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Abstract: The resolution of inflammation is an integral part of the acute inflammatory response and
eventually leads to the return to homeostasis. It is supported by specialized pro-resolving mediators
(SPMs) that act as immunoresolvents via specific G-protein-coupled receptors. In contrast to classical
non-steroidal anti-inflammatory drugs (NSAIDs) that suppress the formation of pro-inflammatory
lipid mediators such as prostaglandins, novel pharmacotherapeutic concepts propose to foster the
biosynthesis of beneficial SPMs. Here, we demonstrate that the natural combination medicine
Traumeel (Tr14) improves resolution of inflammation by promoting SPM formation. Tr14 enhanced
the biosynthesis of 12-/15-lipoxygenase (LOX) products and of SPMs in zymosan-induced mouse
peritonitis as well as in human monocyte-derived macrophages challenged with Staphylococcus aureus.
Importantly, in the peritonitis model, Tr14 supported the recruitment of innate leukocytes and the
efferocytotic capacity of macrophages, and positively influenced the inflammation resolution index.
Taken together, we suggest that based on these properties Tr14 may possess therapeutic potential as
an enhancer for the resolution of inflammatory processes.

Keywords: lipid mediator; specialized pro-resolving mediators; resolution index; inflammation;
efferocytosis; peritonitis; Traumeel; multicomponent; inflammation resolution

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popular
medicines and are widely used as analgesics and for reducing inflammation [1]. Despite their
efficacy in alleviating pain and inflammatory reactions, NSAIDs exert adverse gastrointesti-
nal, cardiovascular, and renal effects [2], and they are essentially inefficient at promoting
resolution and tissue repair [3]. Acute inflammation is usually self-limited and terminated
in a temporal manner governing the return to tissue homeostasis [4,5]. The resolution of
inflammation is part of the inflammatory process that actively terminates inflammation and
leads to tissue repair and regeneration [6]. It is characterized by normalization of chemokine
gradients and by the clearance of apoptotic neutrophils by macrophages [7–10]. In the early
stages of acute inflammation, pro-inflammatory lipid mediators (LMs) are generated by
resident cells in injured tissue which elicit recruitment of polymorphonuclear leukocytes
(PMNs) that further enhance pro-inflammatory mediator production [6,11–13]. The pro-
inflammatory LMs are comprised of leukotrienes (LTs) and prostaglandins (PGs) produced
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from arachidonic acid (AA) by the initial actions of the key enzymes 5-lipoxygenase (5-LOX)
and cyclooxygenases (COX), respectively [13]. The biosynthesis of PGs is blocked by
NSAIDs that suppress the cardinal signs of inflammation, namely, redness, heat, swelling,
and pain [1,13,14]. In contrast to pro-inflammatory LMs, the specialized pro-resolving
mediators (SPMs) such as lipoxins (LXs), resolvins (RVs), maresins (MaRs) or protectins
(PDs) generated from arachidonic acid (AA; LXs), eicosapentaenoic acid (EPA; RVs E-series)
and docosahexaenoic acid (DHA; RVs D-series, MaRs, PDs) coordinate the subsequent
resolution phase [6,10]. SPMs govern resolution of inflammation via defined G-protein-
coupled receptors (GPCRs) and accelerate tissue repair and regeneration [15,16]. They limit
excessive neutrophil infiltration, promote the sequestering of pro-inflammatory cytokines
and the efferocytotic actions of macrophages, which accomplishes resolution of inflam-
mation without immunosuppression [17,18]. Therefore, SPMs are considered as valuable
immunoresolvents that constitute alternatives to NSAIDs for pharmacotherapy of inflam-
matory diseases.

Here we investigated the natural combination medicine Traumeel (Tr14) for its impact
on the resolution phase of acute inflammation. Earlier studies showed that Tr14 signifi-
cantly influences inflammatory reactions. For example, Tr14 impaired induced hind paw
edema and decreased interleukin (IL)-6 formation in a rat model of blood-induced inflam-
mation [19]. In a wound healing mouse model, Tr14 differentially expressed genes related
to key wound repair pathways, such as cellular differentiation, wound contraction, and cell
mobility [20]. The antioxidant capability of Tr14 inhibited the oxidative burst of peripheral
neutrophils in patients with periodontitis [21]. Tr14 also diminished the detrimental effects
of excessive chronic noise on microvascular integrity in rats apparently through mast
cell stabilization properties [22]. Importantly, also in clinical trials, Tr14 affected cytokine
levels in randomized, double-blind controlled trials (RCTs) of exercise-induced muscle
trauma [23,24].

In this study, we used the zymosan-induced murine peritonitis model to assess the ca-
pacity of Tr14 to promote inflammation resolution. Zymosan-induced peritonitis represents
an acute local inflammation with a peak in leukocyte recruitment after 4 to 12 h [15] and
subsequent resolution phase after 12 to 24 h [16]. We studied whether Tr14 affects leukocyte
recruitment, LM profiles and relevant genes for LM-biosynthetic enzymes in peritoneal
exudates of treated mice. Moreover, we analyzed the effects of Tr14 on LM pathways
in human monocyte-derived macrophages (MDMs) with M1- and M2-like phenotypic
properties. Our results show that Tr14 acts as an enhancer for the resolution phase of acute
inflammation along with elevating SPM levels.

2. Results
2.1. Tr14 Affects Lipid Mediator Pathways and Promotes Resolution of Inflammation in
Murine Peritonitis

To study the effects of Tr14 on the inflammation-resolving mechanism in vivo, we
employed the well-characterized acute inflammation model of zymosan-induced peritonitis
in mice. Two different experimental settings were applied (see Section 4 and Figure S1 for
more details): (1) Tr14 was given intraperitoneally (i.p.) at low (1.5 mL/kg) or high dose
(3 mL/kg) once daily for six days prior to zymosan (i.p.) injection and peritoneal exudates
were collected after 4, 8 and 24 h (Figure 1A); (2) Tr14 was given i.p. at low (1.5 mL/kg) or
high dose (3 mL/kg) 4 and 8 h post-zymosan (i.p.) injection and peritoneal exudates were
collected after 4, 8, 24, 192 and 360 h (Figure 2A).

In the experimental setting (1), where Tr14 was given before zymosan, the maximum
cell infiltration was reached at 4 h post-zymosan (i.p.) injection. Tr14 at the high dose signif-
icantly increased the total cell number in the peritoneum after 4 h (Figure 1B). The infiltrate
was predominantly composed of PMNs that were significantly decreased in numbers by the
low dose of Tr14 at 8 h (Figure 1C, Figure S2A). Additionally, Tr14 significantly enhanced
the recruitment of monocytes/macrophages after 4 and 24 h and significantly increased
eosinophil recruitment after 4 h (Figure S2A,B). Tr14 shortened the resolution interval
(Ri—interval between Tmax and T50) with the high dose by 1.3 h and with the low dose by
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5.9 h (Figure 1C). Tr14 did not alter the release of IL-6, TNF-α, monocyte chemoattractant
protein-1 (MCP-1), eotaxin-1, KC (IL-8) or IL-10 after 4 h (Figures 1D and S2C) and did
not affect the ratio of anti-inflammatory IL-10 versus the sum of the pro-inflammatory
cytokines/chemokines IL-6, TNF-α, MCP-1, eotaxin-1, and KC (Figure 1E). We then inves-
tigated the effect of Tr14 on the expression of 13 genes related to LM-biosynthetic enzymes
or LM receptors, and of other 17 inflammation-related genes (mainly cytokines) in the
peritoneal lavage. After 4 h, Tr14 at high and low dose slightly increased the mRNA
levels of 15-LOX (Figure 1F), IL-2, IL-4, and IL-15 (Figure S2D), which are involved in anti-
inflammatory signaling. Furthermore, Tr14 decreased mRNA levels of pro-inflammatory
cytokines such as IL-5 and IL-17A (Figure S2D). Next, we assessed the levels of LM in the
peritoneal exudates using UPLC-MS-MS [25]. In the absence of Tr14, the pro-inflammatory
COX-derived PGE2 and TXB2 along with 5-LOX-derived LTB4 were mainly produced
4 to 8 h post-zymosan and their levels were diminished after 24 h (Figures 1G and S2E).
In contrast, the levels of monohydroxylated SPM precursors (i.e., 14-HDHA and 17-HDHA)
and of various SPMs (i.e., PD1, MaR1, RvD2, RvD5 and LXA4) were continuously formed
from 8 h up to 24 h (Figure 1G and Figure S2E). Pre-treatment with Tr14 prior zymosan did
not markedly affect the overall production of LMs, although a tendency of decreased COX
products (PGE2 and TXB2) was observed after 24 h (Figures 1G and S2E). However, Tr14
significantly increased the ratio of 12/15-LOX-derived products (14-HDHA and 17-HDHA)
and SPMs (PD1, MaR1, RvD2, RvD5 and LXA4) versus COX-derived (PGE2 and TXB2)
LMs implying that Tr14 promotes a switch from pro-inflammatory towards pro-resolving
LMs (Figure 1H).

When Tr14 was administered after zymosan injection (experimental setting (2), Figure 2A),
no significant change in cell counts was observed after 24 h versus vehicle group
(Figures 2B and S3A). However, for the post-resolution phase (192 h up to 360 h after
zymosan), Tr14 at low dose significantly increased numbers of resident macrophages
and lymphocytes (Figure S3A). In comparison to vehicle control, the cell-type composi-
tion remained unaltered after 24 h of Tr14 treatment (Figure S3B) but slightly changed to
more lymphocytes and resident macrophages after low-dose Tr14 treatment after 360 h
(Figure S3B). Note that Tr14 at both doses did not affect the resolution indices (Figure 2C).
Released cytokines in the exudates peaked 4 h post-zymosan administration and were
barely present at other timepoints. Tr14 weakly influenced the release of cytokines (Figure
S3C) with a tendency towards elevated amounts of anti-inflammatory IL-10 and chemokine
KC (IL-8) (Figure 2D) and towards an increase of the ratio of anti-inflammatory IL-10 versus
the sum of the pro-inflammatory cytokines/chemokines IL-6, TNF-α, MCP-1, eotaxin-1,
and KC after 8 h post-zymosan administration (Figure 2E). In the absence of Tr14, SPMs
and especially 12/15-LOX products (14-HDHA and 17-HDHA) as well as the 5-LOX
product LTB4 were increasingly produced up to 360 h (Figures 2F and S3D). Strikingly,
Tr14, especially at the low dose, significantly increased the levels of SPMs such as RvD2,
RvD5 and LXA4 after 24 h as well as for the post-resolution time (360 h) against vehi-
cle (Figures 2F and S3D). In comparison to experimental setting (1), application of Tr14
after zymosan injection did not significantly alter the ratio of 12/15-LOX-derived prod-
ucts (14-HDHA and 17-HDHA) and SPMs (PD1, MaR1, RvD2, RvD5 and LXA4) versus
COX-derived (PGE2 and TXB2) LMs (Figure 2G).



Pharmaceuticals 2021, 14, 1123 4 of 17
Pharmaceuticals 2021, 14, x FOR PEER REVIEW  4  of  18 
 

 

 
Figure 1. Effects of Tr14, pre-administered i.p. over 6 days prior murine peritonitis induction, on resolution of inflammation
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and on lipid mediator pathways. (A–H) Self-resolving inflammation was initiated by injection of zymosan (0.1 mg/mouse,
i.p.) into mice. Before zymosan injection, Tr14 (1.5 mL/kg or 3 mL/kg) or vehicle (veh., 0.9% NaCl) were administered i.p.
once daily for six days. Peritoneal exudates were collected after 4, 8 and 24 h (n = 6–8; outliers were removed) post-zymosan
injection, and from naïve untreated mice representing time point 0 h (n = 6). (A) Scheme of administration of Tr14 and
induction of peritonitis. (B) Cell numbers in the peritoneum, shown as single values and mean + SEM for the indicated
time points. Left panel shows cell numbers in the peritoneum of naïve (untreated) mice at t = 0 h. ** p < 0.01; p values
were calculated versus vehicle for each time point; unpaired two-way ANOVA with Dunnett’s multiple comparison test.
(C) Numbers of infiltrated PMNs (GR1+, F4/80−) in the peritoneal lavages, shown as mean + SEM at the indicated time
points. Resolution indices were defined, including Ψmax (maximal PMN counts), Tmax (time point when PMNs reach Ψmax),
Ψ50 (50% PMN number reduction), T50 (time point corresponding to Ψ50) and Ri (resolution interval, the interval between
Tmax and T50) according to [26], * p < 0.01; p values were calculated versus vehicle for each time point; unpaired two-way
ANOVA with Dunnett’s multiple comparison test. (D) Cytokine/chemokine levels were measured 4 h post-zymosan
injection, shown in pg/mL exudate as single values and mean + SEM. (E) Ratio of anti-inflammatory IL-10 versus pro-
inflammatory cytokines/chemokines (sum of IL-6, TNF-α, MCP-1, eotaxin-1 plus KC (IL-8)) after 4 h of zymosan injection.
(F) mRNA levels of LM-biosynthetic enzymes and of LM receptor-related genes, analyzed by RT-PCR 4 h post-zymosan
injection. Data are given as mean ± SEM as fold increase of vehicle group. (G) LM levels in peritoneal lavages after 8 and
24 h were analyzed by UPLC-MS-MS and are shown in pg/mL exudate as single values and as mean + SEM as bar chart.
(H) Ratio of 12/15-LOX products (17-HDHA and 14-HDHA; left panel) and SPMs (LXA4, PD1, MaR1, RvD2 and RvD5;
right panel) versus COX products (PGE2 and TXB2) after 4, 8 and 24 h of zymosan injection. Results are shown as single
values and mean + SEM; ** p < 0.01; p values were calculated versus vehicle for each time point; unpaired two-way ANOVA
with Dunnett´s multiple comparison test.

2.2. Tr14 Enhances Macrophage Efferocytotic Actions In Vivo

Efferocytosis of apoptotic cells and cellular debris by recruited macrophages is an
essential step in the resolution process that is strongly promoted by SPMs [6]. We in-
vestigated the effect of Tr14 administered i.p. once daily for six days prior to zymosan
injection (experimental setting (1)) on macrophage efferocytotic functions in the murine
peritonitis model (Figure S1). First, we assessed the total numbers of non-apoptotic and
apoptotic PMNs after 4, 8 and 24 h in the exudates. Tr14 did not significantly change the
numbers of apoptotic and non-apoptotic PMNs (Figure 3A). Next, we assessed the number
of efferocytotic macrophages. Interestingly, Tr14 significantly enhanced the number of
efferocytotic macrophages after 4 h (Figure 3B). The ratio of efferocytotic macrophages
versus non-apoptotic PMNs was higher in Tr14-pre-treated mice after 4 h, which suggests
acceleration of inflammation resolution (Figure 3C). Moreover, mice pretreated with Tr14
revealed a tendency towards enhanced capacity for PMN uptake by each efferocytotic
macrophage versus cells from vehicle-treated animals (Figure 3D). Together, our data show
that Tr14 enhances the formation of SPM and, arguably as a consequence, promotes the
efferocytosis of apoptotic PMNs by macrophages in vivo during peritonitis in mice.

2.3. Tr14 Increases 15-Lox-1-Mediated Lipid Mediator Biosynthesis in Human M2 Macrophages

To investigate the effect of Tr14 on the biosynthesis of 5-LOX-, COX-, and 12/15-LOX-derived
LM biosynthesis in vitro in human innate immune cells, we preincubated MDM that had
been polarized towards M1 and M2 phenotypes for 48 h, with Tr14 (0.1 or 10%) for 15 min
and exposed them to S. aureus (MOI = 1:50) as stimulus to elicit LM formation. Previous
studies showed that S. aureus elicits the formation of a broad spectrum of LM in such human
MDM, where the M1 phenotype mainly generates pro-inflammatory PGs and LTs, and M2
are a major source for SPMs and 15-LOX-derived precursors [27]. First, we excluded that
Tr14 possesses cytotoxic effects on MDMs over an incubation time of 48 h (Figure S4A).
Tr14 did not significantly impact the LM biosynthesis in short-term incubations (up to
3 h, Figure 4A,B), different from classical NSAIDs ibuprofen and diclofenac, the 5-LOX
inhibitor zileuton, and the specific 15-LOX-1 inhibitor BLX-3887 [28].
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Figure 2. Effects of Tr14, administered i.p. 4 and 8 h post-induction of murine peritonitis, on resolution of inflammation and
on lipid mediator pathways. (A–G) Self-resolving inflammation was initiated by injecting zymosan (0.1 mg/mouse, i.p.)
into mice. Tr14 (1.5 mL/kg or 3 mL/kg) or vehicle (veh., 0.9% NaCl) were administered i.p. 4 and 8 h post-zymosan injection.
Peritoneal exudates were collected after 4, 8, 24, 192 and 360 h (n = 6–8; outliers were removed) after zymosan injection,
and from naïve untreated mice representing time point 0 h (n = 6). (A) Scheme of administration of Tr14 and induction of
peritonitis. (B) Quantification of cell numbers in the peritoneal lavages, shown as single values and mean + SEM for the
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indicated time points. Left panel shows cell numbers in the peritoneum of naïve (untreated) mice at t = 0 and of zymosan-
treated mice at t = 4 h. (C) Numbers of infiltrated PMNs (GR1+, F4/80−) in the peritoneal lavages, shown as mean + SEM at
indicated time points. Resolution indices were defined, including Ψmax (maximal PMN counts), Tmax (time point when
PMNs reach Ψmax), Ψ50 (50% PMN number reduction) T50 (time point corresponding to Ψ50) and Ri (resolution interval,
the interval between Tmax and T50) according to [26]. (D) Cytokine/chemokine levels were measured 8 h post-zymosan
injection and are given in pg/mL exudate as single values and mean + SEM. (E) Ratio of anti-inflammatory IL-10 versus
pro-inflammatory cytokines/chemokines (sum of IL-6, TNF-α, MCP-1, eotaxin-1 plus KC (IL-8)) after 8 h of zymosan
injection. (F) LM levels in exudates 24 and 360 h post-zymosan injection were analyzed by UPLC-MS-MS and are given
in pg/mL exudate as single values and mean + SEM, * p < 0.05; ** p < 0.01; p values were calculated versus vehicle for
each time point; unpaired one-way ANOVA with Dunnett´s multiple comparisons test. (G) Ratio of 12/15-LOX products
(17-HDHA and 14-HDHA; left panel) and SPMs (LXA4, PD1, MaR1, RvD2 and RvD5; right panel) versus COX products
(PGE2 and TXB2) 4, 8, 24, 192 and 360 h after zymosan injection. Results are shown as single values and mean + SEM.
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Figure 3. Tr14 enhances macrophage efferocytotic actions in murine peritonitis. (A–D) Self-resolving inflammation was
initiated by injection of zymosan (0.1 mg/mouse, i.p.) into mice. Prior to zymosan injection, Tr14 (1.5 mL/kg or 3 mL/kg)
or vehicle (veh., NaCl 0.9%) were administered i.p. once daily for six days. Peritoneal exudates were collected 4, 8 and 24 h
post-zymosan injection (n = 8), and from naïve untreated mice representing time point 0 h (n = 6). (A) Infiltrated PMNs
(Ly6G+, F4/80−) were stained with annexin-V and DAPI to determine non-apoptotic PMNs (Ly6G+, F4/80−, annexin-V−,
DAPI−, left) and early and late apoptotic PMNs (Ly6G+, F4/80−, annexin-V+, DAPI−/+, right) in the peritoneal lavages,
shown as single values and mean + SEM at indicated time points. (B) Numbers of efferocytotic macrophages (F4/80+,
Ly6G+) in the peritoneal lavages, given as single values mean + SEM at indicated time points. * p < 0.05, versus vehicle;
two-way ANOVA with Dunnett´s multiple comparisons test. (C) Ratio of efferocytotic macrophages versus non-apoptotic
PMN cell counts 4 h post-zymosan injection. Results are shown as mean + SEM. (D) Mean fluorescent intensity (MFI) of
Ly6G+ PMNs in efferocytotic macrophages (F4/80+) after 4 h, measured by flow cytometry, given as % increase versus
vehicle. Results are shown as mean + SEM.
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1 

 

 Figure 4. High dose Tr14 increases 15-LOX-1-mediated lipid mediator biosynthesis in human M2 MDM.
(A) Scheme of administration of Tr14 to polarized macrophages prior incubation with S. aureus.
(B) Human M1- and M2-MDM (2× 106 cells/mL) were preincubated in PBS pH 7.4 containing 1 mM
CaCl2 with 0.1 or 10% of Tr14 or vehicle (veh., 0.9% NaCl solution) for 15 min at 37 ◦C and then
incubated with S. aureus (LS1; ratio 1:50) for another 180 min. Formed LM were extracted from the
supernatants and analyzed by UPLC-MS-MS and are given as means + SEM; n = 3 separate donors.
(C) Scheme of administration of Tr14 to macrophages prior to polarization. (D) Human macrophages
(M0) were preincubated with 0.1 or 10% of Tr14 or vehicle (0.9% NaCl solution) for 15 min and then
polarized for 48 h with LPS/IFN-γ to M1- or with IL-4 towards M2-MDM. Then, cells were incubated
with S. aureus (LS1; ratio 1:50) in PBS pH 7.4 containing 1 mM CaCl2 for another 180 min. Formed LM
were extracted from the supernatants and analyzed by UPLC-MS-MS and are given as means + SEM;
n = 3 separate donors. Statistical analysis was performed using matched one-way ANOVA with
Dunnett´s multiple comparison test; relevant p values are given in the figure. (E) Amounts of PGE2

(orange), LTB4 (red) and SPMs (blue) formed in the M2-MDM that had been treated with vehicle,
0.1 or 10% Tr14 prior polarization (panel D) are shown in pie charts; data are given as %, n = 3.
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In contrast, when naïve MDMs were pre-treated with Tr14 for 15 min, then polarized
towards M1- or M2-like phenotypes for 48 h, and subsequently challenged by S. aureus
for LM formation, an enhanced formation of 15-LOX-1-mediated LM, especially SPMs,
was observed in M2-MDM (Figure 4C,D and Figure S4B). As a result, Tr14 diminished the
proportion of produced LTB4 and PGE2 versus SPMs (Figure 4E) suggesting that Tr14 shifts
LM formation in M2-MDM towards a more pro-resolution profile during polarization of
macrophages.

3. Discussion

NSAIDs are used for pain and inflammation management with decades of docu-
mented success. However, they are also well-known for their gastric, cardiovascular, renal,
hepatic, and hematologic side effects [29]. It is suggested that, among many reasons,
LM biosynthesis shunting phenomena and impairment of SPM formation are accounting
for these side effects [28]. However, if SPM formation and thus resolution signaling is
impaired, pro-inflammatory signals may accumulate, leading to excessive inflammation
and, subsequently, to disease [17,18]. A frequently used approach to reduce the severity
and number of side effects of NSAIDs is the use of respective prodrugs of the active sub-
stances that especially limit gastric toxicity [30]. Alternative strategies to NSAIDs could
be smart manipulation of the overall LM networks to stimulate signaling in resolution
pathways. In this respect, SPMs as novel immunoresolvents have been investigated in
numerous experimental studies and showed promising therapeutic potential for treatment
of inflammatory diseases [6,7,18,31].

The objective of this study was to investigate the potential pro-resolution properties
of Tr14. We show that Tr14, which has been studied in various experimental models and
clinical trials for its effect on inflammatory conditions [19–24], has a favorable impact on
the inflammation resolution processes in mice along with a significant ability to elevate
SPM levels. We found that in a mouse model of self-resolving inflammation triggered
by zymosan in vivo, Tr14 did not consistently inhibit pro-inflammatory actions, such as
recruitment of PMNs, release of cytokines or production of LTs and PGs, which contrasts
with classical NSAIDs [1]. In this respect, Tr14 should not elicit the typical side effects of
NSAIDs that essentially act as COX inhibitors. Our data demonstrate that Tr14 rather pro-
motes the resolution process of inflammation, reflected by shortened resolution intervals by
pre-treatment with Tr14 and elevated numbers of efferocytotic macrophages important for
clearance of apoptotic PMNs and cellular debris produced during the onset of inflamma-
tion [32]. These macrophage actions are typically stimulated by SPMs such as MaR1 [33],
and our data show that Tr14 shifts the LM profiles towards SPMs in the mouse peritonitis
model in vivo as well as in human macrophages on the cellular level. Taken together, Tr14
positively influenced several pro-resolution properties, that is, it shortened the resolution
interval, enhanced macrophage efferocytosis and increased SPM levels.

Our findings reveal that Tr14 directly targets cells of the innate immune system
supported by the stimulatory effect on SPM formation in human M2-MDM. We recently
showed that, in contrast to M1-MDM, the M2 phenotype produces substantial amounts
of SPMs upon exposure to pathogenic bacteria [27] that release exotoxins such as HLA
to elicit 15-LOX-1 activation and concomitant SPM formation involving ADAM10 [34].
The capacity to produce SPMs and their 15-LOX-derived precursors by M2-MDM was
increased when Tr14 was present during macrophage polarization. Note that short-term
pre-treatment of polarized M2-MDM with Tr14 failed to increase 15-LOX-derived products.
This would exclude direct stimulatory effects of Tr14 on the LM-biosynthetic machinery
and signaling such as Ca2+ mobilization, 15-LOX translocation or supply of fatty acid
substrates (i.e., AA, EPA or DHA) [34]. Possibly, Tr14 increases 15-LOX-1 or 15-LOX-2
protein levels, but priming of the M2-MDMs for more sustained Ca2+ mobilization is
also reasonable. Along these lines, we previously reported that besides the expression of
15-LOXs the activation on 15-LOX-1 depends on a slow and sustained Ca2+-influx into
M2-MDMs [27].
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Our data showing that Tr14 increased SPM production, support previous clinical
reports about Tr14′s analgesic action. Indeed, SPMs were shown to reduce pain [35] and
in the management of osteoarthritis of the knee, Tr14 co-administered with Zeel (Ze14),
another natural combination medicine, reduced moderate-to-severe pain in the affected
knee [36]. Since Tr14 enhanced efferocytotic actions of macrophages in mice, increased
SPM levels and promoted inflammation resolution (shortening the resolution interval),
we suggest that Tr14 may diminish pain in arthritic diseases by promoting the clearance
of damage-associated molecular patterns (DAMPs) that are major causes for activated
nociceptive neurons in the osteoarthritic joints [37]. This is in line with the reported effect
of topical Traumeel application that successfully reduced mild-to-moderate post-injury
pain and improved ankle mobility as effectively as 1% diclofenac gel [38].

4. Materials and Methods
4.1. Interventions

Traumeel (Tr14) was obtained free of charge from Heel GmbH (Baden-Baden, Ger-
many). Tr14 was prepared in accordance with GMP standards and supplied in glass
ampoules prepared for injection. The active ingredients of Tr14 are listed in Table S1.
Each 1.1 mL ampoule of the vehicle control contained 0.9% sodium chloride for injection.

4.2. Animals, Animal Care and the Ethical Statement

Male C57BL/6J mice (7–12 weeks of age) with a weight range from 21 to 26 g, obtained
from Charles River (Écully, France), were housed in a controlled environment (21 ± 2 ◦C)
and provided with standard rodent chow and water. Animals were allowed to acclimate
for seven days prior to experiments and were subjected to 12 h light/12 h dark schedule.
Experiments were conducted during the light phase. The experimental procedures were
approved ethically by the Comité d’Ethique en Expérimentation Animale (CEEA) 122 with
the protocol number of 22923-201911251226765v3.

4.3. Study Design

The in vivo experiment was a randomized, three-arm parallel, vehicle-controlled ex-
ploratory study. Three intervention conditions were defined for each experimental setting:
vehicle, Tr14 “high-dose”, and Tr14 “low-dose”. Two different experimental settings were
applied: (1) preventive pre-treatment injection, when the intervention was administered
intraperitoneally (i.p.) before induction of inflammatory response and peritoneal exudates
were collected after 4, 8 and 24 h; (2) curative post-induction injection, when the inter-
vention was administered i.p. after induction of inflammatory response and peritoneal
exudates were collected after 4, 8, 24, 192 and 360 h (Figure S1). The experimental baseline
was expressed as time point 0 h and resulted from the samples of a separate group of
6 naïve untreated animals.

For each time point and each intervention condition, one group of 8 mice was used.
Each animal was considered as an experimental unit (Figure S1). Mice were assigned for
the experiments according to their body weights.

The parameters assessed were inflammatory cell trafficking (flow cytometry), reso-
lution indices (magnitude, duration, resolution interval; described in [26]), LM profiling,
production of cytokines, gene expression in pro-inflammatory and pro-resolution pathways,
PMN apoptosis (flow cytometry), and efferocytosis (flow cytometry).

For the in vitro studies peripheral blood mononuclear cells (PBMC) isolated from three
healthy volunteers were used and differentiated to macrophages. These monocyte-derived
macrophages (MDM) were subjected to polarization towards M1 or M2 phenotypes and
incubated with Staphylococcus aureus for induction of LM formation. Three intervention con-
ditions were defined: Tr14 (low concentration = 0.1%) or Tr14 (high concentration = 10%)
and vehicle with three independent biological replications (different donors). Experiments
were performed in singlet technical measurements with cells from n = 3 different donors
at different days, according to experiences and results from previous studies [27,34].
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To explore whether and how Tr14 affects LM biosynthesis in M1- and M2-MDMs two
experimental settings were applied: (1) polarized M1- and M2-MDMs were treated with
the test item after polarization to investigate an effect on LM-producing enzyme activation;
(2) MDMs were pre-treated with the test item prior to polarization to investigate the impact
on LM-producing enzymes production. The assessed parameters were cell viability (MTT
assay), and LM profiling (metabololipidomics).

4.4. Zymosan-Induced Murine Peritonitis and Peritoneal Lavage Collection

Zymosan (0.1 mg/mouse; InvivoGen, Toulouse, France) was injected into the peri-
toneum of mice for all tested groups, except for the baseline group (time point 0 h). Tr14 at
3 mL/kg (high dose), diluted with 0.9% NaCl to a concentration of 1.5 mL/kg (low dose),
and 0.9% NaCl as vehicle were administered i.p. once daily for 6 days before zymosan in-
jection (pre-treatment) for experimental setting (1) and i.p. 4 h and again 8 h after zymosan
injection (post-induction) for experimental setting (2). At 4, 8, 24, 192 or 360 h after zymosan
injection, mice were euthanized. The inflammatory exudate was obtained by washing
the peritoneal cavity with 2 mL PBS. Cells in the exudates were immediately counted
using Scepter 2.0 cell counter (Merck Millipore, Burlington, MA, USA) and labeled for
subpopulation identification and quantification by Macs quant analyzer (Miltenyi Biotec,
Bergisch Gladbach, Germany).

4.5. Flow Cytometry and Definition of the Resolution Index

Peritoneal exudates were centrifuged and suspended to obtain a suspension at
0.5 × 106 cells/mL. The cells were labelled with the following antibodies: anti-CD45-
VioBlue (clone REA737, Miltenyi); anti-F4/80-FITC (clone REA126, Miltenyi); anti-GR1-PE
(clone RB6-8C5, Biolegend); anti-CD3-PE-Vio777 (clone REA606, Miltenyi); anti-CD19-PE-
Vio777 (clone REA749, Miltenyi). CD45+ cells were sorted as follows: PMNs: GR1+, F4/80−;
infiltrated monocytes: GR1+, F4/80+; resident macrophages: GR1−, F4/80+,hi; eosinophils:
GR1−, F4/80+, med and their specific SSC/FSC pattern; lymphocytes: GR1−, CD3+/CD19+.
Counts for infiltrated monocytes and resident macrophages were combined to obtain the
total monocyte/macrophage population. To quantify apoptotic PMNs, cells from peritoneal
lavage fluid were stained with anti-CD45-VioBlue (Miltenyi), anti-F4/80-VioGreen (clone
REA126, Miltenyi) and anti-Ly6G-PE (clone REA526, Miltenyi) antibodies. Apoptotic cells
were labeled with anti-Annexin-V-FITC (Miltenyi) and DAPI (Miltenyi). This analysis
allows to obtain the percentage of apoptotic PMNs among CD45+ cells and to calculate
the cell number of this population. For efferocytosis experiments, cells were stained
with anti-CD45-VioBlue (Miltenyi) and anti-F4/80-FITC (Miltenyi) antibodies to identify
macrophages. Cells were then intracellularly stained with the anti-Ly6G-PE antibody
(Miltenyi). This process allows quantifying the proportion of double-stained cells (Ly6G+,
F4/80+) corresponding to apoptotic PMNs (Ly6G+) phagocyted by macrophages (F4/80+).
Resolution indices were defined, including Ψmax (maximal PMN counts), Tmax (time point
when PMNs reach Ψmax), Ψ50 (50% PMN number reduction), T50 (time point corresponding
to Ψ50) and Ri (resolution interval, the interval between Tmax and T50) according to [26].

4.6. Measurement of Lipid Mediators and Cytokines in Peritoneal Lavage

The extraction protocol and analysis of LM in peritoneal lavages was performed as
previously described [25] and adapted according to the Ambiotis SAS (Toulouse, France)
standard operating procedure. Dedicated samples of peritoneal lavages were extracted
using oasis HLB 96 wells solid phase extraction (Waters Corporation, Milford, MA, USA).
The LC-MS/MS analysis was performed on a 1290 Infinity UHPLC system coupled to
a 6490 triple quadrupole MS (Agilent Technologies, Santa Clara, CA, USA), equipped
with electrospray ionization source, and performed in negative ion mode. Reverse-phase
UHPLC was performed with a Kinetex Biphenyl column (2.1 mm × 50 mm × 1.7 µm;
Phenomenex Inc., Torrance, CA, USA) maintained at 50 ◦C. For monitoring and quantifi-
cation of LM, analyses were run in multiple reaction monitoring (MRM) detection mode.
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Identification was conducted using pure authentic standards. Peak detection, integration,
and quantitative analysis was done by use of MassHunter Quantitative Analysis Software
version B.08.00 (Agilent Technologies, Santa Clara, CA, USA). Cytokines/chemokines
(TNFα, IL-10, IL-6, KC (IL-8), eotaxin, and MCP-1) were analyzed in the peritoneal lavages
with a 6-plex MILLIPLEX MAP Mouse Cytokine/Chemokine (Merck Millipore) according
to manufacturer’s instructions. Analysis and quantification were performed by Luminex
100IS (Luminex, Austin, TX, USA). Ratio of IL-10/pro-inflammatory cytokines were cal-
culated by dividing of the value of IL-10 through the sum of the values of IL-6, TNF-α,
MCP-1, eotaxin-1 and KC (IL-8) of each animal.

4.7. Measurement of Gene Expression in the Peritoneal Lavage

mRNA was extracted from the peritoneal lavages using the TurboCapture 96 mRNA
kit (Qiagen, Hilden, Germany). The reverse transcription was then carried out and the
specific preparation steps for the chip (96 × 96) were conducted according to Fluidigm
protocol version PN100-1201B1. In brief, a pre-amplification step was performed in the
presence of the primers used on the chip using the Fluidigm Preamp Master Mix (Fluidigm,
San Francisco, CA, USA). This pre-amplification was performed on a Veriti 96-well Fast
Thermal Cycler (Applied Biosystems, Foster City, CA, USA) at 95 ◦C for 10 min followed
by 14 cycles at 95 ◦C (15 s) and 60 ◦C (4 min). Each pre-amplified cDNA sample was
diluted 1:5 and then deposited in a 96-well plate according to a pre-defined plate pan with
a mix containing Taqman Gene expression Master Mix (Applied Biosystems), EvaGreen
(Interchim, Montluçon, France) and Dye Sample Loading Reagent (Fluidigm). In parallel,
on another 96-well plate, each pair of primer was prepared at a concentration of 5 µM
according to a pre-defined plate plan. Then, each plate was deposited on both sides of the
chip. The mixture of each well of each plate was made by the IFC controller within the chip
and then the chip was placed in the BioMark (Fluidigm) to perform the RT-PCR. The data
was extracted using Fluidigm Real-Time PCR analysis software (Fluidigm). The expression
level of the mRNAs was normalized using the following reference genes: YWHAZ, OAZ1,
HPRT and β-actin. Data were analyzed using the ∆∆Ct method where the Ct corresponds
to the number of cycles necessary to generate a fluorescent signal above the pre-defined
threshold and with the cut-off criteria of Ct > 23. The results are shown as fold-increase
against the mean of the vehicle group at each time point.

4.8. Isolation of Human Monocytes and Preparation of Monocyte-Derived Macrophages

Leukocyte concentrates from freshly withdrawn peripheral blood of healthy adult
human donors were provided by the Institute of Transfusion Medicine (University Hospital
Jena, Germany). The experimental protocol was approved by the ethical committee of the
University Hospital Jena. All methods were performed in accordance with the relevant
guidelines and regulations. PBMC were isolated using dextran sedimentation and Ficoll-
Histopaque 1077-1 (Sigma-Aldrich, Taufkirchen, Germany) centrifugation. PBMC were
seeded in PBS containing 1 mM Ca2+ and 0.5 mM Mg2+ in cell culture flasks (Greiner
Bio-one, Frickenhausen, Germany) for 1.5 h at 37 ◦C and 5% CO2 for adherence of mono-
cytes. For differentiation and polarization of monocytes towards M1- and M2-MDM,
published criteria [27] were used. Thus, M1-MDM were generated by incubating mono-
cytes with 20 ng/mL GM-CSF (Peprotech, Hamburg, Germany) for 6 days in RPMI 1640
supplemented with 10% fetal calf serum, 2 mmol/L L-glutamine (Biochrom/Merck, Berlin,
Germany), and penicillin-streptomycin (Biochrom/Merck), followed by 100 ng/mL LPS
(Sigma-Aldrich) and 20 ng/mL IFN-γ (Peprotech) treatment for another 48 h. M2-MDM
were obtained after differentiation of monocytes with 20 ng/mL M-CSF (Peprotech) for
6 days, and then with 20 ng/mL IL-4 (Peprotech) for additional 48 h of polarization.

4.9. Bacterial Cultivation

Experiments with intact Staphylococcus (S.) aureus strains were performed as previously
described [34]. In brief, bacteria were grown overnight at 37 ◦C in brain heart infusion
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(BHI) medium while shaking, diluted to optical density (OD) of 0.05 at 600 nm and grown
for another 3 h (log-phase). Bacteria were washed in PBS and resuspended in PBS without
Ca2+/Mg2+.

4.10. Cytotoxicity Analysis

The cytotoxicity of Tr14 was assessed by MTT assay. Unpolarized naïve MDM
(1 × 105 MGM-CSF or MM-CSF) were seeded in a 96-well plate in the respective medium
(100 µL/well). MDM were allowed to adhere for 1.5 h (37 ◦C, 5% CO2) before treatment.
Tr14 at different dilutions (0.9% NaCl solution as vehicle) were added to each well and
MDM were polarized with LPS/IFN-γ to M1 and with IL-4 to M2 at 37 ◦C for 48 h.
Staurosporine (1 µM), a pan-kinase inhibitor and inducer of apoptosis, was used as posi-
tive control. Then, 20 µL of thiazolyl blue tetrazolium bromide (MTT, 5 mg/mL PBS) was
added, and the incubation was continued at 37 ◦C and 5% CO2 until blue staining of the
vehicle control. Formazan formation was stopped by adding 100 µL of lysis buffer (SDS,
10%, w/v in 20 mM HCl) and samples were shaken overnight. The absorbance of each
well was measured at 570 nm in a Multiskan™ microplate spectrophotometer (Thermo
Scientific, Ulm, Germany).

4.11. Incubation of Human MDM and LM Metabololipidomics

Unpolarized MGM-CSF and MM-CSF (2 × 106) were pre-treated with 0.1 or 10% of
Tr14 or vehicle (0.9% NaCl) for 15 min prior addition of the polarization agents (LPS
plus IFN-γ for M1-MDM, and IL-4 for M2-MDM). After 48 h, cells were stimulated with
S. aureus (LS1 strain) at a ratio of 1:50 (M1/M2-MDM: S. aureus) in PBS containing 1 mM
CaCl2 for 180 min at 37 ◦C. Alternatively, polarized M1- and M2-MDM (2 × 106, 48 h) were
incubated in PBS containing 1 mM CaCl2 with 0.1 or 10% of Tr14 or vehicle (0.9% NaCl) and,
after 15 min, S. aureus (LS1 strain) at a ratio of 1:50 (M1/M2-MDM: S. aureus) was added
and incubation was prolonged for another 180 min at 37 ◦C. Supernatants of the above-
mentioned incubations were transferred to 2 mL of ice-cold methanol containing 10 µL of
deuterium-labeled internal standards (200 nM d8-5S-HETE, d4-LTB4, d5-LXA4, d5-RvD2,
d4-PGE2 and 10 µM d8-AA) to facilitate quantification. Deuterated and non-deuterated LM
standards were purchased from Cayman Chemical/Biomol GmbH (Hamburg, Germany).
Sample preparation was conducted by adapting published criteria [27]. In brief, samples
were kept at −20 ◦C for 60 min to allow protein precipitation. After centrifugation (1200 g,
4 ◦C, 10 min) 8 mL acidified water (pH 3.5) was added and subjected to solid-phase
extraction using solid-phase cartridges (Sep-Pak® Vac 6cc 500 mg/6 mL C18; Waters,
Milford, MA). After washing with 6 mL water and additional 6 mL n-hexane, LMs were
eluted with 6 mL methyl formate. Finally, the samples were brought to dryness using an
evaporation system (TurboVap LV, Biotage, Uppsala, Sweden) and resuspended in 100 µL
methanol-water (50/50, v/v) for UPLC-MS-MS automated injections. LM profiling was
assessed with an Acquity™ UPLC system (Waters, Milford, MA) and a QTRAP 5500 Mass
Spectrometer (ABSciex, Darmstadt, Germany) equipped with a Turbo V™ Source and
electrospray ionization (ESI). LMs were eluted using an ACQUITY UPLC® BEH C18
column (1.7 µm, 2.1 × 100 mm; Waters, Eschborn, Germany) at 50 ◦C with a flow rate
of 0.3 mL/min and a mobile phase consisting of methanol-water-acetic acid of 42:58:0.01
(v/v/v) that was ramped to 86:14:0.01 (v/v/v) over 12.5 min and then to 98:2:0.01 (v/v/v)
for 3 min [28]. The QTrap 5500 was operated in negative ionization mode using scheduled
MRM coupled with information-dependent acquisition. The scheduled MRM window
was 60 s, optimized LM parameters were adopted [39], and the curtain gas pressure
was set to 35 psi. The retention time and at least six diagnostic ions for each LM were
confirmed by means of an external standard assay (Cayman Chemical/Biomol GmbH,
Hamburg, Germany). Quantification was achieved by calibration curves for each LM.
Linear calibration curves were obtained for each LM and gave r2 values of 0.998 or higher
(for fatty acids 0.95 or higher). Additionally, the limit of detection for each targeted LM
was determined [28]. Following LM were analyzed: SPMs (PD1, PDX, RvD2, RvD5, MaR1,
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and LXA4), COX products (PGE2, PGD2, PGF2α and TXB2), 5-LOX products (LTB4, trans-
and epi-trans-LTB4 and 5-HETE), 15-LOX products (17-HDHA, 15-HEPE, and 15-HETE)
and 12-LOX products (14-HDHA, 12-HEPE, and 12-HETE).

4.12. Quantification and Statistical Analysis

Results are expressed as mean ± standard error of the mean (SEM) of n observations,
where n represents the number of experiments with separate donors, performed on different
days, as indicated or mentioned otherwise. For the in vivo studies, n represents the number
of animals. Analyses of data were conducted using GraphPad Prism 8 software (San Diego,
CA, USA). Two-tailed t test was used for the comparison of two groups. For multiple
comparisons, one-way and two-way analysis of variance (ANOVA) with Bonferroni, Dun-
nett´s and Tukey’s post hoc tests were applied as indicated. To identify outliers, ROUT test
(Q = 0.1%) was performed and further outliers were excluded. The criterion for statistical
significance is p < 0.05.

5. Conclusions

We demonstrated that Tr14 enhances the biosynthesis of 12-/15-LOX products and
SPMs in zymosan-induced mouse peritonitis as well as in human MDM challenged with
bacterial exotoxins. In the mouse peritonitis model, Tr14 also positively influenced the
inflammation resolution index and supported efferocytosis. Our data reveal Tr14 as
an immunoresolvent agent with diverse actions that promote resolution of inflamma-
tion, which may benefit patients with non-resolving inflammation due to defects in the
resolution response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14111123/s1, Figure S1: Study plan for investigation of the effects of Tr14 on the resolution
of inflammation in zymosan-induced mouse peritonitis, Figure S2: Self-resolving inflammation was
initiated by injection of zymosan (0.1 mg/mouse, i.p.) into mice. Before zymosan injection, Tr14
(3 mL/kg or 1.5 mL/kg) or vehicle (veh., 0.9% NaCl) were administered i.p. once daily for six days.
Peritoneal exudates were collected after 4, 8 and 24 h (n = 6–8; outliers were removed) post-zymosan
injection, and from naïve untreated mice representing time point 0 h (n = 6). (A) Quantification of
cell numbers of PMNs, eosinophils, monocytes/macrophages and lymphocytes in the peritoneum,
shown as mean ± SEM for indicated time points, * p < 0.05; *** p < 0.001; p values were calculated
versus vehicle for each time point; unpaired two-way ANOVA with Dunnett´s multiple comparison
test. (B) Cell composition in the peritoneal exudates 4 h after zymosan injection against naïve
untreated mice are shown in pie charts. (C) Cytokine levels were measured at indicated time points
and shown in pg/mL exudate as mean ± SEM. (D) mRNA levels of inflammation-related genes in
peritoneal lavages 4 h post-zymosan injection, analyzed by RT-PCR. Data are given as mean ± SEM
as fold increase of vehicle group. (E) LM levels in peritoneal lavages (summarized in relevant
groups: SPMs (LXA4, PD1, MaR1, RvD2 and RvD5), 12-LOX products (14-HDHA and 12-HETE),
15-LOX (17-HDHA and 15-HETE) and COX products (PGE2 and TXB2)) at the indicated time points
were analyzed by UPLC-MS-MS and are shown in pg/mL exudate as mean ± SEM as line charts,
Figure S3: Self-resolving inflammation was initiated by injecting zymosan (0.1 mg/mouse, i.p.) into
mice. Tr14 (1.5 mL/kg or 3 mL/kg) or vehicle (veh., 0.9% NaCl) were administered i.p. 4 h and 8 h
post-zymosan injection. Peritoneal exudates were collected 4, 8, 24, 192 and 360 h (n = 6–8; outliers
were removed) post-zymosan injection, and from naïve untreated mice representing time point 0 h
(n = 6). (A) Quantification of cell numbers of PMNs, eosinophils, lymphocytes, resident and recruited
monocytes/macrophages as well as total monocytes/macrophages in the peritoneum, shown as
mean± SEM for the indicated time points; * p < 0.05; ** p < 0.01; *** p < 0.001; p values were calculated
versus vehicle for each time point; unpaired two-way ANOVA with Dunnett´s multiple comparison
test. (B) Cell composition in the peritoneal exudates 24 h and 360 h after zymosan injection against
naïve untreated mice are shown in pie charts. (C) Cytokine levels were measured at indicated
time points and shown in pg/mL exudate as mean ± SEM. (D) LM levels in peritoneal lavages
(summarized in relevant groups: SPMs (LXA4, PD1, MaR1, RvD2 and RvD5), 12-LOX products
(14-HDHA and 12-HETE), 15-LOX (17-HDHA and 15-HETE) and COX products (PGE2 and TXB2))
at the indicated time points were analyzed by UPLC-MS-MS and are shown in pg/mL exudate
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as mean ± SEM; ** p < 0.01; p values were calculated versus vehicle for each time point; unpaired
two-way ANOVA with Dunnett´s multiple com-parison test. Figure S4: (A) Cytotoxicity of Tr14.
Human naïve MDM (MGM-CSF and MM-CSF, 1 × 105) were incubated with different concentrations
of Tr14 or 0.9% NaCl as vehicle or 1 µM staurosporine (Stsp.) as positive control and polarized
for 48 h with LPS/IFNγ to M1- and with IL-4 to M2-MDM at 37 ◦C. M1- and M2-MDM were then
incubated with MTT (5 mg/mL, 20 µL) for 2 h at 37 ◦C. The formazan product was solubilized with
SDS (10% in 20 mM HCl) and the absorbance was measured at 570 nm. Results are given in % of
control (0.9% NaCl), n = 3. (B) Human MDM were preincubated with 0.1 or 10% of Tr14 or vehicle
(0.9% NaCl solution) for 15 min and then polarized for 48 h with IL-4 to M2-MDM. Then, cells were
incubated with S. aureus (LS1; ratio 1:50) in PBS pH 7.4 containing 1 mM CaCl2 for another 180 min.
Formed LM were extracted from the supernatants and analyzed by UPLC-MS-MS, and are given as
means in pg/2 × 106 cells ± SEM and % of vehicle is shown in a heat map; n = 3 separate donors.
Table S1: Composition of Traumeel (Tr14), solution for injection.
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