functions and/or diseases that

were most significant (activation z-score value-cutoff of 1.980) to

the mapped gene list. The IPA functional analysis predicts that

comparatively more functions are decreased than increased in the

aged animals. Table 3 shows a summary of the most significant

functions, increased or decreased, as predicted by the IPA

algorithm based on the expression levels of the genes in the

dataset. The results show that the functions that are specifically

decreased include cell viability of central nervous system cells,

formation of cells, quantity and synthesis of inositol phosphate,

and axonogenesis. Thus they affect the cell death and survival,

cellular growth and proliferation, carbohydrate metabolism,

molecular transport, small molecule biochemistry, cell morphol-

ogy, and nervous system development and function in the aged

animals. Major functions categories that see an increase are

cellular movement, cellular development, and connective tissue

development and function. The specific functions of the genes in

this category include the migration of cells and differentiation of

chondrocytes. We have generated biological knowledge based

gene interaction networks for the AY significant genes. A

representative network graph is presented in Figure 6, which

shows the network interactions of some of the aging and learning

genes. A summary of the functions for the top five most significant

networks is given in Table 4. The most critical canonical pathways

that are affected in the aged animals include Eif2 (eukaryotic

translation initiation factor 2) signaling, antigen presentation, and

Ox40 (tumor necrosis factor) signaling pathways (Table 5).

b) Aged-impaired vs. aged-unimpaired (IU). In order to

assess the effect of ASLI, a comparison was made between the

aged-impaired vs. aged-unimpaired (IU) rats where we included

three sets of controls (e.g. cage controls, visual controls, and stress

controls (no platform during memory test in the water maze)) in

Figure 2. A summary of the meta-analysis workflow. Five individual studies (BL, B7, R7, B8, and K9) were selected for this meta-analysis. The
studies involved two different array platforms, Affymetrix RG-U34a and RAE-230a. Following preprocessing, data were integrated across studies and
across array platforms and analyzed in two ways: meta-analysis using random effect size model and differential expression analysis using the limma
software. Top significant genes were used to identify enriched functions and pathways and to construct knowledge based gene regulatory networks
using the Ingenuity Pathway Analysis software.
doi:10.1371/journal.pone.0069768.g002

Table 1. Age-associated spatial learning impairment (ASLI) datasets for rats.

Dataset ID Reference Affymetrix Array Type Number of Assays (one animal/array)

BL Blalock et al. 2003 [31] RG_U34 29

B7 Burger et. al. 2007 [4] RG_U34 79

R7 Rowe et. al. 2007 [32] RAE230a 50

B8 Burger et. al. 2008 [15] RAE230a 80

K9 Kadish et al. 2009 [33] RAE230a 49

doi:10.1371/journal.pone.0069768.t001
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Figure 3. Boxplot of R7 dataset before (A) and after (B) RMA normalization. Each color represents a batch of arrays that were hybridized
and processed at the same time.
doi:10.1371/journal.pone.0069768.g003

Figure 4. Hierarchical clustering of RMA normalized R7 data. Each color represents a batch of arrays, which were hybridized and processed at
the same time. Batch effects are evident even after normalization and before batch adjustment (A) as arrays are mostly clustered in batches. However,
following Empirical Bayes adjustment arrays are clustered based on aged and young phenotypes irrespective of batches (B). Leaf labels: A, aged; Y,
young; I, impaired; U, unimpaired; c, control.
doi:10.1371/journal.pone.0069768.g004
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Figure 5. Forest plots of four representative significant genes. For the selected probe-set for each gene the individual study specific
standardized mean differences (SMD) and their 95% confidence intervals (CI) are plotted and shown on each row. The effect size results are shown at
the bottom of each plot. C3 is up-regulated (A) and Tubb2b is down-regulated in the aged rats. Arc is down-regulated (C) and Marcks is up-regulated
(D) in the aged-impaired rats.
doi:10.1371/journal.pone.0069768.g005

Table 2. Top ten most up- and down-regulated genes (based on ES) in the AY comparison.

Up-regulated genes

Probe ID Symbol ES z-value
p-value of z-
value

pBH of
z-value LogFC of DE pBH of DE

1398892_at Npc2 3.988 3.16 0.002 0.009 0.474 0

X52477_at C3* 3.812 3.716 0 0.002 0.730 0

X13044_g_at Cd74* 3.389 3.148 0.002 0.009 0.916 0

M15562_g_at HLA-DRA* 3.236 3.284 0.001 0.007 1.011 0

1368187_at Gpnmb* 3.189 2.827 0.005 0.017 0.610 0

L03201_at Ctss* 3.110 3.362 0.001 0.006 0.368 0

1373575_at Fcer1g* 2.846 2.821 0.005 0.018 0.473 0

1370885_at Ctsz 2.606 3.201 0.001 0.008 0.432 0

J03752_at Mgst1* 2.544 3.229 0.001 0.024 0.362 0

1376652_at C1qa* 2.519 3.709 0 0.007 0.488 0

Down-regulated genes

Probe ID Symbol ES z-value p-value of
z-value

pBH of
z-value

LogFC of DE pBH of DE

1376319_at Sema3c* 23.674 23.867 0 0.001 20.588 0

X57281_at Glra2 22.589 24.599 0 0 20.528 0

1388821_at Trib2 22.029 22.578 0.01 0.028 20.253 0

1388750_at Tfrc* 21.853 22.576 0.01 0.028 20.203 0

L03294_at Lpl* 21.803 25.42 0 0 20.395 0

1374966_at Dcx* 21.783 23.42 0 0.005 20.262 0

1389533_at Fbln2 21.756 22.332 0.02 0.04 20.192 0

D45412_s_at Ptpro* 21.721 22.499 0.013 0.032 20.319 0

M58369_at Pnlip* 21.618 23.26 0.001 0.007 20.200 0

X03369_s_at Tubb2b* 21.607 22.907 0.004 0.015 20.174 0

Top genes identified by IPA are indicated by an asterisk (*). Legends: ES, effect size; pBH, p-value with Benjamini and Hochberg correction; FC, fold change; DE,
differentially expressed.
doi:10.1371/journal.pone.0069768.t002
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the aged-impaired group as was done in the B7 and B8 studies

[4,15]. After combining probe-sets from all three categories and

after summarization there were 10,412 unique annotated genes

with ES estimates. After filtering out uninformative genes there

were 1310 genes left, of which 787 genes were found significant

with a p-value #0.05 (Table S2). Among the 787 genes, 59 were

significant with adjusted pBH.ES #0.05 and 55 of these genes

have an I2 value of 0%. Table 6 shows the top 10 most up- and

down-regulated genes in the aged-impaired as compared to the

aged-unimpaired animals. Figure 5C and D show the forest plots

of two representative genes Arc (activity-regulated cytoskeleton-

associated protein) (down-regulated) and Marcks (myristoylated

alanine-rich protein kinase C substrate) (up-regulated). DE analysis

for the 1310 IU genes identified 460 significant genes (pDE

#0.05), of which 92 were significant with pBH.DE #0.05.

However, among the 92 genes significant in the DE analysis, 44

were also present in the ES meta-analysis (pES #0.05) category

and 14 in the pBH.ES #0.05 category.

A total of 738 genes with significant effect sizes (pES #0.05)

were used as input for the IU functional analysis in the IPA.

Though cell viability of hippocampal neurons and CNS cells, cell-

to-cell signaling, and molecular transport were the top functions in

the results, none were statistically significant. However, when we

reanalyzed with an effect size data set that was generated

comparing the expression level of the aged-impaired animals with

that of the aged-unimpaired animals without any controls, four

functions e.g. molecular transport, cellular development, cellular

growth and proliferation, and connective tissue development and

Figure 6. Network 3 from aged vs. young (AY) comparison. Major functions of this network are cellular assembly and organization, tissue
development, and cell morphology. Each biological relationship (an edge) between two genes (nodes) is supported by at least one reference from
the literature or curated information stored in the Ingenuity Knowledge Base. The intensity of the node color indicates the degree of up- (red) or
down- (green) regulation observed in the AY comparison. The effect size and p-value for each gene is shown below the gene symbol. Edges are
displayed with various labels that describe the nature of relationship between the genes (e.g. P for phosphorylation, PP for protein-protein binding,
PD for protein-DNA binding, A for activation, E for expression, L for proteolysis, LO for localization, RB for regulation of binding). Any specific findings
for a gene whether it is associated with aging (A), learning (L), and/or spatial learning (SL) is presented inside a rectangle beside that gene.
doi:10.1371/journal.pone.0069768.g006

Aging and Learning Impairment Genes and Pathways

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e69768



function were significantly decreased (results not shown). The

specific functions of these genes in these categories include

transport of molecules and proliferation of fibroblast cell lines.

In addition, growth of neuritis was also decreased among others.

Similar to AY, we have generated biological knowledge based

gene interaction networks for the IU related genes. A summary of

the functions for the top five most significant networks is given in

Table 7. The canonical pathways that are most affected in the

aged-impaired compared to the aged-unimpaired animals include

Nurr77 (nuclear receptor subfamily) signaling in lymphocytes,

nNOS (nitric oxide) signaling in neurons, and glutamate receptor

signaling (Table 8).

Aging and Learning Related Genes
We searched the IPA Knowledge Base for genes that are

annotated as aging related and genes that are annotated as

learning related, particularly spatial learning. We found a total of

61 genes related to general aging, of which five, Adraid (all-trans

retinoic acid-induced differentiation factor), Aldoc (aldolase C,

fructose-bisphosphate), Clu (clusterin), ApoE (apolipoprotein E),

and Mapt (microtubule-associated protein tau) (Figure 6) were

present in our data set (p.ES #0.05). Further, there were 401

genes annotated as learning genes in the IPA Knowledge Base, of

which 177 were categorized under spatial learning (SL). Among

these learning genes 86 (30 of which were SL related) were present

in our AY comparison (Table S3) and 48 (15 of which were SL

related) were present in the IU comparison (Table S4) with p.ES

#0.05. They were considered as the ASLI associated genes.

Among the 86 genes for AY and 48 genes for IU, 15 were found

common in both comparisons.

Discussion

Effective Meta-analysis Necessitates Proper Data
Preprocessing and Integration

Meta-analysis has emerged as an essential tool in modern

genetic and genomic analysis [34]. It can uncover a significant

effect from a combined analysis as integration of a broader and/or

richer collection of data has the potential to generate results that

have greater confidence, and place less reliance on a single dataset

[24,34]. Although meta-analysis often includes large number of

unrelated studies, we followed a more conservative approach in

order to concentrate on microarray gene expression datasets that

Table 3. Significantly increased or decreased functions in the AY comparison.

Functions
Annotation p-value

Predicted
activation state

Activation
z-score

High-level functions
category Genes

Cell viability of central
nervous system cells

2.22E-03 to
2.35E-02

Decreased 22.757
to 22.000

Cell death and survival ApoEA,L,SL, Atf3, BdnfL,SL, Cdk5r1L,SL, Cycs,
Hspb1, Ide, Igf2, Ntf3L, Plagl1, PrkcgL,SL, RelaL,
Serpini1, Sh3kbp1, Slc11a2L, VegfaL, Vip

Formation of cells 7.96E-03 Decreased 22.376 Cellular growth and
proliferation

BdnfL,SL, Egr1L, Fgf18, Icam1, Igf2, Nppa, Pf4,
S100bL, Sdc2, Wt1

Quantity and synthesis
of inositol phosphate

1.54E-02 Decreased 22.186 Carbohydrate metabolism,
molecular transport, small
molecule biochemistry

Agtr1, Avp L, Cckbr, GalL, Gnaq, GrpL, Icam1,
Mas1, Pthlh, Rgs2, Rgs3, S1pr1, Trhr

Axonogenesis 6.96E-03 Decreased 21.980 Cell morphology, assembly
and organization, nervous
system development and
function

Actb, Actr3, Agrn, BdnfL,SL, Cck, Cntn2L, Igf1r,
L1camL,SL, Mbp, Picalm, Ppp2ca, Snap91, Stk11

Migration of cells 8.08E-04 to
4.96E-03

Increased 2.158 Cellular movement Abcc1, Actr3, Agt, Aif1, Anxa2, Bcar1, BdnfL,SL,
C3, Cck, Ccl3l1/Ccl3l3L,SL, Ccl5, Cd44, Cd82,
Cdc42, Dnm2, Drd5L,SL, Gucy1a3, Gucy1b3,
Icam1, NfkbiaL, Ntf3L, PtenL, Reln, Stat3,
Scpep1, Tac1L, Tgfa, Tgfa, Tgfb1, Tgfb2,
Tpm1, Tubb2b, VegfaL, and etc.

Differentiation of
chondrocytes

1.54E-02 Increased 2.183 Cellular development,
connective tissue
development and function

Grn, Por, RelaL, Tgfb1, ThrbL

Genes in bold were up-regulated and not bold were down-regulated in this analysis. Genes annotated as aging, learning, and spatial learning in the IPA knowledge base
are indicated by ‘‘A’’, ‘‘L’’, and ‘‘SL’’, respectively.
doi:10.1371/journal.pone.0069768.t003

Table 4. Major functions associated with the top five networks in the AY comparison.

Network ID Top functions associated with the networks IPA score Total focus genes

1 Molecular transport, cell-to-cell signaling and interaction, nervous system development and function 25 35

2 Endocrine system disorders, gastrointestinal disease, metabolic disease 21 33

3 Cellular assembly and organization, tissue development, cell morphology 17 30

4 Cell-to-cell signaling and interaction, cell signaling, molecular transport 14 28

5 Drug metabolism, protein synthesis, cancer 14 28

doi:10.1371/journal.pone.0069768.t004
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focused on the hippocampus dependent ASLI as assessed by

MWM test. We started the data preprocessing with raw expression

data (CEL files), which gave us the opportunity to perform

consistent quality assessment, preprocessing, and filtering of

imperfect arrays and outlier values. It also allowed correction of

batch effects and removal of any unexplained technical variations.

Our results (Figure 3 and 4) confirmed the findings of recent

studies [21,35] and demonstrated the necessity of removing batch

effects from microarray data before integrating them in any

analysis.

Next, we performed the random effect size meta-analysis by

keeping the individual studies separate and then only combining

the probe-set specific effects. We also performed the traditional

differential expression analysis in parallel to the ES analysis after

merging all probe-set data into a single pool through the process of

cross-study and cross-platform data normalization (Figure 2). Even

though the DE analysis was able to detect significant DE level, the

difference was smaller compared to the ES. Overall, the ES

analysis seems to be a better approach than DE analysis,

particularly when combining data from different studies and

platforms. Nonetheless, the DE results helped us verify the ES

outcomes and better screen the aging and ASLI associated genes.

It is important to point out that during the data integration

process we worked at the probe-set level rather than at the gene

level. This is essential when combining data from independent

microarray results from different platforms. Therefore, we

integrated all data first before doing any filtering, annotation,

and summarization. In the final filtering process we removed genes

with a p-value (of the ES z-value) .0.1. Our observation is that, a

gene may have a higher ES but not necessarily a lower p-value

(Table S1 and S2). This is due to either the heterogeneity among

studies or the fact that some datasets are lacking the expression

information for that particular probe set. Also the genes whose

treatment effect sizes are either zero or close to zero have higher p-

Table 5. Top canonical pathways in the AY comparison.

Name p-value Ratio

EIF2 signaling pathway 2.36E-07 58/170 (0.341)

Antigen presentation pathway 6.01E-05 14/27 (0.519)

OX40 signaling pathway 1.91E-04 19/60 (0.317)

Chondroitin sulfate degradation pathway 4.96E-03 6/14 (0.429)

IL-17A signaling in gastric cells pathway 5.17E-03 10/24 (0.417)

Complement system pathway 1.69E-02 10/32 (0.312)

doi:10.1371/journal.pone.0069768.t005

Table 6. Top ten most up- and down-regulated genes (based on ES) in the IU comparison.

Up-regulated genes

Probe ID Symbol ES z-value
p-value of
z-value

pBH of z-
value

LogFC of
DE

p-value
of DE pBH of DE

1369775_at Nucks1 1.187 4.105 0 0 0.129 0.008 0.074

S74393_s_at Pax6 0.881 3.944 0 0.016 0.073 0.014 0.086

M27905_at Rpl21 0.884 3.965 0 0.016 0.093 0.020 0.1

1388783_at Hmgb1* 1.124 3.921 0 0.016 0.095 0.055 0.155

U93692_at Nup88 0.814 3.665 0 0.026 0.083 0.004 0.056

J01436cds_s_at CYTB 0.827 3.726 0 0.026 0.052 0.119 0.232

1373952_at Prkag2 1.023 3.610 0 0.033 0.089 0.013 0.084

U78090_s_at Alg10 0.780 3.522 0 0.033 0.061 0.041 0.135

AB002111_at Pex12 0.780 3.534 0 0.033 0.100 0.001 0.034

1389373_at Smad1* 0.949 3.375 0 0.04 0.099 0.045 0.144

Down-regulated genes

Probe ID Symbol ES z-value p-value of
z-value

pBH of z-
value

LogFC
of DE

p-value
of DE

pBH of DE

1390518_at Emid1 21.259 24.314 0 0 20.063 0.049 0.148

rc_AA891838_at Mrto4 20.951 24.224 0 0 20.095 0.000 0.013

1389264_at Ankrd54 21.149 23.983 0 0.016 20.088 0.004 0.056

1369203_at Wif1* 20.980 23.478 0 0.034 20.056 0.023 0.107

U19866_at Arc 20.764 23.46 0 0.034 20.215 0.000 0.008

1376569_at Klf2* 20.960 23.405 0 0.04 20.182 0.000 0.013

rc_AA800613_at Zfp36 20.750 23.396 0 0.04 20.089 0.008 0.073

1398380_at Vwa1 20.94 23.350 0 0.04 20.098 0.002 0.038

1368451_at Hrh3* 20.940 23.349 0 0.04 20.094 0.005 0.063

S49760_g_at Dgka 20.711 23.226 0.0013 0.051 20.081 0.006 0.063

Top genes identified by IPA are indicated by an asterisk (*). Legends: ES, effect size; pBH, p-value with Benjamini and Hochberg correction; FC, fold change; DE,
differentially expressed.
doi:10.1371/journal.pone.0069768.t006
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values. These genes were therefore filtered out. Our data

integration method has prevented any loss of information and

generated a number of differentially expressed genes even after

multiple testing corrections (Table S1 and S2) particularly for the

AY comparison. It is also important to mention that ES estimates

of some of these genes e.g. C3 and Tubb2b (Figure 5, A and B)

present some degree of heterogeneity. It is not unexpected in a

meta-analysis as the heterogeneity may arise, as in this case, from

differences in the details of MWM training, memory test and

sample collection procedure, and other experimental variables

pertaining to the individual studies. However, during the selection

of the aging and ASLI related genes that had high heterogeneity,

we made sure that the estimates of the ES are on the same

direction.

In order to include more genes in the functional and pathway

analysis using IPA we considered the unadjusted p-value (p#0.05)

of the random effect size for gene selection. Also, we analyzed data

with lower number of genes following more stringent criteria such

as using pES #0.005 (e.g. 888 genes) or pBH.ES #0.05 (e.g. 1753

genes) for AY comparison. It was satisfactory to note that the IPA

analysis returned similar results. Also the expression levels (up- or

down-regulation) identified in this meta-analysis for all or most of

the genes in each function annotation category in the AY

comparison correspond to the predicted activation state (decreased

or increased) for that category as supported by the literature in the

IPA Knowledge Base. Further, we were able to verify the results by

literature review using the PubMed. The results support the fact

that the genes and pathways identified in this analysis follow

biological expectations. The genes identified (see below) are known

to partake in aging and in learning impairments. This conclusion is

also supported by follow up analysis including regulatory

interaction networks based on known functions and interaction.

The results obtained are discussed below in the context of aging

and learning impairments associated with aging.

Effect of Differential Gene Expression on Aging and
Learning

Our IPA analysis has revealed major functions and pathways

that are affected in the aged and aged-impaired animals. The

results show that aging is affected by the genes functioning in cell

viability, axonogenesis, and inositol phosphase metabolism.

Further, these genes contribute to the imbalance in many major

function categories including molecular transport, cell to cell

signaling and interaction, and nervous system function. Consid-

ering the effect of the most significant differentially expressed

genes on cellular biology, these genes could be classified into three

distinct but non-exclusive categories: general aging (GA) genes that

are associated with aging related disorders and not associated with

any learning impairments, general aging genes associated with

syndromic learning impairments (GASI), and general aging genes

associated with non-syndromic learning impairments (GANSI).

Given the confounding effect of aging on learning impairments

one may expect an overlap in the three groups of genes. Below we

summarize some key findings about some of the genes from each

of the above three categories. These genes presented significant

up- or down regulation in the AY and IU comparison (Table 2

and 6) and some of them were also identified as contributing to

significantly increased or decreased function in the aged animals

(Table 3).

GA or general aging genes. A majority of the genes that fall

into this category were up-regulated in the aged in comparison to

the young rats in our analysis and many have been implicated in

disease vulnerability at old age in humans and animals. These GA

genes may affect a number of pathways including Eif2 signaling,

antigen presentation, complement system, and Ox40 signaling

pathways (Table 5). EIF2 signaling is activated (through the

phosphorylation of eIF2a) in response to a wide array of cellular

stresses to protects cells by reducing the general rate of protein

synthesis while facilitating programs of stress-induced gene

expression [36]. OX40 is a member of the tumor necrosis factor

(TNF) receptor family and plays a key role in the survival and

homeostasis of effector and memory T cells and T-cell-mediated

inflammatory diseases [37].

The GA genes that are of special interest to this discussion are

C3, Cd74 (CD74 molecule, major histocompatibility complex, class

II invariant chain), Ctss (cathepsin S), Ctsz (cathepsins Z), Agt

(angiotensinogen), Mbp (myelin basic protein), and Cck (Cholecys-

tokinin). Specifically, C3, Cd74, and Agt expression level was

increased (Table 3, migration of cells function) and they affect the

endocrine system disorders, gastrointestinal disease, and metabolic

disease functions. C3 (Table 2 and Figure 5A) plays a central role

in the activation of complement system and is needed to restore

tissue injury. However, inappropriate or excessive activation of the

complement system can lead to cell death and tissue destruction,

thus contributing to further injury and impaired wound healing

Table 7. Major functions associated with the top five networks in the IU comparison.

Network ID Top functions associated with the networks IPA score Total focus genes

1 Neurological disease, tissue morphology 29 27

2 Cellular growth and proliferation, cancer, cell death and survival 16 19

3 Cell-to-cell signaling and interaction, nervous system development and function, carbohydrate
metabolism

14 18

4 Cell death and survival, cellular development, hematological system development and function 10 15

5 Cell death and survival, metabolic disease, cellular function and maintenance 8 13

doi:10.1371/journal.pone.0069768.t007

Table 8. Top canonical pathways in the IU comparison.

Name p-value Ratio

Nur77 signaling in T lymphocytes 6.13E-04 13/51 (0.255)

nNOS signaling in neurons 5.13E-03 12/46 (0.261)

Glutamate receptor signaling 5.68E-03 13/60 (0.217)

Calcium-induced T lymphocyte apoptosis 1.07E-02 12/57 (0.211)

Glutamate dependent acid resistance 1.48E-02 2/2 (1)

doi:10.1371/journal.pone.0069768.t008
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[38]. These consequences are clinically manifested in various

disorders [39]. Cd74 (Table 2) participates in several key processes

of the immune system including antigen presentation, B-cell

differentiation, and inflammatory signalling. Overexpression of

Cd74 has been reported in some inflammatory diseases and several

forms of cancer (reviewed in [40]), and also known as an indicator

of disease in some conditions. The longer form of CD74 also

interacts with CTSS by direct binding [41], and both Ctss and Ctsz

are also highly up-regulated in the aged rats (Table 2). Further,

there is strong evidence implicating different AGT molecular

variants as the cause of human essential hypertension and organ

damage during aging (reviewed in [42]).

Expression of Mbp is known to decrease and Cck is known to

affect the axonogenesis function in the aged animals (Table 3).

Our analysis has revealed an increased expression of Mbp and a

decreased expression of Cck. MBP is a major constituent of the

myelin sheath of oligodendrocytes and has an important role in the

pathophysiology of multiple sclerosis [43], which is a chronic

inflammatory and neurodegenerative disease of the CNS of

unknown cause. Cck is extensively expressed in the brain and a

number of diverse changes to hippocampal Cck expression profile

have been documented in various models of epilepsy [44]. Cck is

also known to have a role in modulating the neuronal network of

anxiety and panic disorder that involves other parts of the brain

e.g. amygdale, hypothalamus [45]. Such results argue that the GA

genes in general are associated with reduction in physiological and

immunological efficiency leading to deterioration (senescence) with

advancing age in the aged rats.

GASI or general aging genes associated with syndromic

learning impairments. Deterioration of mental and physical

state is very common with advancing age, which manifest in

various syndromes. It is apparent that many syndromes associated

with aging are also involved in memory loss and learning

impairments. One such syndrome is the Alzheimer’s disease

(AD), which has been studied extensively. Among the identified

GASI genes in this analysis that have been implicated in AD or

late-onset Alzheimer disease (LOAD) include ApoE [46,47], Mapt

[48], Igf1r (insulin-like growth factor 1 receptor) [49], Clu [50,51],

Picalm (phosphatidylinositol binding clathrin assembly protein)

[50,51], Cdk5r1 (cyclin-dependent kinase 5, regulatory subunit 1,

p35) [52], and Ide (Insulin degrading enzyme) [53]. ApoE, Mapt,

Igf1r, Clu, and Picalm were up-regulated, and Cdk5r1 and Ide were

down-regulated in the aged animals compared to the young.

These GASI genes may also lead to syndromic learning

impairments by affecting various key neuronal functions. For

example, ApoE, Cdk5r1 and Ide are known to decrease cell viability

and Picalm and Igf1r are known to affect axonogenesis (Table 3).

Specifically, ApoE and Mapt have been annotated as the aging

and learning genes in the IPA Knowledge Base (Table S3). ApoE

gene is known as the strongest risk factor for age-related cognitive

decline during normal ageing [54]. APOE isoforms differentially

regulate Ab (amyloid b-peptide) aggregation and clearance in the

brain, and have distinct functions in regulating brain lipid

transport, glucose metabolism, neuronal signalling, neuroinflam-

mation, and mitochondrial function (reviewed in [55]). Toxicity of

Ab also depends on Mapt (Figure 6). Increase in MAPT levels may

represent a very early sign of NFT (neurofibrillary tangle)

formation and AD in humans [48]. Down-regulated Igf1r activity

has been implicated with prolonged human lifespan [49]. When

considering age-related neurodegeneration in AD, signalling

through the Igf1r is disturbed in the AD patients’ brain, and an

increased level of Igf1r has been reported in the degenerating

synapses in cerebral cortex within and surrounding Ab plaques in

people with AD compared to people of the same age without the

disease (reviewed in [49]). Through the deregulated activity of

Cdk5, Cdk5r1 is involved in the pathology of AD [52], synaptic

plasticity, learning, and memory [56]. IDE is involved in the

degradation of Ab and other bioactive peptides e.g. insulin and

IGF-1 and IGF-2 in vitro (reviewed in [57]). PICALM plays a

critical role in iron homeostasis and cell proliferation [58].

PICALM knockdown can result in reduced APP (amyloid

precursor protein) internalization and Ab generation, while

overexpression can cause increased APP internalization and

amyloid plaque load [59]. Irregularities in the Ab clearance

pathway are thought to initiate Ab and tau protein accumulation

in specific brain regions and consequent toxic events that lead to

synaptic dysfunction and neurodegeneration in AD. This is

associated with the progressive destruction of synaptic circuits

controlling memory and higher mental function.

Besides the above genes associated with AD, there is a number

of GASI genes associated with other age-related disease syndromes

and related memory impairment. For example, Cntn2 (Contactin-

2), a learning gene, is up-regulated in the aged (Table S3), Hmgb1

(high mobility group box-1) is up-regulated in the aged-impaired

(Table 6), and Tubb2b is down-regulated in the aged rats (Table 2).

Cntn2 plays a role in the formation of axon connections [60] and

autoimmune responses to Cntn2 have been implicated in multiple

sclerosis [61]. Studies show that cellular stress, trauma, and

inflammatory condition can also result in the up-regulation of

Hmgb1 in the hippocampus in aged rats, which results in reduced

cognitive function in a reversal learning version of the MWM test

[62,63]. Further, Tubb2b is a major component of microtubules

cytoskeletal structures essential for cell motility and function and

one of the top ten most down-regulated genes in the AY

comparison (Table 2). A spectrum of neurological disorders (e.g.

Polymicrogyria) characterized by abnormal neuronal migration,

differentiation, organization, axon guidance, and maintenance has

recently been associated with various mutations in Tubb2b [64,65].

In summary, a number of genes identified in the aged and aged-

impaired animals are associated with a number of syndromes and

fall in the category of GASI genes, which may contribute to the

memory loss and learning impairments observed in the aged-

impaired animals.

GANSI or general aging related genes associated with

non-syndromic learning impairments. It is apparent that

the majority of the differentially expressed genes in the aged or

aged-impaired animals are known to facilitate learning and

memory formation and are not implicated in any syndromes.

They have been annotated as learning or spatial learning genes in

the IPA Knowledge Base (Table S3 and S4). The canonical

pathways that are most relevant to the GANSI genes functioning

in the brain include nNos signaling pathway and glutamate

receptor signaling pathway, which were identified most significant

in the IU comparison (Table 8). nNos [66,67] and glutamate

receptors (reviewed in [68]) play an important role in neurotrans-

mission and are critical to LTP, memory formation and synaptic

plasticity.

The genes that deserve particular attention in the GANSI

category are the 59 genes identified in the IU comparison

following BH correction on the effect sizes (pBH.ES #0.05). These

genes were differentially expressed in the aged rats with spatial

learning impairment as compared to those without spatial learning

impairment. Arc, a learning gene, is one of the most interesting of

these 59 genes and is among the top ten most down-regulated

genes in the aged-impaired animals (Table 6). The immediate-

early gene Arc (aka Arg3) (Figure 5C) expression is found vital for

spatial memory consolidation and long-term synaptic plasticity in

a variety of hippocampal-dependent and hippocampal-indepen-
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dent tasks, including spatial learning in the MWM (reviewed in

[69,70]). Arc is known for its tight experience-dependent regula-

tion, dendritic mRNA transport, and local protein expression in

activated synapses. For example, blocking Arc expression either

using Arc knockout mice [71] or intra-hippocampal injections of

Arc antisense oligonucleotides [72] is known to impair or prevent

LTP without affecting short-term memory performance.

When we considered the larger list of 787 differentially

expressed genes in the IU comparison (BH uncorrected, pES

#0.05), we also found 48 genes annotated as learning or spatial

learning genes in the IPA Knowledge Base (Table S4). Some of the

interesting learning genes among theses 48 genes include Camk2a

(calcium/calmodulin-dependent protein kinase II alpha), Creb1

(cAMP responsive element binding protein 1), Crem (cAMP

responsive element modulator), Egr1 (early growth response 1),

Homer 1 (homer homolog 1) (Figure 6), Junb (jun B proto-oncogene)

(Figure 6), Psen2 (presenilin 2), Slc11a2 (solute carrier family 11),

and Marcks. Particularly, Marcks (pES = 0.004) (Figure 5D) is highly

up-regulated in the aged-impaired animals. Timofeeva and

colleagues recently reported that local infusions of MARCKS

long peptide into the rat hippocampus resulted in a dramatic

impairment of both working and reference memory in a dose-

dependent manner with robust impairment at higher doses [73],

most likely through the inhibition of alpha7 nicotinic acetylcholine

receptors [74]. Thus, our analysis has identified the two genes, Arc

and Marcks, as prime candidates for further investigation for their

role in ASLI.

Additional GANSI genes include Bdnf (brain-derived neuro-

trophic factor), Ntf3 (neurotrophin 3), Igf2, Serpini1 (neuroserpin),

Gucy1a3 (guanylate cyclase 1, soluble, alpha 3), Gucy1b3 (guanylate

cyclase 1, soluble, beta 3), Avp (arginine vasopressin), Gnaq (guanine

nucleotide binding protein), Grp (gastrin releasing peptite), Pthlh

(parathyroid hormone-like hormone), Trhr (thyrotropin-releasing

hormone receptor), Agrn (agrin), L1cam (Cell adhesion molecule

L1), and Ppp2ca (protein phosphatase 2, catalytic subunit, alpha

isozyme). These differentially expressed genes in the AY compar-

ison play a critical role in the increase or decrease of several

significant functions (Table 3) in the aged animals. Since a

majority (73%) of the aged animals in the AY comparison were

also impaired in the spatial learning task, it is not surprising that

some of the aging genes may also contribute to the ASLI in these

animals. Below we highlight some major functions of these GANSI

genes.

For example, the genes Bdnf, Ntf3, Igf2, and Serpini1 were down-

regulated in the aged animals and are known to decrease cell

viability of CNS cells (Table 3). Neurotrophins such as Bdnf and

Ntf3 expression is strongly associated with synaptic function and

plasticity. Specifically, Bdnf is known as a strong mediator for LTP

(long term potentiation) in the hippocampus and play an essential

role in memory formation in the adult brain (see review [75]). Igf2

is a late response gene regulated by the CREB-C/EBP pathway

and plays a critical role in memory consolidation and enhance-

ment [76]. Furthermore, injections of recombinant IGF-II into the

hippocampus after either training or memory retrieval significantly

enhance memory retention and prevent forgetting. Neuroserpin

e.g. Serpini1 expression is involved in regulating the proteolytic

balance associated with axonogenesis and synaptogenesis during

development and synaptic plasticity in the adult [77,78].

Further, Gucy1a3 and Gucy1b3 are involved in the increase of

cellular movement function (Table 3). They are soluble guanylate

cyclises (sGC) and are part of the nitric oxide (NO)/sGC/cGMP

dependent protein kinase (PKG) signaling pathway that plays a

key role in memory processing [66,67]. Inhibition of sGC, of PKG

or of cGMP-degrading phosphodiesterase has been found to

impair LTP [79]. Both GUCY1A3 and GUCY1B3 were found

down-regulated in the aged animals, which may explain the ASLI

in these animals.

The products of the genes Avp [80], Gnaq [81], Grp [82], Pthlh

[83], and Trhr [84] maintain the quantity and synthesis of IP3

(inositol 1,4,5-triphosphate) level in the cell (Table 3) and are

down-regulated in the aged rats. These genes facilitate IP3

production in the brain and some through the activation of

phospolipase C (PLC) [80,81,82,83,84]. Some of them e.g. AVP

[85] and GRPs (see review [82]) are specifically involved in

regulating cognition and memory. IP3 is an important second

messenger in the neuron produced from phosphatidylinsitol

biphosphate (PIP2) and cleaved by PLC. IP3 binds to IP3

receptors, which are gated Ca2+ channels that release calcium

from the endoplasmic reticulum in to the cytosol [86]. Ca2+ in turn

controls many different signalling events within neuron, including

neurotransmitter release and gene expression in the cell nucleus.

At least two Ca2+-activated protein kinases e.g. Ca2+/calmodulin-

dependent protein kinase (CaMKII) and protein kinase C (PKC)

have been implicated in LTP induction. LTP is the underlying

cellular molecular mechanism that correlates with learning and

memory formation [87]. Thus, down regulation of the genes Avp,

Gnaq, Grp, Pthlh, and Trhr can have a negative effect on the Inositol

phospholipid-calcium-CamK-protein kinase C transduction path-

way through decreased quantity and synthesis of IP3 in the aged

animals and directly or indirectly contribute to age-associated non-

syndromic learning impairments such as ASLI.

A number of genes e.g. Agrn, L1cam, Ppp2ca that are down-

regulated in the aged animals demonstrated spatial learning

impairment. Lower expression of these genes is known to decrease

axonogenesis (Table 3). They play a critical role in neurite

outgrowth, synaptogenesis, and synaptic plasticity. For example,

high level of Agrn (Figure 6) expression was found in regions of the

adult brain that show extensive synaptic plasticity. Recent studies

demonstrated a substantial loss of excitatory synapses in the adult

transgenic mice brain that lacked agrin expression. Further, they

demonstrated inhibition of synaptogenesis by agrin antisense

oligonucleotides or agrin siRNA in neuronal cell culture (reviewed

in [88]). L1cam promotes the outgrowth of neurites and thereby

contributes to formation of neuronal connections, learning, and

memory [89,90] via activation of the mitogen-activated protein

kinase (MAPK) pathway [91]. Ppp2ca (aka Pp2a) is involved in

Ca2+-dependent dephosphorylation of SNAP-25 [92] and SNAP-

25 phosphorylation plays an important role in neural plasticity and

long-term potentiation in the hippocampus [93].

It is important to note that Fischer 344 strain of rats have a

median life-span of 23–31 months in captivity [94,95]. Their

normal age-related incidence of neoplasms and degenerative

diseases is high, particularly, once the rats pass 24 months of age

[94,95]. Also, the effect of aging and ASLI on brain gene

expression is evident in the aged (24–26 months old) in

comparison to the young (3–6 months old) rats as discussed

above. Indeed, it is expected that studies on animals beyond 26

weeks of age may show involvement of additional genes in this

phenomenon and the effects observed could be more pronounced

at later stages of the rat’s life-span.

In conclusion, we report that aged animals display a significant

decrease in cell viability, axonogenesis, and inositol phosphate

metabolism. They also show a significant increase in the migration

of cells and differentiation of cells functions due to the altered gene

expression. The regulatory interactions of the differentially

expressed genes seems to affect molecular transport, cell to cell

signaling and interaction, nervous system development and

function, and cell death and survival. The genes that are known
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to be involved in the above functional changes and/or those

present most significant expression changes in the aged or aged-

impaired animals could be broadly classified into three major

categories such as GA, GASI, and GANSI. The GA genes are

mostly involved in inflicting various aging related senescence (e.g.

stress, disorders, and inflammation conditions) and generally are

not associated with any learning impairment. The GASI genes, on

the other hand, are associated with age-related neurological

disease syndromes e.g. Alzheimer’s disease, which generally affect

normal cognitive functioning and may result into syndromic

memory impairments. The most important group of genes

perhaps is the GANSI genes, most of which show down-regulation

in the aged or aged-impaired rats and by themselves usually are

not associated with any syndromes. These genes affect various

signal transduction pathways and functions in the brain contrib-

uting to the disruption of proper learning and memory formation.

We suggest that the GANSI genes should form the foundation for

future studies in understanding age-associated memory impair-

ments such as ASLI. These GASI and GANSI genes form a set of

interesting candidates for future investigations as to how they

interact with each other, how they are regulated, and what target

genes they may affect in order to elucidate the mechanisms behind

aging and age-associated spatial learning impairment.
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