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Abstract
Bone metastasis is present in a high percentage of breast cancer (BCa) patients with distant disease, especially
in those with the estrogen receptor-positive (ER+) subtype. Most cells that escape primary tumors are unable to
establish metastatic lesions, which suggests that target organ microenvironments are hostile for tumor cells. This
implies that BCa cells must achieve a process of speciation to adapt to the new conditions imposed in the new
organ. Bone has unique characteristics that can be exploited by cancer cells: it undergoes constant remodeling
and comprises diverse environments (including osteogenic, perivascular, and hematopoietic stem cell niches). This
allows colonizing cells to take advantage of numerous adhesion molecules, matrix proteins, and soluble factors
that facilitate homing, survival, and, eventually, metastatic outgrowth. However, in most cases, metastatic lesions
enter into a latency state that can last months, years, or even decades, before forming a clinically detectable
macrometastasis. This dormant state challenges the effectiveness of adjuvant chemotherapy. Detecting which
tumors are more prone to metastasize to bone and developing new specific therapies that target bone metastasis
represent urgent clinical needs. Here, we review the biological mechanisms of BCa bone metastasis and provide the
latest options of treatments and predictive markers that are currently in clinical use or are being tested in clinical
assays.
© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Breast cancer (BCa) comprises multiple diseases with a
complex mutational landscape; currently, 22 morpho-
logical variants are recognized [1]. For clinical man-
agement, these can be divided into breast cancers that
express (or not) estrogen receptor (ER), progesterone
receptor (PR), and/or human epidermal growth factor
receptor 2 (HER2; also termed ERBB2). However, clas-
sification based on these markers’ expression is not
‘fixed’ and can change between primary and metastatic
BCa. Molecular and gene expression profiles can fur-
ther classify BCa into four different intrinsic subtypes,
which have biological and clinically different outcomes:
luminal A, luminal B, HER2-enriched (HER2+), and
basal-like (note, though, that the luminal A and B cat-
egories are not highly robust and may overlap when it
comes to single-sample predictors) [2]. Understanding

these molecular distinctions is necessary for understand-
ing (1) how misfunction of these pathways leads to BCa,
and (2) how to effectively target these pathways for
therapeutic treatments. Currently, blocking ER signal-
ing with tamoxifen or aromatase inhibitors and HER2
signaling with trastuzumab represents the main targeted
therapy for ER+ and HER2+ BCa patients, respectively.

Mammary glands comprise basal cells and luminal
cells (LCs) (which are ER+ or ER−), among other
lineages. Whereas the origin of basal-like BCa is still
unclear, the current hypothesis sustains that either bipo-
tent progenitors or luminal progenitors give rise to both
luminal and basal-like cancers. Molecularly, estrogen
interacts with ERα, and the resulting dimer then binds
estrogen-responsive elements, thereby recruiting tran-
scription co-factors, inducing transcription and resulting
in breast epithelial cell division. Another major player
is HER2. HER2 gene amplification and oncogenic
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mutations constitutively activate the HER2 homod-
imeric tyrosine kinase activity and reduce the growth
factor dependence of HER2-amplified cells, through
prolonged stimulation of the AKT/mitogen-activated
protein kinase pathway. HER2 amplification increases
hypersensibility to the EGF family and contributes
significantly to tumor progression. Although phar-
macological inhibition of HER2 using a monoclonal
antibody (trastuzumab) can effectively treat HER2+

BCa [3], patients with recurrence are usually refractory
to treatment and most will die from the disease [4,5]. Of
the different subtypes, the ER− HER2+ subtype clearly
correlates with a more aggressive disease [6,7].

The diversity of BCa metastasis

Metastasis is the major cause of death in BCa patients
and usually manifests asynchronously with the primary
tumor, with variable timing to clinical detection. This
lag depends on the volume, stage, and molecular sub-
type of the primary tumor [8]. Luminal tumors (which
are usually ER+) may recur after a long period, named
latency, marked by the absence of clinical symptoms.
The mechanisms enabling BCa cells to exit from latency
and to genetically evolve towards overt metastasis are
only poorly understood [9]. Metastasis of ER+ BCa
tumors is usually slow, suggesting that BCa cells must
accumulate metastatic traits under the selective pressure
of organ microenvironments [8,10]. Different BCa types
show distinct metastatic organ tropism. Unfortunately,
however, the systematic use of therapies targeting spe-
cific molecular pathways can also change the course and
tissue specificity of metastasis in some BCa subtypes;
for instance, metastastis can occur later and specifically
in the brain in HER2+ BCa patients post-therapy [8,10].

Metastatic lesions from disseminated tumor cells
(DTCs), or micrometastases after a period of latency,
retain most molecular alterations (80–85%) initially
described at the primary site [11]. In contrast (and
as mentioned above), the intrinsic molecular subtype
of BCa can change during metastatic progression. For
instance, luminal A/HER2− tumors can acquire a lumi-
nal B or HER2+ profile; this switch can be observed by
immunohistochemistry (IHC) as well as molecular pro-
filing [11–13]. Thus, important but subtle loss of molec-
ular differentiation changes can arise during metastatic
progression, and dormancy may be an endowed state
[14]. For example, marked BCa luminal differentiation
prevents metastatic progression [15]. It remains unclear
whether the heterogeneity of luminal-derived tumors
and metastasis post-treatment arises from a pre-existing
heterogeneity within luminal cells. While these molec-
ular changes may reflect tumor evolution, it is unclear
whether they are passenger differentiation changes or if
they have functional consequences on latency and overt
metastasis. Moreover, the origin of the genetic changes
necessary for tumor evolution and metastasis is an open
question.

Metastatic progression relies on specific bio-
logical steps that need to be targeted to improve
current therapeutic strategies. Chemotherapy tar-
gets high-proliferating tumor cells rather than the
low-proliferating metastastic tumor cells, which can
then spread from the primary tumor to distant sites,
where they resist conventional treatments, proliferate,
and cause vital organ failure [16]. Strikingly, different
BCa types show distinct metastatic organ tropism, and
acquisition of metastasis may vary from one tumor type
to another [17]. Simplifying metastasis into an orderly
sequence of basic steps – local invasion, intravasation,
survival in circulation, extravasation, and coloniza-
tion – has helped to rationalize the complex set of
biological properties required for metastatic disease
[18]. However, the steps of the kinetics and mechanisms
that regulate tissue-specific metastasis remain poorly
understood [16,19]. Cancer cells must orchestrate
diverse cellular functions to overcome the difficulties
of transiting the metastatic cascade; these functions
are limited to cell-autonomous traits and are highly
dependent on the interactions between the metastatic
cell and the tumor and host stroma [19]. Several func-
tions can be required to implement a single step, or
a single function may influence multiple steps. This
speciation is reflected by the distinct kinetics of cancer
relapse to different sites in the same patient, and by
the co-existence of malignant cells that differ in organ
tropism in patient-derived samples.

Physiological function of bone

Bone is among the pre-eminent organs targeted
by metastatic cells. In prostate and breast cancers,
over 65–70% of patients with advanced disease develop
skeletal metastasis [20]. In BCa, ER+ tumors are more
prone to metastasize into bone, while ER− tumors tend
to go to visceral organs (e.g. lungs, liver, or brain) [21],
indicating that tumor cell-intrinsic characteristics and
the primary tumor microenviroment influence bone
metastasis.

Bone is a dynamic organ that is remodeling continu-
ously by the coordinated activity of specific cells. Nor-
mal homeostasis balances the functions of osteoblasts
(bone matrix formation and mineralization) and osteo-
clasts (bone resorption) [22,23]. Osteoblasts secrete the
receptor activator of nuclear factor-κB ligand (RANKL)
and macrophage colony-stimulating factor (M-CSF),
which activate osteoclasts that acidify the media and
secrete collagenases and other proteases that demineral-
ize the bone matrix [24–26]. These spaces are filled by
osteoblasts, which replenish the bone matrix [27]. When
embedded in the matrix, osteoblasts differentiate into
osteocytes that further control bone remodeling [28].
The bone microenvironment also comprises hematopoi-
etic, immune, endothelial cells, and adipocytes.

In normal homeostasis, the balance sustaining this
dynamic structure is governed by systemic estrogen
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in females pre-menopause and by paracrine factors
post-menopause. ERα and ERβ are highly expressed
in both osteoblasts and osteoclast lineages and are
thought to be pivotal in bone cell differentiation [29];
post-menopause, paracrine bone morphogens and
activins take over [30]. Further, ERα expression is high
in pre-osteoblasts and pre-osteoclasts but low in mature
populations, suggesting that the stimulus is relevant for
differentiation purposes but not for established mature
functions. Osteocytes can undergo senescence (due to
aging, reduced physical activity, or other factors), lead-
ing to osteoporosis. Although ERα and ERβ receptors
are structurally similar, they have different functions
[31]. ERα knockout mice exhibit reproductive organ
alterations and shorter longitudinal bone growth [32],
while ERβ knockout mice have longer bone growth and
alterations in trabecular bone formation [33]. Double
ERα/β knockout mice have intermediate bone size,
implying that the ER receptors have compensatory
effects. Some of these effects have been attributed to the
ability of estrogen to trigger osteoblast division from
periosteal bone.

Factors involved in bone remodeling and homeostasis
are also associated with mammary gland forma-
tion and BCa progression. RANK/RANKL signaling
(responsible for osteoclast differentiation) accounts
for lobuloalveolar development during pregnancy [34].
Overexpression of RANK stimulates epithelial cell
proliferation, causes reduced apoptosis, and compro-
mises differentiation [34,35]. Physiologically, RANKL
expression peaks during pregnancy to expand the
mammary stem cell compartment and its blockade
reduces pregnancy-dependent tumorigenesis in mouse
models. RANKL sequestration reduces tumor growth in
BRCA1-deficient mice [36]. Similarly, RUNX2 (a cen-
tral regulator of osteogenesis) contributes to mammary
gland alveologenesis [37].

Bone metastasis: from seeding to overt
metastatic colonization

Bone metastasis homing
The discontinuous endothelium of bone makes this
organ especially permissive to DTCs, and bone main-
tenance and cell growth are critical steps supporting
bone metastasis [38]. The osteogenic niche plays a piv-
otal role in supporting survival and latency, but also
promotes bone colonization by DTCs. DTC homing to
bone is controlled by the specific microenvironment,
chemokines, and adhesion molecules expressed both in
DTCs and in bone tissue. For instance, C-X-C motif
chemokine receptor 4 (CXCR4) is expressed at the DTC
surface, whereas its ligand, CXCL12, is expressed in
mesenchymal cells or pericytes inside bone [39]. Inter-
estingly, CXCR4 belongs to the gene signature pre-
dicting BCa metastasis to bone [40]. Moreover, recent
work postulated that HIF signaling in osteoprogeni-
tor cells increases blood levels of CXCL-12, favoring

bone metastasis [41]. Inhibition of CXCR4 interactions
between cancer cells and bone stroma may increase the
effect of standard chemotherapy in prostate cancer [42].
Tumor cells also express different combinations of inte-
grins that interact with molecules expressed in bone,
such as bone sialoprotein (BSP), fibronectin, osteopon-
tin (OPN), or VCAM1 [43–48]. The heterotypic adher-
ent junctions between E-cadherin and N-cadherin are
important for early-stage bone colonization [49]. More-
over, RANK-expressing cells can be attracted to oste-
olytic areas in which high levels of RANKL are pro-
duced, favoring cancer cell migration and bone metas-
tasis [50] (Figure 1).

Metastasis latency
Although bone marrow hosts residual disease of multi-
ple cancer types, the majority of these DTCs will never
develop metastasis [51]. Micrometastases and/or DTCs
in the bone marrow have the capacity to maintain them-
selves at low numbers after primary tumor resection,
which is critical for tumor latency and may explain
how the disease can resist treatment and reappear after
long asymptomatic periods (of up to decades). This
state of dormancy is characterized by an arrest in tumor
growth, during which DTCs are not adapted to the bone
microenvironment, thus avoiding disease progression.
Several mechanisms have been proposed to maintain the
state of dormancy of DTCs or micrometastasis, includ-
ing cell autonomous mechanisms and angiogenic and
immunological processes. DTCs enter quiescence either
by the actions of stromal signals [52], such as hypoxia
[53], with TGFβ and BMP as inhibitors of DTC growth
[54–56], or by preventing WNT-mediated niche support
for cell proliferation as part of normal tissue homeosta-
sis [57]. Inhibition of the PI3K–AKT signaling pathway
is characteristic of a dormant phenotype in DTCs iso-
lated from BCa patients. Under nutritional stress, cancer
cells inhibit PI3K signaling, inducing quiescence and
cell autophagy [58,59]. Stress signals stemming from
the microenvironment have been proposed to induce
dormancy by modulating the ratio of ERK and p38
MAPKs in DTCs [51]. In particular, TGFβ2 produced
in bone marrow controls tumor dormancy by increasing
p38 MAPK activity [54]. However, several clinical trials
have revealed that the presence of circulating tumor cells
(CTCs) in blood has prognostic relevance with respect
to metastasis progression [60]. This observation sug-
gests that solitary cell dormancy or quiescence is not
a unique feature of latent metastatic lesions, and that a
combination of proliferative and apoptotic activities is
required to sustain the release of CTCs. For instance,
the kinase MSK1 (RPS6KA5), a downstream effector of
p38, regulates tumor metastatic latency: reduced MSK1
levels impair cellular differentiation and increase the
bone homing capacity of metastatic cells through loss
of histone acetylation at promoters that regulate the
expression of luminal differentiation genes (including
those for the GATA3 transcription factor, which prevent
the progression of ER+ BCa towards metastasis) [61]
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Figure 1. Interactions supporting breast cancer cell bone homing. Tumor cells use a wide repertoire of molecules to facilitate the first steps
of bone colonization. These include CXCR4 interactions with CXCL12; different combinations of integrins (e.g. αvβ3, α5β3, αvβ5, α4β1) that
bind to BSP, fibronectin, OPN, and VCAM1; association between RANK and RANKL; and interactions of different adhesion molecules such
as E-cadherin and N-cadherin.

(Figure 2). Whether MSK1-related chromatin remodel-
ing affects other processes relevant in dormancy, such as
angiogenesis and immune surveillance, is still unknown.

Micrometastatic lesions secrete angiogenic factors,
including vascular endothelial growth factor (VEGF),
which attracts endothelial progenitor cells and facili-
tates metastasis outgrowth. However, inhibitory signals
from perivascular niches, such as thrombospondin 1
(TSP1) secretion, maintain tumor cells in a dormant
state by inhibiting angiogenesis [62]. Another mech-
anism that is critical for controlling dormancy is the
actions of the immune system, with cytotoxic T cells
and natural killer (NK) cells as two pivotal players
(Figure 2). Bone marrow aspirates from BCa patients
with DTCs present higher proportions of CD8+ and
CD4+ T cells, macrophages, and NK cells than those
from BCa patients without DTCs or from healthy donors
[63]. Depletion or pharmacologic inhibition of these cell
populations promotes metastasis in mice [57,64,65].

Bone metastastic outgrowth
Obtaining the capacity to initiate macrometastatic
growth at a secondary site can be stochastic and depend
on newly established interactions between DTCs and the
target microenvironment, such as VCAM-1 expression
by DTCs and its local effect on osteoclast activation
[66]. Alternatively, this capacity can already be encoded
in the arriving DTCs, e.g. by attenuating the signaling
cascades emanating from the environment cues or by
allowing DTCs to bypass the natural immune response

[57]. Cancer cells develop in a co-evolving microen-
vironment that suppresses immune surveillance. As
support is not immediately available to DTCs, most
of these cells die. NK cell activity is suppressed in
patients with advanced metastatic disease, and is tightly
regulated by stimulatory and inhibitory signals from a
panel of NK cell receptors (NKRs) expressed at the cell
surface. The activation or inhibition of NK and T cells is
regulated by proteins that are expressed on the surface
of tumor cells, including class I HLA and programmed
death ligand-1 (PDL-1), whose relevance has already
been demonstrated in clinics [67,68].

Thus, control of dormant cell reactivation is a com-
plex process that is still not fully understood which com-
bines cell autonomous (intrinsic) mechanisms favor-
ing metastasis-initiating capacity with non-tumor cell
(extrinsic) processes, involving angiogenic, hematopoi-
etic stem cell (HSC), and osteogenic niches, to produce
overt metastatic colonization. The factors that provide
new genetic or epigenetic changes favoring exit of dor-
mancy are not fully known, although chromosome insta-
bility may play an important role [69,70].

Growth of metastatic lesions generally implies
aberrant bone remodeling activities, which eventually
account for the skeletal-related events [71]. At clin-
ical presentation, bone metastasis is associated with
increased levels of calcium and alkaline phosphate,
and with pain. In overt bone metastatic colonization,
cancer cells modify the bone microenvironment to
activate osteoclasts and suppress bone formation.
This is achieved by paracrine crosstalk among cancer
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Figure 2. Breast cancer metastasis dormancy. Maintenance of the latent state of DTCs involves both cell autonomous mechanisms and
interactions with other components of bone and tumoral stroma. The variety of signals that are relevant to control this state reveals that
tumor dormancy is a complex feature that likely involves not only solitary cell dormancy but also tumor mass dormancy, thereby balancing
mitotic and apoptotic events. The innate and adaptive immune systems play a key role in controlling latency. In this setting, inhibition of
autocrine Wnt signaling promotes immune evasion and a slow cycling state of the tumor cells. Inhibition of the angiogenic switch also
provides an important checkpoint of the dormant state. Numerous cell signaling pathways (including those with MAPKs and PI3K) that
respond to exogenous factors (such as hypoxia, TGFβ2, and BMP) mediate a cell response that results in latency maintenance with cell cycle
arrest or cell differentiation.

cells, osteoblasts, osteoclasts, and the bone matrix.
Cancer cells secrete osteolytic factors that activate
bone-resorbing osteoclasts. To activate osteoblasts,
metastatic cells produce cytokines and growth factors,
including parathyroid hormone-like protein (PTHrP),
interleukin (IL)-11, IL-6, IL-8, VEGF, and tumor
necrosis factor (TNF-α) (reviewed in refs 72 and 73).
As a result, osteoblasts release soluble RANKL and
inactivate its antagonist osteoprotegerin (OPG). The
ratio of RANKL to OPG is critical for osteoclast acti-
vation, as OPG prevents RANKL from binding to its
receptor RANK, located at osteoclasts’ membrane.
Once activated upon ligand binding, the multinucleated
osteoclasts attach to the bone surface and release acid
and proteolytic enzymes, such as cathepsin K and matrix
metalloproteinases (MMPs), to resorb the bone matrix
(Figure 3). Osteolysis releases growth factors stored in
the matrix, including TGFβ, insulin-like growth factors
(IGFs), and BMPs, as well as calcium ions, into the
bone microenvironment. In addition to tumor growth
enhancement, TGFβ activates both Smad-dependent
and Smad-independent signaling pathways to induce
PTHrP [74,75] in metastatic cells. Therefore, tumor
growth is stimulated, leading to the production of addi-
tional osteolytic and osteoblastic factors and resulting
in a vicious cycle of bone metastasis. In addition, bone
resorption can be promoted by the Notch signaling path-
way, which results in IL-6 secretion upon binding of
tumor-derived JAGGED-1 (JAG-1) to osteoblasts [76]

(Figure 3). Strikingly, chemotherapy-induced JAG-1
expression in osteoblasts creates a pro-survival niche
for DTCs and early lesions. Recent pre-clinical data
using antibodies against JAG-1 targeting individual
Notch receptor signaling activities in combination
with chemotherapy in pre-clinical models suggest the
potential of eliminating these cells [77].

Bone metastasis therapeutic options

The majority of breast cancers are ERα-positive [78].
Hormone therapy inhibits ERα activity and improves
patients’ overall survival [79]. Unfortunately, resis-
tance often occurs and patients eventually relapse.
Activating mutations in the ESR1 gene are common
particularly in the advanced metastatic setting, with
those that occur upon selective pressure of aromatase
inhibition especially observed in bone metastasis,
implying a potentially causal role [80,81]. Two main
categories of drugs are used routinely in clinical practice
to reduce bone metastasis morbidity, in combination
with standard therapy for advanced breast cancer (hor-
mone therapy alone or in combination with CDK4/6
inhibitors, or chemotherapy). These classes of drugs,
namely bisphosphonates (zoledronic acid, ibandronate,
palmidronate, clodronate) and anti-RANKL antibody
(denosumab), modify the bone microenvironment
and effectively control bone metastasis-associated
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Figure 3. Bone metastasis outgrowth. Awakening dormant tumor cells within bone and secretion of chemokines and other factors, including
PTHrP, IL-11, IL-6, IL-8, VEGF, and TNF-α, leads to osteoblast activation. Release of RANKL by osteoblasts contributes to osteoclast
differentiation, which in turn produces proteolytic enzymes that degrade the bone matrix. Release of growth factors (e.g. TGFβ, IGFs,
and BMPs) promotes tumor growth and stimulates the production of chemokines by breast cancer cells, thus involving a vicious cycle.
Therapeutic approaches targeting BCa bone metastatic cells are based on the use of hormone therapy, chemotherapy, CDK4/6 inhibitors,
and radiotherapy, together with bone remodeling-related drugs (e.g. denosumab and bisphosphonates). Use of these agents in the adjuvant
setting is still not included in the clinics.

skeletal-related events [20,82] (Figure 3). These com-
pounds do not target cancer cell autonomous functions
but rather the bone stroma. However, some studies
suggest that bisphosphonates may also have a direct
effect on the growth of tumor cells and angiogenesis
[83]. Alternatively, inhibition of cathepsin K, a cysteine
protease expressed in active osteoclasts, is as effective
as zoledronic treatment [84], while sclerostin, secreted
by osteocytes to inhibit bone formation, has also been
postulated to be targeted in bone metastatic patients
[85]. However, targeting these molecules by specific
antibodies increases the risk of severe secondary effects,
thus discarding their use in a clinical setting. Radio-
pharmaceuticals, including radium-223, or inhibition of
recepteur d’origine nantais (RON), a tyrosine kinase that
induces bone destruction independently of RANKL,
are currently being tested in clinical trials with bone
metastatic patients [85,86] and may improve patient out-
come with advanced metastasis. Similarly, the approval
of everolimus in combination with exametasane for
patients with advanced ER+ BCa metastasis ameliorates
symptoms. Bone metastasis treatments benefit from a
multidisciplinary approach to control the expansion of
the disease; unfortunately, patients with bone metastasis
still suffer skeletal-related events, reducing quality

of life and survival. While combining these systemic
treatments with loco-regional approaches (e.g. radiation
therapy and orthopedic surgery) can improve patient
management to a degree [87], there is a significant
unmet need for identifying cures for bone metastasis.

Biomarkers to predict relapse and response
to bone-modifying agents in the adjuvant setting
in BCa

BCa molecular profiling
With the advent of gene expression profiling, bioinfor-
matic classification of breast tumors into ‘molecular
subtypes’ is progressively being implemented into
the clinic. Each molecular subtype is associated with a
certain risk of relapse. Complementary efforts have
also provided ‘poor-prognosis’ gene-expression ‘sig-
natures’, of which several have been turned into
commercial assays that are used to spare low-risk
patients from aggressive chemotherapy treatment
(i.e. Oncotype Dx, Mamaprint, EndoPredict, Mam-
mostrat, or Prosigna tests) [88,89]. Unfortunately,
the majority of these tools are only appropriate for a
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subgroup of patients with particular clinical features.
Nonetheless, these tumor taxonomy tools are based
on gene-expression events as markers and do not pro-
vide information about the molecular mediators of
tumor progression or metastasis for each BCa sub-
type. Albeit of large clinical utility, these tools do not
support the guidance of metastasis-specific treatments
beyond standard chemotherapeutic agents targeting cell
division.

Bone metastasis preventive treatments
Preventing metastasis in high-risk patients would
be far better than having to treat it. Bone
microenvironment-modifying agents (such as bisphos-
phonates or the anti-RANK ligand antibody denosumab)
have the theoretical potential to prevent bone metastasis,
although data from clinical trials are as yet inconclusive
in unselected patient populations [90,91]. Intravital
multiphoton microscopy in mice now provides access to
cellular and molecular mechanisms of bone metastasis.
Specifically, miniaturized tissue-engineered bone con-
structs have been used in nude mice with a skin window
to non-invasively and repetitively monitor prostate
cancer lesions in three dimensions [92]. After growing
tumors inside these bone cavities and inducing niches
of osteoclast activation, interventional bisphosphonate
therapy reduced osteoclast kinetics and osteolysis, but
unexpectedly did not perturb tumor growth [92]. This
report probes dissociation of the tumor–stroma axis
from the tumor growth dynamics and highlights the need
to therapeutically target both processes at the same time.
Registration trials comparing adjuvant bisphosphonates
(clodronate, ibandronate, palmidronate, or zoledronate)
to placebo for women (both pre-menopausal and
post-menopausal) with different stages of BCa have
not confirmed clinical utility. To investigate the avail-
able evidence in a more robust and precise manner,
the Early Breast Cancer Trials Collaborative Group
(EBCTCG) conducted a formal individual patient data
meta-analysis of data from 18 766 women involved
in 26 randomized trials of adjuvant bisphosphonates
for early breast cancer. Strikingly, in post-menopausal
women (n= 11 767), bisphosphonates reduced not only
recurrence in bone but also overall BCa recurrence
and mortality, leading to recommendation for use in
clinical practice [93–95]. These reductions were similar
irrespective of ER status or grade of the primary tumor,
axillary lymph node involvement, and use/non-use
of chemotherapy, suggesting that menopause status
should be the main criterion for patient selection for
adjuvant bisphosphonates in prevention of metastases.
How these tumor populations become sensitive to the
treatment, and which are the contextual determinants
that switch the drug response, is unclear. This can be
partially explained by the fact that ER induces apoptosis
in osteoclasts [96], therefore inhibiting bone resorp-
tion. This indicates that estrogen and bisphosphonates
may act in redundant ways, suggesting that bispho-
sphonates are only effective in low-estrogen patients

(ovariectomized or post-menopausal patients) [96,97].
Importantly, whether there are benefits for any subpopu-
lations of pre-menopausal BCa patients, for whom there
are limited treatment options, remains to be addressed.
Notably, the overall trials did not show any trend for
outcome improvement, despite the potential benefits for
post-menopausal women. Thus, there is a high unmet
medical need for a diagnostic tool to aid in identifying
a patient population with a positive benefit–risk ratio
for adjuvant bisphosphonates treatment (and as an
extension, for denosumab), which could have immedi-
ate clinical application [20,98]. Moreover, developing
new strategies to evaluate the bone resorptive activity
of bisphosphonates and the subjacent mechanism in
pre-clinical models is critical for better understanding
their therapeutic potential [92,99].

Bone turnover biomarkers
To correlate bone turnover with clinical outcome (e.g.
for patients undergoing bone-modifying therapies),
several retrospective analyses have been investigated
in various tumor types. These included serum BALP
and serum or urine NTX levels, which are associated
with risk reduction for death and pathological frac-
tures upon treatment with bisphosphonates [100–105].
Patients with high serum levels of P1NP, CTX, and
1-CTP shortly after diagnosis were shown to be at
high risk of bone metastasis during the course of the
disease [106], confirming previous indications in breast
and lung cancers. This latter evidence came from a
retrospective analysis of serum from a subset of patients
from a large phase III trial, the AZURE trial [107].
Interestingly, the presence of these markers reflects the
same metabolic processes, and points towards bone
turnover independently of the menopause status as
a means to support bone dissemination. Changes in
this bone microenvironment may provide the adequate
niche for BCa cell homing and development of skeletal
metastasis. These markers are specific for bone recur-
rence but not distant recurrence and, although with
low-to-moderate bone prognostic potential (Harrell’s
c-index 0.57), were not predictive for zoledronate in
adjuvant treatment response [106] (Table 1). The extent
to which these factors predict response to the inclusion
of bone-modifying drugs in the adjuvant regime is
unclear and requires more analyses. The molecular
explanation is also unknown, although a confounding
effect by the intrinsic nature of the anti-resorptive agent
or the hormone treatments can be anticipated. Inter-
estingly, some of these biomarkers hold promise as a
surrogate for treatment efficacy rather than a biomarker
for initial treatment decision-making [104].

Bone metastasis prognostic biomarkers
To overcome the limitations of bone turnover biomark-
ers, several endeavors have been taken to support
early identification of patients at risk of skeletal
metastasis who could adopt personalized adjuvant
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Table 1. Bone metastasis markers in breast cancer

Protein Predictive marker
Potential marker to include
adjuvant bisphosphonates Detection References

BALP High SRE No Serum [100–105]
NTX High SRE No Serum/urine [100–105]
P1NP Bone-specific recurrence No Serum [106]
CTX Bone-specific recurrence No Serum/urine [106]
1-CTP Bone-specific recurrence No Serum [106]
IL-1b Bone-specific recurrence … IHC [108,109]
CAPG/GIPC1 Bone-specific recurrence Yes IHC [110–114]
PRLR Bone-specific recurrence … IHC [115]
BSP Bone-specific recurrence … IHC/serum [116]
PRDX4 Metastasis … mRNA [117]
PAK4 Bone-specific recurrence (ER+) … IHC [118]
MAF Bone-specific recurrence/extra-skeletal recurrence * Yes FISH [119–121]
DOCK4 Bone-specific recurrence Yes IHC [122]

BALP, bone alkaline phosphatase; NTX, N-telopeptide of type I collagen; P1NP, N-terminal propeptide of procollagen type 1; CTX, C-telopeptide of type I
collagen; 1-CTP, pyridinoline crosslinked carboxy-terminal telopeptide of type-1 collagen; IL-1b, interleukin 1 beta; CAPG, macrophage-capping protein; GIPC1,
PDZ domain-containing protein GIPC1; PRLR, prolactin receptor; BSP, bone sialoprotein; PRDX4, peroxiredoxin-4; PAK4, p21-activated kinase 4; MAF, V-Maf avian
musculoaponeurotic fibrosarcoma oncogene homolog; DOCK4, dedicator of cytokinesis protein 4; FISH, fluorescence in situ hybridization; SRE, skeletal-related event;
IHC, immunohistochemistry.
*Upon zoledronic treatment in non-post-menopausal patients.

treatments, using biologically-driven unbiased dis-
covery approaches. Several potential markers of bone
metastasis, and their potential clinical implications,
have been described. Experimental xenograft mouse
models were developed to derive and select BCa cells
prone to causing bone metastasis based on ER+ MCF7
cells or ER− MDA-MB-231 BCa cells. Cell xenografts
were chosen as they have the potential to cause bone
metastasis in only a fraction of mice, making their use
tailored for metastatic enrichment [40,66,123,124].
These mice were subjected to gene expression, miRNA,
or proteomics analysis to provide relevant candidates.
In a bone-homing clone of MDA-MB-231 cells, IL-1β
was selectively up-regulated as compared to the initial
non-specific population and was significantly correlated
with bone metastasis development in 150 BCa primary
tumors [108] (Table 1 and Figure 3). Interestingly,
inhibitors of IL-1β prevent bone events in pre-clinical
experimental mouse models [109]; no molecular expla-
nations are currently available. Using the bone-homing
variant of MDA-MB-231 cells, DOCK4 was identified
as a biomarker of bone metastasis in early BCa; this
finding was clinically validated using the control group
of the AZURE trial [122].

Several molecules, including peroxiredoxin-4
(PRDX4) and L-plastin, have been postulated as
osteoclastogenesis mediators that facilitate bone metas-
tasis through cancer-derived exosomes [117,125].
The PAK4–ERα axis mediates bone metastasis by
targeting leukemia inhibitory factor receptor (LIFR)
in ER+ BCa [118] (Table 1). Non-coding microRNAs
(miRNAs) have also been investigated. Although the
expression of several miRNAs (miR-10b, miR-373,
miR520c, miR206, miR-126, and miR-335) is associ-
ated with metastatic capabilities such as invasiveness
and migration [126–128], only a few have been
specifically associated with bone metastasis: (1)
miR-218 controls osteoblast differentiation and can-
cer cells’ osteomimicry [129] and regulates collagen

deposition by osteoblasts [130]; (2) miR-214-3p levels
are increased in BCa primary tumors with osteolytic
bone metastasis [128]; and (3) miR-124 inhibits bone
metastasis by repressing IL-11 [131]. Although biolog-
ically interesting, these observations lack confirmation
in large clinical trial sample sets.

Predictive biomarkers for bone metastasis
preventive treatment
Metastatic speciation driven by a Darwinian selection
process in mice identified CAPG and GIPC1 proteom-
ically as significantly associated in a bivariate analysis
with development of bone metastasis (Figure 3); the
combination of these in primary tumor samples (iden-
tified by immunohistochemistry) was the strongest
prognostic indicator [110]. In patients with high expres-
sion of both CAPG and GIPC1, the inclusion of
adjuvant zoledronate reduced distant recurrence in bone
(by 90%) compared with standard care; no differences
were observed upon the inclusion of adjuvant bisphos-
phonate for patients with low expression of both [110].
Critically, however, both proteins have been associated
with increased metastatic potential and poor outcome in
some cancers [111–113]. A deeper understanding about
the biology of CAPG beyond its regulation of cyto-
plasmatic and nuclear structures [114], and of GIPC1
at the peripheral membrane, is necessary to understand
bone-specific features. For instance, is modulation
of AKT/MDM2 and p53 axis downstream of GIPC1
signaling [114] bone-specific? What is their association
with systemic estrogen levels and the menopause status?

Through a similar unbiased experimental approach,
MAF (encoded from a gene within the 16q23 genomic
gain) was shown to drive the molecular processes of
bone colonization in ER+ BCa cells (Figure 3). Asso-
ciation of 16q23 gain and relapse was retrospectively
validated in a prospective randomized control arm of the
AZURE clinical trial [119,120]. In particular, the 16q23
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amplicon, which leads to high MAF levels, was found
to be a prognostic factor for poor invasive disease-free
survival (IDFS) in post-menopausal patients (Table 1).
MAF is a transcription factor that regulates the expres-
sion of genes that collectively may support several
steps of BCa cell metastasis, particularly to bone,
through a series of cell-autonomous and niche-related
functions [121]. These results imply that MAF tran-
scriptionally controls functions required for bone
metastasis – mainly adhesion to bone marrow-derived
cells and osteoclast differentiation [121]. Collectively,
these observations point to MAF as a molecular target
for the prevention or treatment of bone metastasis, as
MAF accumulation (16q23 gain) has a hierarchical
role in bone colonization. Unexpectedly, the subgroup
of AZURE patients with MAF− tumors (according to
MAF-test FISH; 79% of total patients) had a reduced
risk of invasive disease progression [HRIDFS = 0.75
(0.58–0.97)] and increased overall survival (OS)
[HROS = 0.69 (0.50–0.94)] after adjuvant treatment
with zoledronate, irrespective of menopause status
[120]. In contrast, the patient subgroups with MAF+

tumors (and especially non-post-menopausal patients)
developed visceral metastases, with significantly worse
IDFS and OS, after adjuvant zoledronate treatment
compared with those untreated [119].

As a nuclear protein with no enzymatic activity and
an intrinsically disordered structure, MAF may be an
extremely difficult therapeutic target. However, MAF
downstream targets have the potential to become thera-
peutically actionable. Thus, several questions remained:
(1) Are MAF downstream target gene products causal
drivers of bone metastasis? (2) Are gene products tran-
scriptionally controlled by MAF actionable? And (3)
does targeting the aforementioned gene products prevent
or reduce bone metastasis in vivo?

The MAF ‘biomarker’ explains for the first time (1)
the association of anti-resorptive bone agents in the
adjuvant setting and outcome, (2) benefits observed in
post-menopausal patients, (3) the apparent lack of effect
when considering all patients together in the AZURE
trial outcome analyses, and (4) the very significant and
unexpected adverse effects of zoledronate in MAF+

non-post-menopausal patients observed clinically.
Remarkably, 79% of BCa patients who are MAF−

benefit from zoledronate, including those who are
pre-menopausal. At the molecular level, further studies
are needed to confirm these observations, which could
drastically change the standard of care. It is tantalizing
to speculate that in the very aggressive MAF+ tumors,
bone nesting is restrained, yet cells are capable of nest-
ing elsewhere, translating into increased extra-skeletal
metastasis and poor clinical outcome [119].

Concluding remarks

Multidisciplinary approaches have been shown supe-
rior to control the expansion of bone metastasis;

unfortunately, patients still suffer skeletal-related
events, reducing quality of life and survival. Thus,
there is an unmet need for identifying new treatments
for patients who have already succumbed to advance
disease. Remarkably, to increase the OS of patients
with cancer, preventing metastasis is a more logical
therapeutic strategy than managing advanced metastatic
disease. Unfortunately, many patients are still at risk
of relapse despite the significant improvements in
surgical and systemic therapeutic approaches. Newer
bone anti-resorptive treatment biomarkers could sup-
port treatments that prevent metastasis, by preventing
expansion of DTCs at the distant site. Importantly,
reports highlight that the use of specific biomarkers
positively impacts OS when combined with adjuvant
bisphosphonate treatment to prevent bone metastasis,
pioneering a path to improve patient management.
Careful patient selection for groups to be treated with
bone resorptive therapies in the adjuvant setting will
be critical, as trials in unselected populations failed to
report benefits. Ideally, confirmation of these findings in
an independent trial is needed. The capacity to predict
the treatment response of these biomarkers might also
be extended to other bone-modifying and targeted
agents (i.e. anti-RANKL, anti-JAGGED, or Rad223
approaches). Mechanistically, systematic analyses are
needed to better understand (1) the degree of overlap
between the reported different biological findings, and
(2) to what extent they are common with other tumor
types that colonize bone. Further, different biomarkers
may be interrelated within the same pathways or func-
tional groups. The period with asymptomatic residual
disease reflects the capacity of DTCs or micrometas-
tases to endure long periods after tumor resection at
very low numbers. Understanding the molecular basis
responsible for DTC latency is required in order to
deliver effective drugs that target core bone metastasis
and not only the stroma. In the future, continuous
efforts for identifying cancer patients at risk of distant
metastasis are critical for defining new strategies of
preventing secondary events.
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