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Abstract

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for molecule identification. 

However, profiling complex samples remains a challenge because SERS peaks are likely to 

overlap, confounding features when multiple analytes are present in a single sample. In addition, 

SERS often suffers from high variability in signal enhancement due to nonuniform SERS 

substrate. The machine learning classification techniques widely used for facial recognition are 

excellent tools to overcome the complexity of SERS data interpretation. Herein, we reported a 

sensor for classifying coffee beverages by integrating SERS, feature extractions, and machine 

learning classifiers. A versatile and low-cost SERS substrate, called nanopaper, was used to 

enhance Raman signals of dilute compounds in coffee beverages. Two classic multivariate 

analysis techniques, Principal Component Analysis (PCA) and Discriminant Analysis of Principal 

Components (DAPC), were used to extract the significant spectral features, and the performance 

of various machine learning classifiers was evaluated. The combination of DAPC with Support 

Vector Machine (SVM) or K-Nearest Neighbor (KNN) shows the best performance for classifying 

coffee beverages. This user-friendly and versatile sensor has the potential to be a practical quality-

control tool for the food industry.
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1. Introduction

Raman spectroscopy is a valuable tool for chemical identification in its ability to provide 

fingerprint information of molecules. A significant challenge of Raman spectroscopy is the 

inherently weak Raman scattering signal; surface-enhanced Raman spectroscopy (SERS) is 

an excellent approach to overcome this challenge. SERS amplifies the local electromagnetic 

field near nanostructured metal surfaces, providing magnitudes of enhancement of Raman 

signals for molecules adsorbed on metal surfaces (Sharma et al., 2012). The large signal 

enhancement makes SERS an effective tool for the detection of dilute analytes.

However, two prominent factors inhibit the interpretation of spectral data in SERS sensing 

applications. First, SERS signals often suffer from high variability (Fornasaro et al., 2020). 

The signal enhancement of SERS is primarily caused by localized electric field enhancement 

and is particularly significant in hot spots, such as nanoscale gaps between metal particles 

and highly structured metal surfaces (Weatherston et al., 2016). A tiny variation of SERS 

substrates could lead to a high variability of SERS signal. Second, many applications of 

Raman spectroscopy, such as food quality analysis and disease diagnosis, intend to compare 

samples that contain similar types of chemicals. The sample states are determined by 

the relative concentrations of multiple chemicals (Kuhar et al., 2018). Although Raman 

spectroscopy provides molecular fingerprint spectra, Raman peaks are likely to overlap 

when a large number of analytes are present in a sample. Thus, sample states cannot be 

simply determined by a few prominent Raman bands. Instead, the whole Raman spectra that 

include the covariate features of multiple molecules should be considered (Liu et al., 2020). 

Therefore, advanced data analysis techniques like machine learning are needed to uncover 

patterns of Raman spectra.

To address complex Raman data interpretation, we applied multivariate analysis and 

machine learning classifiers widely used in pattern recognition applications (e.g., facial 

recognition). Similar to SERS spectra, image datasets often suffer from high variability 

caused by facial expression, illumination, blocking, resolution, and noise, leading to 

practical challenges in computer vision applications (Wright et al., 2009). Multivariate 

analysis has been applied to extract the relevant features and minimize data variations 

(Jade et al., 2003, Kim et al., 2010, Seena and Yomas, 2014). The dimension reduction 

of the high dimension image dataset is achieved through feature extraction and feature 

selection. The removal of the data unrelated to classification improves the dataset quality 

and classification performance (Khalid et al., 2014). Similarly, SERS suffers from high 

variability in signals; therefore, the combination of feature extractions and machine learning 

classifiers could serve as a powerful tool to identify the SERS spectra of complex samples 

(Lussier et al., 2020). In the past decade, multivariate analysis, such as Principal Component 

Analysis (PCA) and Discriminant Analysis of Principal Components (DAPC), have already 

been utilized to analyze Raman and SERS spectra for different applications, including 

medical diagnosis (Chen et al., 2013; Liu et al., 2016; Muratore, 2013; Senger et al., 2020; 

Sigurdsson et al., 2004), explosive compound detection (Hwang et al., 2013), material 

research (Mao et al., 2020), biological samples identification (Jamieson et al., 2018; Liu et 

al., 2020; Lu et al., 2018; Prakash et al., 2020; Senger and Scherr, 2020), and food industry 

(de Toledo et al., 2017; Jiang et al., 2021).
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In this study, we developed a sensor for classifying coffee using Raman spectroscopy. 

Flavors of coffee beverages are determined by a large number of flavor and aroma 

compounds. The compositions of these compounds are highly dependent on the growth 

of coffee beans, the fermentation and roasting processes, and the drying and storage 

conditions (Poltronieri and Rossi, 2016). Although quality assurance is typically performed 

by experienced tasters, analytical methods that provide rapid, robust, and precise quality 

evaluations are desired (Wermelinger et al., 2011). Raman spectroscopy has been used to 

discriminate Arabica and Robusta coffee samples (El-Abassy et al., 2011; Rubayiza and 

Meurens, 2005; Wermelinger et al., 2011). For example, Wermelinger et al. quantified 

the fraction of the Robusta beans in the coffee blend by measuring the intensity ratio of 

1570/1665 cm−1 and 1570/1460 cm−1 (Wermelinger et al., 2011). The Raman peak at 1570 

cm−1 is associated with kahweol in Arabica coffee and is absent in Robusta coffee. When 

the composition of Robusta coffee increased, the peak position at 1665 cm−1 shifted towards 

a lower wavenumber because Robusta coffee contains a higher amount of unsaturated fatty 

acids. In another study, Rubayiza et al. observed the absence of 1567 and 1487 cm−1 peaks 

in Robusta coffee due to the trace kahweol content in Robusta (Rubayiza and Meurens, 

2005). Moreover, El-Abassy et al. discriminated between Arabica and Robusta coffee beans 

based on chlorogenic acid (CGA) and lipid contents (El-Abassy et al., 2011). These tests 

only selected a few molecules as indicators to differentiate Arabica and Robusta beans. 

Such analysis, however, cannot distinguish the same types of coffee beans treated by distinct 

roasting, fermentation, and aging processes. Caprioli et al. had a review on coffee aroma 

profiles and found there are more than 40 types of potent odorants of roast coffee with 

many more still not being identified (Caprioli et al., 2015). All of these flavor and aroma 

compounds are essential for quality control (Cruz et al., 2012; Semmelroch and Grosch, 

1996).

Herein, we integrate SERS, feature extractions, and machine learning classifiers to overcome 

the challenges in coffee beverage analysis. First, to enhance Raman signals of dilute 

compounds, we used a versatile and inexpensive SERS substrate, called nanopaper (i.e., 

a glass fiber paper decorated with silver nanoparticles) as shown in Fig. 1 (Weatherston et 

al., 2018; Weatherston et al., 2019). Second, we integrated feature extraction algorithms and 

machine learning classifiers to address the high variability in SERS signals with spectral 

overlap in high fluorescing coffee samples. The workflow is shown in Fig. 2. We selected 

two multivariate analysis techniques for feature extraction, including Principal Component 

Analysis (PCA) and Discriminant Analysis of Principal Components (DAPC), and four 

machine learning classifiers, including Naïve Bayes, Decision Tree, Support Vector Machine 

(SVM), and K-Nearest Neighbor (KNN) (Kotsiantis et al., 2007; Yuan et al., 2019; Yuan 

et al., 2020). Feature extraction tools, such as PCA, have already been utilized for Raman 

analysis (Lussier et al., 2020). DAPC applies PCA then discriminant analysis to further 

explore variances between sample groups (Jombart et al., 2010). Our results show that 

DAPC has a better performance than PCA for all classifiers. In addition, the combination of 

DAPC with SVM or KNN delivers the best performance for classifying coffee beverages. 

The results also show that the machine learning classifiers can detect trivial differences 

among similar SERS spectra.
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2. Experimental methods

2.1. Materials

Double deionized (DDI) water was produced with a Milli-Q system from Millipore. Five 

different types of ground coffee samples were purchased at a local grocery store. Four 

of them were Arabica beans from the Colombia Region with varying degrees of roasting, 

and one of them was the Robusta bean (The detailed information about coffee products is 

listed in Supplementary Information). Filter paper (Qualitative P8 – Fluted, Fisher Brand), 

binder-free glass microfiber filters (Whatman grade 934-AH, 110 mm circles), sodium 

hydroxide, methanol, silver nitrate (99.9995% (metals basis), Alfa Aesar), and 2-propanol 

were obtained from Fisher Scientific. Sodium citrate dihydrate, potassium hydroxide, 

ammonia hydroxide solution (28%–30%) were purchased from Sigma-Aldrich. Citric acid 

and D-glucose anhydrous were purchased from VWR International. All chemicals were 

ACS grade or better and used without further purification.

2.2. Nanopaper fabrication and characterization

Nanopapers were fabricated as previously reported (Weatherston et al., 2018). In brief, a 

typical synthesis consisted of mixing aqueous solution of ammonia and silver nitrate with 

potassium hydroxide; 40 mL of 35% aqueous D-glucose solution was added to a 2L glass 

beaker and shaken vigorously by hand. Glass microfiber papers were immersed into the 

solution, and the container was shaken for 5 min by hand. The container was covered with 

aluminum foil to minimize the exposure to light and left at room temperature for 1 h. The 

filter papers were then rinsed thoroughly with DDI water and 2-propanol. The final products, 

i.e., the nanopapers, were stored in 2-propanol and the container was covered with aluminum 

foil and stored in drawers to protect from light exposure. Before the Raman measurement, 

the nanopaper was dried in a hot air oven and cut into a 1 cm × 1 cm square shape.

2.3. Coffee beverage preparation

Ground coffee sample (1.2 g) was added to 10 mL of deionized water. The solution was 

vigorously vortexed and kept at 4 °C for 15 h. The solution was then centrifuged by a 

Thermofisher Megafuge Centrifuge at 2500 RPM for 15 mins, and the resulting liquid was 

stored in a 4 °C fridge and covered with aluminum foil.

2.4. Raman measurements

Nanopapers were washed with 0.1 M citrate buffer (pH = 3.6) and immersed afterwards 

into the coffee extract solution for one minute. Then, the paper was dried in a hot air oven 

at 70 °C and transferred to the Raman microscope for SERS measurement. The Raman 

spectra were collected from a 780 nm diode laser with a 10x objective lens, a Rayleigh 

rejection filter, a diffraction grating (4.7–8.7 cm−1 resolution), a 25 μm pinhole, and a black-

illuminated charged-coupled device (CCD) detector using a Thermo Scientific DXR Raman 

microscope (Thermo Fisher Scientific, Inc.). Each spectrum was acquired at 1 mW laser 

power with 10 accumulations of 90 s integration time each, 15 min in total. To investigate 

the reproducibility of spectra, the same experiment protocol was repeated on five different 

days. A total number of 400 spectra were collected, with 80 spectra per sample.
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2.5. Data processing and multivariate data analysis

Data processing, multivariate analysis, and classification algorithms were conducted using 

Matlab 2021 (Mathworks Inc., Natick, US) Fig. 2. shows the data process flow chart. The 

spectra were first processed using Asymmetric Least Square (ALS) baseline correction 

with OriginPro Software (OriginLab Corp., Northampton, 2021). Then, baselined spectra 

were vector normalized and Savitzky–Golay smoothed (4th order polynomial, with a frame 

size of 37) using Matlab 2021. Finally, multivariate analysis techniques and classification 

algorithms were performed in the spectral range, 300–1670 cm−1.

Before applying classifiers, the normalized and smoothed spectra were processed using 

multivariate statistical analysis to reduce the complexity of Raman spectra and extract 

the significant features that explain the most variance. The two multivariate analysis 

methods chosen to process the spectra were namely Principal Component Analysis (PCA) 

and Discriminant Analysis of Principal Components (DAPC) (Jombart et al., 2010; Yang 

and Yang, 2003). PCA is a multivariate statistical analysis that calculates the orthogonal 

combinations of the original variables and summarizes the variances in data. The dimension 

reduction of data was achieved by considering the number of significant principal 

components (PCs) that explain the most variance. For DAPC, PCA was applied to reduce 

the complexity of the spectra dataset; then, a supervised multivariate analysis, Discriminant 

Analysis, was used to further discriminate the dataset by correlating the variation in the data 

with the coffee information for each sample.

After feature extraction, common machine learning classifiers were used to classify coffee 

beverages. The classification classifiers in the Statistics and Machine Learning Toolbox of 

Matlab, including Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN), and Naïve Bayes, were selected. The number of the principal components (PCs) or 

canonical variables from the PCA or DAPC was varied from 1 to 80 in order to observe 

its influence on classification performance. The influences of the classifier hyperparameters 

on the classification accuracy were also evaluated. For SVM, linear and polynomial kernel 

functions were selected (Kancherla et al., 2019). For KNN, we assessed the impact of 

the number of nearest neighbors and the distance metrics, including Euclidean, Cosine, 

Chebyshev, Cityblock, Correlation, Mahalanobis, and Spearman (Abu Alfeilat et al., 2019; 

Chomboon et al., 2015). For Naïve Bayes, the classic Gaussian model was used. The 

classification model parameters from the training dataset were used to predict the validation 

dataset in each repetition. A 5-fold cross-validation was performed to assess the suitability 

of each classification algorithm, avoiding overfitting (Berrar, 2019). In brief, the training and 

the validation sets were established by randomly selecting from the Raman spectra data. The 

training dataset was used to generate a classification model, and the model predicted the 

validation dataset to evaluate the performance. The cross-validation approach was repeated 

five times, wherein the validation set consisted of 80 randomly selected Raman spectra in 

each repetition. The performance of the model was measured by classification accuracies, 

sensitivity, and selectivity. The accuracy, sensitivity, and the selectivity are defined as 

(Trevethan, 2017):
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Accuracy = True positive+True negative
Total positive and negative cases

Sensitivity = True positive
True positive and False negative cases

Selectivity = True negative
True Negative and False Positive

An additional two packages of Sample 3 were purchased to demonstrate the potential of 

the sensor for quality control. The SERS spectra from the additional coffee batches were 

collected using the same protocol described above, and 40 spectra were collected for each 

batch. The original 400 SERS spectra were used to train the classification models, and the 

established models were used to predict the class label of 80 spectra from the two new 

coffee batches. The performance was evaluated by the prediction accuracy.

3. Results and discussion

3.1. SERS spectra of coffee beverages

To evaluate the flavors of coffee beverages, we prepared aqueous coffee samples using 

the classic cold brew method (Baggenstoss et al., 2008; Rao et al., 2020; Semmelroch 

and Grosch, 1996). Although water extraction is better for evaluating flavor and aroma 

compounds in coffee beverages than organic extraction methods, strong fluorescent signals 

and extremely dilute analytes in coffee beverages impede aqueous coffee analysis using 

standard Raman spectroscopy (Dias and Yeretzian, 2016; El-Abassy et al., 2015). This 

issue could be resolved by SERS. A home-made SERS substrate, called nanopaper, was 

used to enhance Raman signals of coffee samples. The nanopaper is made by decorating a 

dense layer of silver nanoparticles on glass fiber paper, which possesses significant SERS 

enhancement (Fig. 1. (a) and Fig. 1. (b)). This low-cost SERS substrate was made by the 

well-known silver mirror reaction in a batch reactor. Our prior study has shown that the 

enhancement factor can reach 1.15 × 105, sufficient to detect dilute molecules in coffee 

beverages (Weatherston et al., 2018). In Fig. 1. (c), the SERS spectral features of the coffee 

beverage are much more significant than those in the Raman spectrum (Fig. 1. (c)).

SERS enhancement is highly dependent on hot spots, such as nanoscale gaps between 

nanoparticles or highly structured surfaces. A SERS substrate with uniform signal 

enhancement is almost impossible to make; thus, SERS often suffers from high variability in 

Raman signals Fig. 3. (a) shows five individual SERS spectra from the same coffee sample 

collected on a single SERS substrate at different locations; it is apparent that the uneven 

distributions and size variations of silver particles led to high variability in SERS signals. 

Moreover, SERS is a near-field electromagnetic effect, and signal enhancement decays 

exponentially due to distance from nanoparticle surfaces. Therefore, uneven adsorption of 

analytes on SERS substrates could also introduce signal variations.
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The inter-day and inter-substrate variations were also evaluated Fig. 3. (b) shows the average 

and standard deviation of SERS spectra (n = 80) collected on 5 different days using different 

SERS substrates. Although SERS signals fluctuate significantly, the overall morphologies of 

SERS spectra are relatively similar. Therefore, multivariate analysis can be applied to extract 

the significant features of SERS spectra.

To evaluate the performance of this coffee classifier, we purchased five commercial coffees 

from local stores. Four of them (Sample 1 to Sample 4) were 100% Arabica beans from 

the Colombia Region with various degrees of roasting. The fifth sample (Sample 5) was 

the Robusta bean. The brand information is available in the Supplementary Materials. The 

averaged SERS spectra of these five samples are shown in Fig. 4. The peaks identified 

in the average SERS spectra were compared with the peaks reported in the literature. 

The positions of SERS peaks were shifted slightly from the positions of typical Raman 

spectra due to the interaction between chemical molecules and SERS substrates (Blum et al., 

2012). We assigned those Raman bands to the closest peaks reported in the literatures and 

books (Table 1) with some of the peaks that have not been identified yet. Most observed 

SERS peaks are associated with aroma and flavor molecules in coffee beverages, including 

aromatic compounds (e.g., furan, kahweol, etc.), saccharides, organic acids, and caffeine 

(Caprioli et al., 2015). Although SERS provides rich structural information, the spectral 

difference among coffee samples is subtle. Therefore, multivariate analysis is used to extract 

significant spectral features such as the trivial difference between peaks, which are required 

to distinguish between the coffee samples properly.

In this study, the performance of PCA and DAPC was evaluated. PCA was used to extract 

the features that explain the most difference among spectral data Fig. 5. (a) shows that the 

scatter plots of the top three PCA scores accounted for 74.6% (PCI, 44.4%; PC2, 20.0%; 

PC3, 10.1%) of the total Raman variations for the whole spectra. The loading plots of the 

top 3 PCs show the critical peaks explaining the variances among the coffee samples (Fig. 

S1). The major variations of Raman peaks are correlated to aroma and flavor molecules. 

Because PCA did not include group information, the coffee samples were not separated well 

Fig. 5. (b) shows the scatter plot of DAPC analysis fed by the top 27 PCs that accounted 

for 95.1% of the total variations. Since the spectral difference among the coffee samples is 

subtle, a higher number of PCs is required for catching trivial differences. The DAPC plot 

shows a better separation between coffee samples than the PCA plot.

Before moving to classification, we investigated whether the background signals interfere 

with the SERS spectra from the coffee (Fig. S2). No significant overlapping were observed 

in coffee SERS spectra. To ensure the background interference is minimal, we repeated the 

experiments on different days using nanopapers from different synthesis batches.

3.2. Machine learning classifiers

After feature extraction, the principal components (PCs) from PCA or canonical variables 

from DAPC were used as input variables for training machine learning classifiers. The prior 

studies often combined probabilistic classifiers with DAPC or DA for classification (Fisher 

et al., 2018; Liu et al., 2016). In this study, the performance of a few common classifiers 

was evaluated, including Naïve Bayes, Decision Tree, K-Nearest Neighbor (KNN), Support 
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Vector Machine (SVM). The Naïve Bayes classifier is a straightforward probabilistic 

classifier with the independence assumption based on Bayes’ theorem. However, the 

efficiency of the Naïve Bayes classifier depends on the size of the dataset and the probability 

models (Archana and Sachin, 2015). The Decision tree classifier is a standard machine 

learning algorithm and has been applied for facial recognition (Huang et al., 1996).

Both SVM and KNN have shown superior performance in the fields of computer vision 

and Raman analysis (Archana and Sachin, 2015; Bouzalmat et al., 2014; Li et al., 2009; 

Rebrošová et al., 2017). SVM finds a hyperplane to enhance the separation between classes, 

and according to the types of kernel functions, SVM could be applied to classify linear and 

nonlinear tasks (Kancherla et al., 2019; Savas and Dovis, 2019). In this study, we selected 

the linear and 3rd polynomial functions to evaluate the performances (Kancherla et al., 

2019).

KNN is a non-parametric classifier that relies on distance metrics for classification. 

Therefore, the number of nearest neighbors and the choice of the distance measures 

could affect the performance of KNN (Abu Alfeilat et al., 2019). To select the best 

hyperparameters, we first found the optimal number of nearest number (k). Then, we 

evaluated the effect of distance metrics on classification accuracy.

3.3. Comparison of feature extraction and classification algorithms

We evaluated the performances of feature extraction (PCA and DAPC) and classification 

(Naïve Bayes, Decision Tree, KNN, SVM) algorithms using the 5-fold cross-validation. In 

the feature extraction step, SERS spectra from training data are first processed with PCA to 

reduce the dimensionality of the data and obtain the PC scores. Then, the desired number 

of PCs from PCA is used in the following process. If PCA is chosen for feature extraction, 

PCs will be directly used to train classifiers. For DAPC, PCs are further processed by 

discriminant analysis (DA) to obtain the canonical variables, and these canonical variables 

are then used to train classifiers. The 5-fold cross-validation accuracies of classification with 

different feature extractions and classifiers are reported in Table S1 and S2.

We first compared the combination of the Naïve Bayes classifier with PCA or DAPC (Fig. 

6). The DAPC method gives better accuracies regardless of the number of PCs. The best 

classification accuracies of PCA and DAPC were 95.25% and 98.25%, respectively. The 

number of PCs used to train classifiers influences the classification accuracies, the maximum 

accuracies for PCA and DAPC were observed at 31 and 60 PCs, respectively. The confusion 

matrix, sensitivity, and selectivity of the best classification case are reported in Figure S3. In 

the PCA case with 31 PCs (95.7% of total variance explained), the classification accuracy 

reached 95.25%, and the sensitivity and selectivity of all samples were above 90%. In the 

DAPC case with 60 PCs (98.1% of total variance explained), the classification accuracy was 

improved to 98.25%, and the sensitivity and selectivity of all samples were over 93%.

The Decision Tree classifier also shows a similar trend (Fig. 6). The best accuracies of 

the decision tree were 88.75% for PCA and 95.75% for DAPC. The maximum accuracies 

for PCA and DAPC were observed at 6 and 35 PCs, respectively. DAPC improved 

the classification performances for both classifiers. However, the overall classification 
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performances of the Decision Tree were worse than the Naïve Bayes classifier (Fig. S4). 

Beyond these maximum points, we observed that the increase of PCs provides no additional 

benefits in improving classification accuracies. This trend is similar to data reported in the 

literature (Rebrošová et al., 2017). Overfitting of classifiers with noise in the training dataset 

could be the cause of this phenomenon (Ying, 2019).

Fig. 7 shows the classification accuracies of SVM with PCA or DAPC. It has been reported 

that the kernel functions influence the performance of SVM (Kancherla et al., 2019; Savas 

and Dovis, 2019). Here, we studied the impact of the linear and the third-order polynomial 

kernel functions on classification performance. For PCA-SVM, the classification accuracies 

of linear kernel are worse than that of the polynomial kernel; however, for DAPC-SVM, 

the linear kernel offers better accuracy. Kancherla et al. has provided a general guideline 

regarding the use of SVM kernel functions based on the boundaries (Kancherla et al., 2019). 

If the class boundaries are nonlinear or overlapping, the nonlinear kernels are the more 

appropriate choices for SVM. In contrast, the linear kernel is preferable for a dataset with 

linear boundaries. Since PCA is a linear method, the polynomial kernel should provide 

better classification performance. For DAPC, the class boundaries are well defined (Fig. 5), 

so the linear kernel is a superb choice. In general, DAPC-SVM offers superior performance 

when compared to PCA-SVM. In addition, the maximum accuracy of SVM reached 99% 

with 75 PC (98.74% of total variables explained), which is superior to the Decision Tree 

classifiers and comparable to the Naïve Bayes classifier. The corresponding sensitivity and 

selectivity of each sample are close to 99% (Fig. S5).

The performance of KNN depends on the hyperparameters, such as the number of nearest 

neighbors (k) and the distance metrics. Here, we selected seven typical distance metrics, 

including Minkowski distances (i.e., Euclidean, Cityblock, and Chebyshev), inner product 

distance (i.e., Cosine), and other distance measures (i.e., Correlation, Mahalanobis, and 

Spearman) (Abu Alfeilat et al., 2019; Chomboon et al., 2015). Before comparing the effects 

of distance metrics, we first searched the optimal number of nearest neighbors (k). Fig. S7 

shows the average accuracy of KNN with different k values. The optimal accuracy appeared 

at k = 9; thus, we conducted the 9-nearest neighbor algorithm to evaluate the performance of 

the distance metrics.

The accuracies of PCA-KNN with different distance metrics are reported in Fig. 8. (a). 

Euclidean distance offers the best classification accuracy among seven metrics. For the 

PCA case, the maximum accuracy of the Euclidean distance reached 98.25% when 13 

PCs (91.6% of total variance explained) were used to train the classifier. The Mahalanobis 

distance is observed to be sensitive to the number of PCs. The accuracy dropped when the 

number of PCs increased. In general, DAPC improves the classification accuracy of KNN, 

regardless of the selection of the distance metrics (Fig. 8. (b)). The maximum accuracies 

of different distance metrics except Mahalanobis are similar (98~09%). Still, the Euclidean 

Distance, Cosine Distance, and Correlation Distance offered the best accuracies (98.75%) 

using 24 PCs (94.6% of total variance explained) and 45 PCs (97.1% of total variance 

explained), respectively. The corresponding sensitivity and selectivity of each coffee sample 

were near 99%. In summary, the overall performance of KNN is comparable to the SVM 

linear kernel in DAPC.
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To demonstrate the potential application as a quality control tool, we analyzed the same 

coffee product from different packages. Coffee Sample 3 was selected for this multi-

batch test because this coffee product was purchased from a source with better quality 

management. A total of 80 spectra from the two new coffee packages were collected 

(Fig. S8). The intensities of the spectra vary slightly, likely due to the variations of SERS 

enhancement and the content variations among coffee batches, but the overall morphologies 

are similar. The original 400 SERS spectra were used to build the classification model; then, 

the established model was used to predict the class label of the 80 new SERS spectra. The 

data points of these three different batches cluster together in the DAPC loading plot (Fig. 

S9). A 100% prediction accuracy was achieved by Naïve Bayes and SVM classifiers.

4. Conclusion

We demonstrated a coffee classifier that integrates SERS, feature extraction, and machine 

learning classifiers. The signal enhancement of SERS substrates enables the detection of 

the dilute molecules in coffee beverages. Although we observed high variability in SERS 

signals, the combinations of feature extraction tools and machine learning classifiers could 

successfully classify coffee beverages. Compared with PCA, DAPC improved the accuracies 

of all the classifiers tested in this study. SVM and KNN are superior to the Naïve Bayes 

and the Decision Tree classifiers. The performances of DAPC-SVM and DAPC-KNN are 

comparable (99% for SVM vs. 98.75% for KNN). The prior classification studies often 

combined DAPC or DA with probabilistic classifiers, such as Naïve Bayes classifier (Fisher 

et al., 2018; Liu et al., 2016). Thus, SVM and KNN could serve as an alternative choice 

for Raman spectra classification. In conclusion, this platform successfully classified coffee 

beverages with high accuracy using our machine learning tool and the inexpensive, versatile 

nanopaper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. SERS measurement of the coffee.
(a) Schematic illustration of nanopaper, a glass fiber paper coated with the silver 

nanoparticle. (b) SEM image of nanopaper. The scale bar is 10 μm. (c) Averaged Raman 

spectra (N = 80) of coffee Sample 1 on nanopaper (red), and on the bare glass fiber paper 

(blue). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Flow chart for the classification algorithm.
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Fig. 3. 
SERS spectra with high variations. (a) 5 individual SERS spectra of Sample 1 on a single 

SERS substrate at five random locations. (b) The average (red curve) and one standard 

deviation (grey area) of Sample 1 SERS spectra collected on 5 different days. (N = 80). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 4. 
Averaged Vector Normalized and Smoothed SERS spectra of coffee (1) Sample 1, (2) 

Sample 2, (3) Sample 3, (4) Sample 4, (5) Sample 5.
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Fig. 5. 
Scatter plots of PCA and the DAPC scores. (a) Top three PCA scores. (b) Top three DAPC 

canonical scores for 27 PCs.
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Fig. 6. 
Classification accuracies for Naïve Bayes classifier (Red) and Decision Tree classifier (Blue) 

with different numbers of PCs from spectra processed by PCA (Solid) or DAPC (Dash). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 7. 
Classification accuracies for SVM classifier with the linear kernel (Blue) or 3rd order 

polynomial kernel (Red) with different number of PCs from spectra processed by PCA 

(Solid) or DAPC (Dash). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 8. 
Classification accuracies for KNN classifier using different distance metrics (Euclidean, 

Chebyshev, Correlation, Spearman, Cosine, City block, and Mahalanobis) with varying 

numbers of PCs from spectra processed by (a) PCA or (b) DAPC.
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