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Abstract 

The maximum common property similarity (MCPhd) method is presented using descriptors as a new approach to 
determine the similarity between two chemical compounds or molecular graphs. This method uses the concept 
of maximum common property arising from the concept of maximum common substructure and is based on the 
electrotopographic state index for atoms. A new algorithm to quantify the similarity values of chemical structures 
based on the presented maximum common property concept is also developed in this paper. To verify the validity of 
this approach, the similarity of a sample of compounds with antimalarial activity is calculated and compared with the 
results obtained by four different similarity methods: the small molecule subgraph detector (SMSD), molecular finger‑
print based (OBabel_FP2), ISIDA descriptors and shape-feature similarity (SHAFTS). The results obtained by the MCPhd 
method differ significantly from those obtained by the compared methods, improving the quantification of the simi‑
larity. A major advantage of the proposed method is that it helps to understand the analogy or proximity between 
physicochemical properties of the molecular fragments or subgraphs compared with the biological response or bio‑
logical activity. In this new approach, more than one property can be potentially used. The method can be considered 
a hybrid procedure because it combines descriptor and the fragment approaches. 

Keywords:  Maximum common property, Electrotopographic state index, Molecular similarity, Tanimoto function, 
Maximum common structure
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Introduction
Molecular similarity is one of the most explored and 
employed concepts in cheminformatics (chemical infor-
matics or chemoinformatics) [1]. Moreover, it is cur-
rently one of the central subjects in medicinal chemistry 
research [1, 2]. Molecular similarity can be evaluated 
using different approaches, which can be classified into 
two principal categories: those based on descriptors 
and those based on substructures [3]. To estimate simi-
larity among molecules, it is necessary to identify those 

structural or chemical/physical properties that are use-
ful to correlate and then predict the relationships among 
them.

Similarity calculations based on molecular descriptors 
use fingerprint representations [3, 4]. These representa-
tions can be codified both by topological or topographic 
descriptors. Topological descriptors are the most popular 
because the 2D representation of molecules is computa-
tionally less difficult to work with than the 3D represen-
tation [1].

This work proposes a different approach in contrast 
with what is rigorously known as molecular similarity or 
chemical similarity [1]. The descriptor and the method of 
reduction of the graph used contain both structural and 
chemical-physical information. Thus, the approach allows 
evaluations and comparisons to be made by accounting 
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for not only the structure but also other properties asso-
ciated with the electrostatic nature of the molecule or 
fragment. The methods of structural similarity in 2D are 
more popular and simple. However, when working with 
only the topology of the molecules, most of the informa-
tion associated with the spatial distribution is lost, except 
in the molecules that are essentially flat. As opposed to 
2D methods, 3D methods consider that the properties of 
molecules tend to be strongly associated with the spatial 
distribution of their atoms [5, 6]. On the other hand, the 
3D methods based on 3D data usually compute a single 
conformation per molecule, which may not agree with 
the bioactive conformation. It is a common problem for 
all methods based on single conformation.

This issue causes a dilemma for researchers: losing all 
three-dimensional information for the sake of simplicity 
in the calculations or complicating the calculations and 
possibly delaying the results. The possibility of obtain-
ing large data sets is an unquestionable reality. In that 
case, the eventual distortion of the 3D results due to not 
adjusting to the required conformation must be com-
pensated by the increase in the number of compounds. 
However, such voluminous processing is not currently an 
impediment in terms of computational cost [7, 8].

Another concept that has been used for more than two 
decades is the scaffold and, more recently, scaffold hop-
ping. These concepts allow the reduction of the molecule 
by eliminating R-substituents from the nucleus supposedly 
responsible for the activity in series of compounds in the 
first case, and in the other case, they allow the scaffold to be 
determined and enable comparisons to be made between 
structurally different compounds [9]. In other words, this 
approach bears a certain similarity to the proposed method 
since both seek to identify structurally different compounds 
that may show similar biological activity.

For these reasons, the proposed similarity method is 
based on the molecular description with a 3D descriptor 
that has structural information and on the polarity of the 
molecular graph or its fragments defined by a chemical 
graph reduction method.

Furthermore, molecular similarity based on substructure 
allows obtaining the molecular fragment or common sub-
graph among pairs of compounds [10, 11]. Several similarity 
methods have been developed based on a group of algo-
rithms aimed at obtaining the largest common subgraph 
among a pair of compounds, the maximum common sub-
graph (MCS) [12–14]. To quantify the molecular similarity, 
this method uses the Tanimoto coefficient ( TcMCS ) [15, 16].

In this work, we introduce a new concept called maxi-
mum common property (MCPhd), inspired by MCS, to 
quantify the similarity based on substructure, using the 
electrotopographic state index for atoms ( Sstate3D ) [17], 
which was developed from its parent electrotopologic 

defined by Kier and Hall [18] from the connectivity 
matrix of the hydrogen-depleted chemical graph as an 
atomic descriptor.

The rest of the paper is organized in sections as fol-
lows: Related Works describes several relevant and recent 
proposals related to this work; Materials and Methods 
describes the dataset and molecular codification, the 
general procedure and the proposed MCPhd algorithm; 
Results and Discussion describes the experimental results; 
and finally, Conclusions presents a summary of this work.

Related works
In the SAR and QSAR approaches, the similarity between 
molecular structures is measured from some fragments of 
structural interest, physico-chemical properties, or other 
characteristics that are relevant to the biological activity 
under study. Therefore, the quality in the description and 
representation of molecular structures is a very important 
issue in the construction of computational models [19].

There are several proposals that consider the 3D infor-
mation of the structure to calculate the similarity between 
chemical compounds. For example, Raymond and Willett 
[20] proposed a 3D MCSs method for similarity search-
ing based on finding the largest set of atoms common to 
both molecules that preserves all pairwise distance con-
straints in both molecules. Although the number of free-
dom rotational degree is usually a difficulty, it was solved 
by generating several conformations. In order to establish 
the maximum and minimum possible distances between 
all pairs of atoms in a molecule, they applied the distance 
geometry described by Crippen et al. [21]. This procedure 
shows a computational complexity of O(N 3).

Other 3D similarity methods like LS-align [22], gener-
ate atom-level structural alignments of ligand molecules, 
by an iterative heuristic search of the target function that 
combines inter-atom distance with mass and chemical 
bond comparisons.

Shape-feature similarity (SHAFTS) [23] is a hybrid 
approach for 3D molecular similarity calculation. The 
method adopts a hybrid similarity metric combined with 
molecular shape and colored (labeled) chemistry groups 
annotated by pharmacophore features for 3D similarity 
calculation. The method needs molecular alignments and 
superpositions between the target and the query molecules.

The ligand-based approach LigCSRre [24] uses 3D 
structural data of molecules for similarity studies. It 
combines a 3D maximum common substructure search 
algorithm independent from atom order with a tunable 
description of atomic compatibilities to prune the search.

3D similarity is attracting attention of the scientific 
community. Many methods to describe the shape of mol-
ecules have been developed. Surface-based approaches 
such as 3D Zernike descriptors and others demonstrated 
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a good virtual screening performance [25]. Futhermore, 
nowadays there is a wide variety of web services, source 
code libraries and frameworks such as Open Babel [26], 
CoSiAn [27], ChemMapper [28], SMSD Toolkit [29], 
Corina [30], ISIDA-Platform [31], Chemaxon Web Ser-
vices [32], and Chemical Development Kit (CDK) library 
[33] that allow to calculate 2D and 3D descriptors, build 
and validate QSAR models, and support the implementa-
tion of new computational models and algorithms.

Materials and methods
Sample used
We employed a set of 4-aminobicyclo[2.2.2]octan-2-yl 
4-aminobutanoates (Table 1) reported by Weis et al. [34] 
and evaluated compounds against the multiresistant K-1 
strain of Plasmodium falciparum.

Codification of structures
The electrotopographic state index for atoms [17] was 
used to codify chemical structures. This index is defined 
by Eq. (1).

where Sstate3D is the calculated value of the atom i in the 
corresponding molecule and Ii is the intrinsic value of the 
atom i calculated with Eq. (2).

where N is the principal quantum number of atom I, δv is 
the number of valence electrons in the molecular skeleton 
( Zv-h) and δ is the number of σ electrons in the skeleton 
( σ − h ). For each atom of the molecular skeleton, δv is the 
number of valence electrons, σ is the number of electrons in 
σ orbitals and h is the number of hydrogen atoms bonded.
△Iij represents the disturbance of the atoms of the envi-

ronment, which is calculated by Eq. (3).

where the sum is over the difference of the intrinsic val-
ues of atom i with respect to each one of the other atoms 
in the molecule and r2ij is the Euclidean distance between 
the analyzed atoms, transforming the original topological 
index of Kier and Hall in topographic.

Graph reduction
The reduction of the chemical graph is carried out by 
the method described by Carrasco et al. [35], where the 
descriptor centers (DCs), rings of different orders (Rn), 
clusters of order 3 and 4 (C3 and C4, respectively), het-
eroatoms such as halogens, amino, etc. (X), and termi-
nal groups such as methyl ( M3 ), methylene ( M2 ) and 

(1)Sstate3D = Ii +△Iij

(2)Ii = [(2/N )2v + 1]/δ

(3)△Iij =
∑

(Ii + Ij)/r
2
ij

methyne (M) are defined. Examples of these parameters 
are shown in Fig.  1. This graph reduction procedure, 
named CALEDE, is inspired by the procedure developed 
by Avindon et  al. [36], where each DC is assigned the 
total value of Sstate3D , quantified as the sum of the value 
of Sstate3Di of each atom that conforms to it.

Definition of the maximum common property
The maximum common property (MCPhd) between two 
fully connected and complete (not hydrogen-depleted) G1 
and G2 chemical graphs is defined as the maximum simi-
larity in the chemical-physical properties represented by 
the index Sstate3D , which exists between subgraphs g1 
and g2 of the molecular graphs G1 and G2 , respectively. 
Both g1 and g2 represent the link of at least two DCs that 
are at a Euclidean distance dE(DC1, DC2 ) from their cor-
responding centers of mass from pairs of DCs.

To quantify the value of similarity between two com-
pounds using the concept of the maximum common 
property (MCPhd), the calculation of the similarity of 
two compounds is assumed using the Tanimoto function 
or coefficient on the basis of the maximum common sub-
structure called TcMCS [15, 16]. The TcMCS for two mol-
ecules A and B is defined as:

where |A|b is the number of links of A, |B|b is the number 
of links of B and |MCS(A,B)|b is the number of links of 
the MCS of A and B. If the concept MCPhd is replaced in 
Eq. (4), it yields:

where |A|b is the number of heavy atoms of A, |B|b the 
number of heavy atoms of B and 

∣

∣MCPhd(A,B)
∣

∣

b
 the 

smallest number of heavy atoms among the fragments 
with the highest MCPhd between A and B.

The proposed MCPhd algorithm
Figure 2 shows the algorithm used for the calculation of 
similarity. The algorithm uses the following parameters: 
( G1 and G2 ) two compounds or molecules, (u) the simi-
larity threshold, (f ) the similarity coefficient and (i) the 
index used to quantify the similarity. First, we obtain 
the subgraphs ( f1 and f2 ) that have a maximum com-
mon property value quantified by the index based on the 
parameters and similarity coefficient. These subgraphs 
are obtained by performing the following steps: 

1	 The index (i) entered as a parameter is calculated for 
each atom in each G1 and G2 graph using the Chemi-

(4)TcMCS =
|MCS(A,B)|b

|A|b + |B|b − |MCS(A,B)|b

(5)TcMCPhd =

∣

∣MCPhd(A,B)
∣

∣

b

|A|b + |B|b −
∣

∣MCPhd(A,B)
∣

∣

b
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cal Development Kit (CDK) library [33]. Lines 1 and 
2 of the algorithm are shown in Fig. 2.

2	 The graphs ( G1 and G2 ) on DCs are reduced, and the 
total index value of each one is obtained. Lines 3 and 
4 of the algorithm are shown in Fig. 2.

3	 The similarity matrix between the DCs obtained 
from the graphs ( G1 and G2 ) is constructed using 
the similarity coefficient introduced as a parameter, 
along with the distance matrix between the DCs of 
each graph ( G1 and G2 ) using the Euclidean distance. 
Line 5 of the algorithm is shown in Fig. 2.

4	 The DCs from each graph ( G1 and G2 ) that meet the 
condition that the similarity value must be higher 
than the similarity threshold (u), entered as a param-
eter, are selected. Line 5 of the algorithm is shown in 
Fig. 2.

5	 Finally, using the list of DCs obtained in the previous 
step and the distance matrices of the DCs in graph 

G1 and G2 , a new distance matrix between pairs of 
DCs in each graph G1 and G2 is constructed using the 
Canberra distance coefficient [38], as shown in Fig. 3. 
Then for each pair of DCs selected, a list is created in 
which the pairs of DCs in the created matrix whose 
distance is less than or equal to 0.15 are stored. 
Finally, the largest lists is selected and from each one 
the subgraphs f1 and f2 are generated. Line 5 of the 
algorithm is shown in Fig. 2

Then, for a pair of subgraphs ( f1 and f2 ) obtained and the 
graphs ( G1 and G2 ), the values of the variables needed to 
quantify similarity are obtained using the similarity coef-
ficient (u) for the discrete data entered as a parameter. 
Variable c is assigned the least number of heavy atoms 
belonging to the subgraphs ( f1 and f2 ), while variables a 
and b are assigned the number of heavy atoms belong-
ing to each graph ( G1 and G2 ), respectively. Finally, these 

Table 1  Compounds set

6 7 8

a NR1R2 NR3R4
6a IC50= 0.35
7a IC50= 0.46
8a IC50= 0.24

b NR1R2 NR3R4
6b IC50= 0.54
7b IC50= 0.26
8b IC50= 0.12

c NR1R2 NR3R4
6c IC50= 0.106
7c IC50= 0.06
8c IC50= 0.05

d NR1R2 NR3R4
6d IC50= 0.71
7d IC50= 0.55
8d IC50= 0.19

e NR1R2 NR3R4
6e IC50= 0.70
7e IC50= 0.37
8e IC50= 0.19

f NR1R2 NR3R4
6f IC50= 0.47
7f IC50= 0.25
8f IC50= 0.09

g NR1R2 NR3R4
6g IC50= 0.52
7g IC50= 0.40
8g IC50= 0.35

h NR1R2 NR3R4
6h IC50= 0.37
7h IC50= 0.28
8h IC50= 0.20

i NR1R2 NR3R4
6i IC50= 0.18
7i IC50= 0.26
8i IC50= 0.18

j NR1R2 NR3R4
6j IC50= 2.16
7j IC50= 2.25
8j IC50= 1.43

k NR1R2 NR3R4
6k IC50= 0.86
7k IC50= 1.91
8k IC50= 0.51

l NR1R2 NR3R4
6l IC50= nd
7l IC50= 0.17
8l IC50= 0.09
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values are substituted in the similarity function to obtain 
the quantification of the similarity of the graphs (G1 and 
G2). Lines 6 to 16 of the algorithm are shown in Fig.  2. 
Furthermore, if there are several subgraphs f1 and f2 , the 
same operation is performed for each one and the pair of 
subgraphs f1 and f2 with the highest similarity value is 
selected.

 
The use of the algorithm is exemplified below using 

the molecules 6k and 6c present in the dataset as 
shown in Figs.  4 , 5, respectively. We use 5 parameters 
(G1,G2,u, f , i) for its operation, where G1 and G2 are the 

molecular graphs 6k and 6c respectively, (i) is the index 
( Sstate3D ), (u) is the similarity threshold, and (f) is the 
similarity function. For this example, we will use 0.95 
and the modified Tanimoto coefficient ( TcMCPhd ) as the 
threshold and similarity function, respectively. Then, 
after assigning the parameters, the following steps are 
performed: 

1	 The Sstate3D index is calculated for each atom pre-
sent in molecules 6k and 6c; these results are shown 
in Tables 2 and 3.

2	 The 6k and 6c molecular graphs on DCs are reduced, 
and each is given the value of the total Sstate3D index. 
As shown in step A of Fig. 6, molecule 6k is reduced 
on the DCs ( R81 , R52 , R63 , R64 , R65 , C36 , X7 ), while 
molecule 6c is reduced on ( R61 , R82 , R63 , R64 , R65 , 
C36 , M7).

3	 The similarity matrix between the DCs of each mol-
ecule 6k and 6c is constructed using the continuous 
Tanimoto coefficient (Tc) [37], together with the dis-
tance matrices between the DCs of each molecule 
(6k and 6c), as shown in step B of Fig. 6.

4	 DCs are selected from each molecule (6k and 6c) that 
meet the condition that the similarity value is above 
the similarity threshold of 0.95. The DCs selected 

Fig. 1  Examples of Descriptor Centers (DC) employed in the 
fragmentation of the chemical graphs

Fig. 2  MCPhd algorithm for similarity calculation
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from molecules 6k and 6c are ( R81 , R52 , R63 , R64 , 
R65 and C36 ) and ( R61 , R82 , R63 , R64 , R65 , C36 and 
M37 ), respectively, as shown in step C-a in Fig.  6. 
Furthermore, using the distance matrices of the 
graphs obtained in the previous step, for each pair of 
DCs, a list is constructed with the pairs of DCs that 

are at a Canberra distance less than or equal to 0.15, 
as shown in step C-b in Fig. 6.

5	 From the lists of DC pairs obtained in the previous 
step, the following DCs are selected, namely, ( R81 , 
R52 , R64 and C36 ) and ( R61 , R82 , R63 and C34 ), cor-

Fig. 3  Distance matrix between pairs of similar DCs

Table 2  Result of  the  Sstate3D calculation for  each atom 
of the molecule 6k

Molecule 6k

Atom Number Sstate3D Atom Number Sstate3D

C 1 0.27653 N 19 − 1.4592

C 2 4.24474 C 20 3.38006

C 3 − 2.11427 C 21 3.11542

C 4 4.25231 C 22 − 0.12941

C 5 0.49396 C 23 3.09432

C 6 0.52371 C 24 3.32881

C 7 0.28273 O 25 4.22234

C 8 4.2063 N 26 − 1.30847

C 9 − 0.37931 C 27 3.52697

C 10 3.51969 C 28 2.9831

C 11 2.98731 C 29 3.01061

C 12 2.89649 C 30 3.54754

C 13 2.99502 C 31 − 0.38433

C 14 3.5348 C 32 3.54001

O 15 − 0.08644 C 33 2.99825

C 16 − 0.10545 C 34 2.90069

O 17 5.5644 C 35 2.99544

C 18 3.75612 C 36 3.53921

Table 3  Result of  the  Sstate3D calculation for  each atom 
of the molecule 6c

Molecule 6c

Atom Number Sstate3D Atom Number Sstate3D

C 1 0.35527 C 20 3.314

C 2 4.17197 C 21 2.96595

C 3 − 2.19195 N 22 − 2.22668

C 4 4.25527 C 23 2.94306

C 5 0.37013 C 24 3.25612

C 6 0.50352 C 25 8.9881

C 7 0.21375 N 26 − 1.46525

C 8 4.23211 C 27 3.52712

C 9 − 0.24053 C 28 2.94719

C 10 3.50889 C 29 2.85191

C 11 3.00512 C 30 2.95634

C 12 2.94959 C 31 3.54763

C 13 3.09722 C 32 − 0.13708

C 14 3.69435 C 33 3.3945

O 15 − 0.48635 C 34 2.9161

C 16 − 0.31876 C 35 2.85145

O 17 5.6053 C 36 2.96557

C 18 3.73854 C 37 3.52272

N 19 − 1.66555
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responding to the lists (1, 3, 4 and 5) according to the 
larger size list with the same DCs in common.

Finally, the similarity value of the two molecules 
6k and 6c is quantified using the modified Tani-
moto coefficient ( TcMCPhd ), where the value of 
∣

∣MCPhd(A,B)
∣

∣

b
 is the lowest number of heavy bonds 

present between fragments f1 and f2 , while the val-
ues of |A|b and |B|b are obtained from the number of 
heavy atoms present in molecules 6k and 6c, respec-
tively. With these values, it is possible to quantify the 
similarity between molecules 6k and 6c. In step E of 
Fig. 6, it can be seen that the number of heavy atoms 
of fragments f1 and f2 is 23 and 24, respectively, so 
the value of 

∣

∣MCPhd(A,B)
∣

∣

b
 is 23, while the number 

of heavy atoms of molecules 6k and 6c is 36 and 37, 
respectively; that is, |A|b = 36 and |B|b = 37 . There-
fore, the calculated value of similarity between mol-
ecules 6k and 6c is 0.46.

Small molecule subgraph MCS approach
The Small Molecule Subgraph Detector (SMSD) algo-
rithm differs from previous MCS algorithms in that it 
uses a combination of several algorithms to find the 
common maximum subset and filters the results in 
a way that is chemically relevant because it incorpo-
rates chemical knowledge (coincidence of atom type 
with information sensitive and insensitive to the bond) 
while searching for molecular similarity. In addition, 
the algorithm calculates the maximum subgraph com-
mon between two molecules (A and B) by combining 
the power of the VFLibMCS, MCSPlus and CDKMCS 
algorithms. These algorithms are used on a case-by-case 
basis, depending on the molecules under consideration 
for the common maximum subgraph search [29]. This 
algorithm is implemented in the SMSD tool available 

free of charge on the official site of the European Insti-
tute of Bioinformatics.

General experimental procedure
The experiments were carried out as shown in Fig.  7, 
based on a test of 36 compounds with a 2D structure, 
which have been tested experimentally in the study 
conducted by Weis et al. in 2014 [34]. The 3D structure 
of each compound was obtained through the Corina 
online service [30]. The 2D structures were used to cal-
culate the molecular similarity (all against all) with the 
SMSD, OBabel_FP2 and ISIDA algorithms, while the 
3D structures were processed to calculate the Sstate3D 
index of each atom and to reduce their graphs on DCs 
in order to apply the MCPhd algorithm to calculate 
the molecular similarity (all against all), and to use 
the SHAFTS method. The similarity was calculated 
using the OBabel_FP2, SHAFTS and ISIDA methods 
through the web service CoSiAn (Combinatorial Simi-
larity Analysis) [27] and ChemMapper [28]. Additional 
file 1 contains all necessary data/files to reproduce the 
results.

To quantify the value of similarity between different 
IC50 we defined the following coefficient TcIC50 based 
on continuous Tanimoto [37]:

where AIC50
 and BIC50

 are the IC50 value of A and B 
respectively.

Finally, the results obtained by all the algorithms were 
compared from different perspectives: (i) the statistical 
difference of the MCPhd results with respect to those 
obtained by the other methods; (ii) the ratio of the sim-
ilarity values obtained by the different methods against 
the values obtained for TcIC50 ; (iii) the percentage of 

(6)TcIC50 =
AIC50

∗ BIC50
(

AIC50

)2
+

(

BIC50

)2
−

(

AIC50
∗ BIC50

)

Fig. 4  2D graph of the 6k molecule Fig. 5  2D graph of the 6c molecule
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success for the different similarity methods to find 
structures with the same activity, similar to a screen-
ing process; (iv) the results of the different methods in 
relation to the concept of bioisosterism or the analogy 
between the physicochemical properties of the molecu-
lar fragments; (v) the computational cost.

The MCPhd algorithm was implemented using the 
JAVA language and CDK library, all test were executed on 
an Intel(R) Core(TM) i7-7500U PC with 16 GB of RAM.

Results and discussion
The molecular similarity methods compared in this work, 
SMSD OBabel_FP2, ISIDA, SHAFTS and MCPhd, use 
different approaches to quantify the similarity between 
two molecular graphs or molecules. Whereas SMSD 
employs graph isomorphism and no other properties 
associated to the molecular structure, OBabel_FP2 uses 
the similarity between hashed fingerprints that represent 
molecule substructures, ISIDA employs substructural 

Fig. 6  Example of applying the MCPhd algorithm to the 6k and 6c molecules belonging to the dataset
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molecular fragments, and SHAFTS adopts a hybrid simi-
larity metric combined with molecular shape and colored 
chemistry groups for 3D molecular similarity calculation. 
The similarity calculated with MCPhd is based on the 
criterion of analogy or proximity between the physico-
chemical properties of the molecular fragments or sub-
graphs that are compared, expressing these properties as 
an Sstate3D value.

As we will show, this approach places MCPhd closer 
to the concepts of bioisosterism. Bioisosterism denote 
that two different molecules can afford similar biologi-
cal responses if the structural features are accomplished 
by physicochemical property that is responsible in great 
measure of the biological response. This concept was 
coined by Friedman [39], extended by Burger [40] and 
recently used by Lassalas et al. [41] and Tahirova [42].

Using these different approaches, different similarity 
values were obtained. Table  4 shows the results of the 
comparison with the remaining 35 molecules of the sam-
ple, with compounds 8c and 7j used as target elements 
since they had the minimum and maximum IC50 values, 
respectively.

To determine whether the results produced by the 
MCPhd methods are significantly different, a non-para-
metric statistical test is used for two independent Mann-
Whitney samples [43] with a significance level of 5%. The 
results of the Mann-Whitney U statistic and p values 
(bilateral asymptotic significance) for the most active (8c) 

and least active (7j) compounds are shown in Table 5. As 
the p values for both compounds are below 0.05, it is con-
cluded that the similarity values obtained by the MCPhd 
methods were significantly different from the other simi-
larity methods.

Furthermore, it can be seen in Figs.  8, 9 for the most 
active compound (8c) and the least active compound (7j), 
respectively, that the results obtained by the similarity 
methods used showed a low correlation with the results 
achieved when applying the MCPhd method. Table  6 
shows these results for all the active compounds in the 
dataset.

As the maximum inhibitory concentration ( IC50 ) is a 
measure of a compound’s efficacy in inhibiting biologi-
cal or biochemical function, it is expected that com-
pounds with near values of IC50 , are very similar and 
with far values of IC50 , the compounds will exhibit very 
low similarity. Under that hypothesis, the results were 
analyzed from another perspective. The similarity was 
calculated for the values of the variable IC50 of the most 
active compound (8c) and the less active compound (7j) 
against the rest of the dataset. The results are shown in 
the TcIC50 columns of Table 4.

Subsequently, the molecular similarities calculated 
by the different methods were compared with this new 
variable. As shown in Fig.  10, the similarity results 
obtained by the MCPhd method for the most active 
compound (8c) had a slope closer to that obtained with 

Fig. 7  General experimental procedure
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the TcIC50 similarity; furthermore, the results were bet-
ter correlated obtained the MCPhd method the best 
Pearson correlation coefficient ( rxy = 0.85) compared to 
the remaining methods as Fig. 11 shows.

A similar behavior was observed in the results 
obtained for the less active compound (7j). The slope 
of MCPhd was closer to TcIC50 compared to the other 
methods (Fig. 12). The rxy = 0.43 of MCPhd vs. TcIC50 
was higher than the other similarity methods, with the 
exception of the SHAFTS method where rxy = 0.55 (see 
Fig. 13).

To generalize these results, the similarity obtained with 
all methods of the rest of the 17 compounds selected 
as active by Baptista [44] was correlated against TcIC50 . 
The results showed (Table  7) that overall the MCPhd 
method improved the correlation coefficient in 6% of the 
cases with respect to SHAFTS and 18% of the cases with 
respect to the remaining methods.

To perform a more exhaustive study comparing the 
molecular similarity results obtained by all methods, the 
following steps were performed: (1) the similarity is cal-
culated with all methods for all compounds (one against 

Table 4  Molecular similarity values of the most active and inactive compounds with the rest of the dataset

Molecule 8c Target IC50 Molecule 7j

OBabel_FP2 SHAFTS ISIDA SMSD MSChd TcIC50 OBabel_FP2 SHAFTS ISIDA SMSD MSChd TcIC50

1.00 1.00 1.00 1.00 1.00 1.00 8c 0.05 0.82 0.78 0.88 0.61 0.42 0.02

0.90 1.00 0.97 0.67 0.97 0.97 7c 0.06 0.92 0.82 0.90 0.83 0.43 0.03

0.91 1.00 0.97 0.95 0.77 0.74 8f 0.09 0.88 0.80 0.90 0.64 0.60 0.04

0.92 1.00 0.90 0.90 0.70 0.74 8l 0.09 0.89 0.77 0.97 0.61 0.35 0.04

0.77 0.87 0.90 0.65 0.77 0.68 6c 0.106 0.74 0.73 0.81 0.60 0.29 0.05

0.98 0.79 1.00 0.97 0.75 0.55 8b 0.12 0.80 0.88 0.88 0.62 0.33 0.06

0.82 0.84 0.88 0.67 0.71 0.37 7l 0.17 1.00 0.83 1.00 0.92 0.62 0.08

0.72 0.87 0.87 0.67 0.53 0.35 6i 0.18 0.79 0.73 0.83 0.61 0.29 0.09

0.92 1.00 0.97 0.93 0.75 0.35 8i 0.18 0.89 0.78 0.90 0.62 0.43 0.09

0.89 0.76 0.97 0.87 0.46 0.33 8d 0.19 0.86 0.91 0.90 0.68 0.64 0.09

0.90 0.93 0.97 0.92 0.56 0.33 8e 0.19 0.87 0.77 0.90 0.65 0.42 0.09

0.91 0.90 0.97 0.90 0.55 0.31 8h 0.20 0.88 0.74 0.90 0.64 0.33 0.09

0.97 0.77 1.00 0.92 0.50 0.25 8a 0.24 0.79 0.87 0.88 0.65 0.69 0.12

0.82 0.89 0.95 0.70 0.74 0.24 7f 0.25 0.99 0.77 0.92 0.87 0.51 0.12

0.88 0.82 0.97 0.65 0.69 0.23 7b 0.26 0.90 0.76 0.90 0.85 0.33 0.13

0.82 1.00 0.95 0.69 0.73 0.23 7i 0.26 1.00 0.82 0.92 0.89 0.44 0.13

0.82 1.00 0.95 0.67 0.53 0.21 7h 0.28 0.99 0.83 0.92 0.92 0.34 0.14

0.73 0.71 0.90 0.59 0.46 0.16 6a 0.35 0.69 0.87 0.81 0.64 0.64 0.18

0.91 0.74 0.97 0.85 0.45 0.16 8g 0.35 0.88 0.88 0.90 0.67 0.71 0.18

0.71 0.82 0.87 0.61 0.37 0.15 6h 0.37 0.78 0.75 0.83 0.63 0.43 0.19

0.80 0.73 0.95 0.68 0.54 0.15 7e 0.37 0.97 0.94 0.92 0.89 0.35 0.19

0.82 0.74 0.95 0.62 0.43 0.14 7g 0.40 1.00 0.84 0.92 0.97 0.73 0.21

0.87 0.71 0.97 0.61 0.61 0.12 7a 0.46 0.88 0.91 0.90 0.89 0.71 0.24

0.71 0.90 0.87 0.68 0.54 0.12 6f 0.47 0.78 0.75 0.83 0.63 0.46 0.25

0.91 0.91 0.90 0.88 0.54 0.11 8k 0.51 0.88 0.72 0.97 0.62 0.35 0.27

0.70 0.71 0.87 0.60 0.38 0.11 6g 0.52 0.77 0.88 0.83 0.66 0.66 0.28

0.76 0.76 0.90 0.63 0.56 0.10 6b 0.54 0.73 0.83 0.81 0.61 0.31 0.29

0.80 0.75 0.95 0.64 0.44 0.10 7d 0.55 0.97 0.87 0.92 0.94 0.74 0.30

0.70 0.86 0.87 0.62 0.38 0.08 6e 0.70 0.77 0.77 0.83 0.64 0.33 0.40

0.68 0.74 0.87 0.61 0.39 0.08 6d 0.71 0.75 0.91 0.83 0.68 0.68 0.40

0.71 0.70 0.81 0.63 0.36 0.06 6k 0.86 0.78 0.85 0.90 0.61 0.37 0.50

0.92 0.75 0.90 0.83 0.42 0.04 8j 1.43 0.89 0.85 0.97 0.65 0.65 0.83

0.82 0.70 0.88 0.65 0.52 0.03 7k 1.91 0.99 0.99 1.00 0.95 0.50 0.97

0.71 0.70 0.81 0.59 0.38 0.02 6j 2.16 0.78 0.86 0.90 0.64 0.64 1.00

0.82 0.78 0.88 0.61 0.42 0.02 7j 2.25 1.00 1.00 1.00 1.00 1.00 1.00
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all); (2) the results up to or equal to the similarity thresh-
olds (0.90, 0.80 and 0.70) are selected for each method; 
and (3) in each method, the threshold with the highest 
percentage of success in finding structures with the same 

activity is selected as the best threshold, and its results 
are compared.

As a result, a threshold of 0.90 was selected for the 
OBabel_FP2 method because 56% of the 137 pairs of 
structures found presented the same activity (active-
active and inactive-inactive); for the remaining methods: 
SHAFTS, ISIDA, SMSD and MCPhd, thresholds of 0.80, 
0.90, 0.90 and 0.70 were selected because they presented 
53%, 55%, 65% and 67% of pairs of structures with the 
same activity respectively. Tables 8, 9, 10, 11 and 12 show 
the results that validate the selection.

If we analyze the results obtained with the best simi-
larity thresholds in each method, we can infer that the 
percentage of structures found with the same activity 
(active-active and inactive-inactive) obtained with the 
MCPhd method (67%) was better than the results with 
the OBabel_FP2, SHAFTS, ISIDA and SMSD methods 
by 11%, 14%, 12% and 2% respectively. Analyzing only 
the active-active pairs, the increase was 14%, 16%, 13% 
and 11% (45% for MCPhd, 31% for Obabel_FP2, 29% 

Table 5  Mann-Whitney test values between  the  MCPhd 
method with  the  remainder on  the  most active 
and inactive compounds in the dataset

Methods Molecule 8c Molecule 7j

U of Mann-
Whitney

p (Sig. Asint. 
Bilateral)

U of Mann-
Whitney

p (Sig. 
Asint. 
Bilateral)

MCPhd

OBabel_FP 131.50 0.00 33.00 0.00

SHAFTS 117.00 0.00 34.50 0.00

ISIDA 70.50 0.00 33.50 0.00

SMSD 245.50 0.00 98.00 0.00

Fig. 8  Correlation between the similarity of MCPhd and the rest of methods using the compound 8c as reference
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for SHAFTS, 32% for ISIDA and 34% for SMSD). These 
results proved, once again, that the MCPhd method 
improved the similarity results obtained by the rest of 
similarity methods studied.

As another criterion, the 42 (OBabel_FP2), 75 
(SHAFTS), 94 (ISIDA), 39 (SMSD) and 41 (MCPhd) pairs 
of compounds classified in the active-active category 
shown in Tables  8,  9,  10,  11 , 12 were compared for all 
methods, using the best thresholds. To do so, only the 
17 active compounds in the dataset were consided and, 
relationship graphs were drawn for the compounds pre-
sent in the active-active pairs for each method. Figure 14 
shows this representation.

If we observe the differences between the families of 
compounds 6, 7 and 8 (see Table  1), these differences 
were fundamentally due to the characteristics of the side 
chain. Moreover, the hybrid descriptors used in MCPhd 
have demonstrated [35, 45] their capability to distinguish 
between the same DC at different positions in a mole-
cule. That allows MCPhd to find relationships/groups of 
compounds that show a higher functional relationship, 
and find similarities between compounds of different 

Fig. 9  Correlation between the similarity of MCPhd and the rest of methods using the compound 7j as reference

Table 6  Correlation results between  MCPhd and  the  rest 
of methods for the active compounds in the dataset

a-OBabel_FP2 vs MCPhd, b-SHAFTS vs MCPhd,

c-ISIDA vs MCPhd and d-SMSD vs MCPhd

Molecule IC50 Correlation

rxy a rxy b rxy c rxy d

8c 0.05 0.57 0.68 0.55 0.43

7c 0.06 0.50 0.69 0.47 0.43

8f 0.09 0.44 0.62 0.24 0.40

8l 0.09 0.45 0.71 0.33 0.53

6c 0.106 0.45 0.50 0.40 0.44

8b 0.12 0.49 0.05 0.36 0.35

7l 0.17 0.44 0.42 0.38 0.47

6i 0.18 0.39 0.46 0.37 0.45

8i 0.18 0.48 0.82 0.50 0.48

8d 0.19 0.26 0.00 0.20 0.30

8e 0.19 0.31 0.42 0.14 0.28

8h 0.20 0.38 0.41 0.30 0.40

8a 0.24 0.42 0.19 0.26 0.40

7f 0.25 0.34 0.33 0.15 0.41

7b 0.26 0.50 − 0.02 0.42 0.37

7i 0.26 0.28 0.76 0.22 0.46

7h 0.28 0.26 0.49 0.14 0.34
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families. The rest of the compared methods did not show 
this capacity. As shown in Fig.  14, whereas MCPhd did 
not relate compounds 8d and 8a with the rest, suggest-
ing that the electrostatic characteristics evidenced by the 
Electrotopographic State Index for Atoms was the source 
of the difference these two compounds. SMSD split this 
sample by grouping the three families separately, because 
it considers only structural features. SHAFTS considered 
that all compounds were related, and ISIDA identified 
similarity between 6c and 6i and the first of this pair with 
8c.

This result implies that the MCPhd method allowed 
establishing similarity relations between compounds 
even from different families, making logical associa-
tions in contrast to the results of the other methods. 
The reason is that in addition to the structural informa-
tion content provided by the electrotopographic state 
index for atoms, it includes the electrostatic informa-
tion content.

As a last criterion, a runtime comparison was carried 
out for methods SMSD, SHAFTS and MCPhd. Figure 15 
shows the box-plot representation of the computation 
time when calculating the similarity of each compound 
(reference structure) with the rest of the dataset. Moreo-
ver, the average runtime for SMSD was between 7688.2 
and 8770.9 milliseconds, for SHAFTS was between 238.3 
and 431.6 milliseconds. In contrast, the average calcula-
tion times for the MCPhd were between 18.6 and 35.6 
milliseconds.

MCPhd uses a reduced graph, mapping smaller sized 
molecular graphs. In addition, the similarity calculated by 
the MCPhd method is based on the criterion of analogy 
or proximity between the physicochemical properties of 
the molecular fragments or subgroups that are compared 
by expressing these properties as a value of Sstate3D . On 
the other hand, SMSD and SHAFTS performs a more 
expensive mapping process for the compared molecular 
structures.

Fig. 10  Comparison of the molecular similarity between compound 8c and the rest of the dataset
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Fig. 11  Correlation between similarity methods and TcIC50 similarity values between compound 8c and the rest of the dataset
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Fig. 12  Comparison of the molecular similarity between compound 7j and the rest of the dataset

Table 7  Results of  correlation between  similarity methods and  TcIC50 similarity values for  the  active compounds 
in the dataset

a-OBabel_FP2 vs TcIC50 , b-SHAFTS vs TcIC50 , c-ISIDA vs TcIC50,

d-SMSD vs TcIC50 and e-MCPhd vsTcIC50

Molecule IC50 Correlation

rxy a rxy b rxy c rxy d rxy e

8c 0.05 0.54 0.66 0.49 0.54 0.84

7c 0.06 0.29 0.62 0.37 0.06 0.80

8f 0.09 0.24 0.60 0.33 0.50 0.48

8l 0.09 0.26 0.62 0.04 0.44 0.55

6c 0.106 − 0.11 0.10 − 0.03 − 0.13 0.64

8b 0.12 0.50 − 0.06 0.49 0.45 0.44

7l 0.17 0.03 0.08 − 0.07 − 0.03 0.36

6i 0.18 − 0.37 0.11 − 0.20 − 0.16 0.25

8i 0.18 0.26 0.64 0.33 0.46 0.56

8d 0.19 0.22 − 0.13 0.33 0.27 − 0.15

8e 0.19 0.23 0.29 0.33 0.38 0.13

8h 0.20 0.24 0.25 0.33 0.35 0.12

8a 0.24 0.50 − 0.11 0.49 0.33 − 0.07

7f 0.25 − 0.05 0.15 0.20 0.02 0.37

7b 0.26 0.24 − 0.09 0.37 − 0.04 0.35

7i 0.26 − 0.03 0.60 0.20 − 0.01 0.40

7h 0.28 − 0.05 0.57 0.20 − 0.13 − 0.02
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Fig. 13  Correlation between similarity methods and TcIC50 similarity values between compound 7j and the rest of the dataset
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Table 8  Comparison of the observed and predicted by OBabel_FP2 for several similarity thresholds

Pairs-Number of predicted pairs

Threshold Real-Predicted Pairs % Predicted Pairs %

0.90 Active-active 42 31 Correct 77 56

Inactive-inactive 35 26

Active-inactive 32 23 Incorrect 60 44

Inactive-active 28 20

Total 137 100 Total 137 100

0.80 Active-active 101 32 Correct 170 55

Inactive-inactive 69 22

Active-inactive 65 21 Incorrect 141 45

Inactive-active 76 24

Total 311 100 Total 311 100

0.70 Active-active 133 24 Correct 277 49

Inactive-inactive 144 26

Active-inactive 86 15 Incorrect 287 51

Inactive-active 201 36

Total 564 100 Total 564 100

Table 9  Comparison of the observed and predicted by SHAFTS for several similarity thresholds

Pairs-Number of predicted pairs

Threshold Real-predicted Pairs % Predicted Pairs %

0.90 Active-active 19 24 Correct 31 42

Inactive-inactive 13 18

Active-inactive 18 24 Incorrect 43 58

Inactive-active 25 34

Total 74 100 Total 74 100

0.80 Active-active 75 29 Correct 137 53

Inactive-inactive 62 24

Active-inactive 43 17 Incorrect 120 47

Inactive-active 77 30

Total 257 100 Total 257 100

0.70 Active-active 107 22 Correct 224 45

Inactive-inactive 117 24

Active-inactive 76 15 Incorrect 271 55

Inactive-active 195 39

Total 495 100 Total 495 100
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Table 10  Comparison of the observed and predicted by ISIDA for several similarity thresholds

Pairs-Number of predicted pairs

Threshold Real-predicted Pairs % Predicted Pairs %

0.90 Active-active 94 32 Correct 165 55

Inactive-inactive 71 24

Active-inactive 57 19 Incorrect 133 45

Inactive-active 76 26

Total 298 100 Total 298 100

0.80 Active-active 136 23 Correct 289 49

Inactive-inactive 153 26

Active-inactive 84 14 Incorrect 306 51

Inactive-active 222 37

Total 595 100 Total 595 100

0.70 Active-active 136 23 Correct 289 49

Inactive-inactive 153 26

Active-inactive 84 14 Incorrect 306 51

Inactive-active 222 37

Total 595 100 Total 595 100

Table 11  Comparison of the observed and predicted by SMSD for several similarity thresholds

Pairs-Number of predicted pairs

Threshold Real-predicted Pairs % Predicted Pairs %

0.90 Active-active 39 34 Correct 75 65

Inactive-inactive 36 31

Active-inactive 19 17 Incorrect 41 35

Inactive-active 22 19

Total 116 100 Total 116 100

0.80 Active-active 52 28 Correct 106 57

Inactive-inactive 54 29

Active-inactive 48 26 Incorrect 81 43

Inactive-active 33 18

Total 187 100 Total 187 100

0.70 Active-active 63 30 Correct 121 57

Inactive-inactive 58 27

Active-inactive 48 23 Incorrect 91 43

Inactive-active 43 20

Total 212 100 Total 212 100
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Conclusions
This work proposed a new approach that uses the 3D 
structure of molecules with physicochemical infor-
mation to estimate the molecular similarity between 
chemical compounds. The method has been favorably 
compared with the standard SMSD, OBabel_FP2, ISIDA 
and SHAFTS methods and shows better performance in 
obtaining structures with the same activity using simi-
larity cutoff values during the screening process. Fur-
thermore, the proposal shows the ability to find similar 
compounds among different families. This strongly sug-
gest the possibility of employing the MCPhd method for 
isosteric studies.

Finally, the proposal presented in this paper provides 
a promising method for extending this method to be 
used in the construction of QSAR models for molecular 
activity prediction.
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Table 12  Comparison of the observed and predicted by MCPhd for several similarity thresholds

Pairs-Number of predicted pairs

Threshold Real-predicted Pairs % Predicted Pairs %

0.90 Active-active 14 33 Correct 26 62

Inactive-inactive 12 29

Active-inactive 8 19 Incorrect 16 38

Inactive-active 8 19

Total 42 100 Total 42 100

0.80 Active-active 16 36 Correct 28 62

Inactive-inactive 12 27

Active-inactive 9 20 Incorrect 17 38

Inactive-active 8 18

Total 45 100 Total 45 100

0.70 Active-active 41 45 Correct 62 67

Inactive-inactive 23 25

Active-inactive 15 16 Incorrect 30 33

Inactive-active 15 16

Total 92 100 Total 92 100

Fig. 14  Relationship graph of active compounds with a molecular 
similarity higher than the selected threshold
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Fig. 15  Calculation times
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