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Abstract

Background: Obstructive sleep apnea is associated with increased lung cancer inci-
dence and mortality. Cancer stem cells (CSCs) are characterized by their self-renewing
ability, which contributes to metastasis, recurrence, and drug resistance. ATPase family
AAA domain-containing protein 2 (ATAD2) induces malignancy in different types of
tumors. However, a correlation between ATAD2 expression and CSCs in lung cancer has
not yet been reported.

Methods: The relative messenger RNA (mRNA) levels of ATAD2, CD44, CD133, and
hypoxia-inducible factor (HIF)-1a were determined using reverse-transcription quanti-
tative polymerase chain reaction. ATAD2 protein levels were determined using Western
blotting. Cell counting kit-8, 5-ethynyl-2’-deoxyuridine (EdU), and colony formation
assays were performed to analyze the proliferation of lung cancer cells. Transwell
migration and invasion assays were performed to evaluate cell migration and invasion,
respectively. Tumor sphere formation analysis was used to determine tumor spheroid
capacity. The link between ATAD2 and HIF-1a was verified using a dual-luciferase
reporter assay. Immunofluorescence staining was performed to assess mitochondrial
reactive oxygen species (mtROS) production. Flow cytometry analysis was conducted
to determine the CD133 and CD44 positive cell ratio.

Results: We evaluated the relative expression of ATAD2 in four lung cancer cell lines
(A549, SPC-A1, H460, and H1299 cells) and found increased mRNA and protein levels of
ATAD2 in lung cancer samples. ATAD2 overexpression was a poor prognostic factor for
lung cancer patients. Loss of ATAD2 reduced lung cancer cell viability and proliferation.
Additionally, ATAD2 knockdown repressed lung cancer cell migration, invasion, stem-
cell-like properties, and mtROS production. Chronic intermittent hypoxia (CIH)-induced
HIF-1a expression significantly activated ATAD2 during lung cancer progression.

Conclusions: This study found that CIH induced HIF-1a expression, which acts as a
transcriptional activator of ATAD2. The present study also suggests a novel mechanism
by which the integrity of CIH-triggered HIF-1a/ATAD2 may determine lung cancer
aggressiveness via the interplay of mtROS and stemness in lung cancer cells.
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Introduction

Despite recent clinical breakthroughs, lung cancer is still the leading cause of can-
cer-related death globally. Cancer stem cells (CSCs) constitute a small proportion of
tumor cells, including lung cancer cells, that exhibit growth, metastasis, and thera-
peutic resistance [1-3]. Various cell surface proteins, including CD133 and CD44,
have been successfully identified as cancer stem cell markers [4, 5].

Obstructive sleep apnea (OSA) is defined as recurrent upper-airway collapse dur-
ing sleep, leading to intermittent nocturnal hypoxia and sleep fragmentation [6].
Chronic intermittent hypoxia (CIH) is one of the main characteristics of OSA and is
responsible for OSA-related diseases such as cardiovascular diseases, metabolic dis-
eases, and various cancers. Furthermore, patients with OSA exhibit increased prev-
alence of cancer or cancer-related mortality for various cancers, including breast,
cervical, and lung cancer [7-9]. Hypoxia plays a significant role in cancer, and
hypoxia-inducible factor (HIF)-1a is an important mediator of the hypoxic response
during tumor growth [10]; For instance, miR-200c inhibits migration of lung can-
cer cells by inhibiting HIF-1a expression [11]. Our previous study also revealed that
CIH promoted lung cancer and lung CSC-like properties in an orthotopic murine
model of primary lung cancer [12]. However, the increased risk associated with CIH
and the effects of OSA on the natural carcinogenic process are still poorly under-
stood and require further elucidation.

ATPase family AAA domain-containing 2 (ATAD2), a member of the AAAT
ATPase family [13, 14], is a promising oncoprotein that plays an essential role in
tumorigenesis by regulating the proliferation, invasion, and migration of cancer cells
[15-17]. Researchers have revealed the clinical and prognostic effects of ATAD2 in
breast, gastric, hepatocellular, endometrial, ovarian, and lung cancer; overexpres-
sion of ATAD2 is associated with rapid mortality, poor overall survival, and disease
recurrence in these cancers [18, 19]. Diverse signaling pathways of ATAD2 involved
in the functions of pleiotropic oncogenes, including HIF-1a, have been verified in
various human cancers; For example, Nayak et al. reported that the ATAD2 pro-
moter binds to HIF-1a under hypoxic conditions. The clinical and prognostic value
of ATAD?2 have been further explored in CIH-related lung cancers.

Our findings revealed a new link between ATAD2 and lung cancer progression.
We found that ATAD2 knockdown repressed lung cancer growth, metastasis, and
invasion. Mechanistically, we hypothesized that CIH-induced HIF-la activates
ATAD2, which contributed to lung cancer progression by increasing the accumula-
tion of mitochondrial reactive oxygen species (mtROS).

Materials and methods

Ethics statement

This study was performed in accordance with the principles of the Declaration of
Helsinki. This study was approved by the Ethics Committee of Zhongshan Hospital,
Fudan University [no. 2018-002(5), 8 October 2020]. All participants provided writ-
ten informed consent to participate in this study.
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Patient samples and ethics approval
In the current study, Zhongshan Hospital, Fudan University provided eight pairs of lung
adenocarcinoma (LUAD) tissues and matched adjacent tissues. After resection, tissues

were frozen in liquid nitrogen for 30 min.

Cell culture

A549, H460, H1299, SPC-A1, and HBE cells were obtained from the American Type
Culture Collection (Manassas, VA, USA). A549, H1299, and SPC-A1 cells were grown in
Roswell Park Memorial Institute 1640 medium containing 10% fetal bovine serum (FBS;
Sigma-Aldrich, St. Louis, MO, USA) with 100 U/mL penicillin and 100 mg/mL strep-
tomycin/penicillin. H460 and HBE cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, Grand Island, NY, USA) with 10% FBS at 37 °C. The cells were
cultured in a humidified atmosphere containing 5% CO,.

Gene expression profiling interactive analysis (GEPIA)
GEPIA was used to analyze ATAD2 expression in patients with LUAD. We performed
Student’s ¢-test to generate a p-value, and used 0.05 as the p-value cutoff.

Kaplan-Meier plotter

We used the Kaplan—Meier plotting method to evaluate the prognostic value of ATAD2
expression in patients with lung cancer. We divided the patients into two groups with
high or low ATAD2 expression based on median mRNA expression and verified using
the Kaplan—Meier survival curve, the hazard ratio (HR) with 95% confidence interval

(CI), and log-rank p-value. p-value < 0.05 indicates statistically significant difference.

Cell transfection

We obtained small interfering RNA (siRNA) negative control (NC) and siRNAs target-
ing ATAD2 and HIF-1la from GenePharma (Shanghai, China) and performed siRNA
transfection using PowerFect in vitro siRNA transfection reagent (SignaGen, Rockville,
MD, USA) according to the manufacturer’s instructions. Lung cancer cells with ectopic
expression of ATAD2 were transfected with ATAD2 expression plasmid purchased from
GenePharma (Shanghai, China).

Cellular proliferation assay

We conducted a proliferation assay using the BeyoClick EdU kit (Beyotime Biotech-
nology, Shanghai, China). Briefly, A549 and SPC-A1 cells (approximately 5 cells/wells)
were seeded into a 96-well plate. After the indicated treatments, 100 uL. medium con-
taining 50 pM 5-ethynyl-2’-deoxyuridine (EdU) was added to each well. Cells were
incubated for 2 h at 37 °C, fixed with 4% paraformaldehyde, and stained with Hoechst
33342 and Apollo reaction cocktail. Fluorescence microscopy (Nikon) was used to cap-
ture the merged images using Adobe Photoshop 6.0. Cell viability was assessed using
a cell counting kit (CCK)-8 assay (DOJINDO, Kumamoto, Japan). Briefly, 2 x 10* cells
were seeded into each well of a 96-well plate. After treatment, 10 pL CCK-8 solution
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was added to each well and incubated at 37 °C for 1 h. Cell proliferation curves were
obtained by measuring the absorbance at 450 nm at the indicated time points. These

experiments were performed in triplicate.

Colony formation assay

Cells were seeded into 6-cm dishes (500 cells/well) and exposed to the indicated treat-
ments. After culturing for 2 weeks, colonies were fixed with 4% paraformaldehyde and
stained with 0.4% crystal violet solution, and the images were captured using a camera.

Cell migration and invasion assays

Transwell chambers with 8-um pore size membrane inserts (BD Biosciences, San Diego,
CA, USA) were used to perform cell migration and invasion assays. A549 and SPC-Al
cells were used after 48 h of transfection in this experiment. Briefly, 100 uL serum-free
medium containing 1 x 10° cells was added to each upper chamber. Complete medium
(600 uL) was added to the lower chamber as inducer. After 48 h of incubation, we
removed the cells from the upper chamber and fixed the cells in the lower chamber.
After washing the chambers, cells were stained with 0.1% crystal violet and observed
under an inverted microscope (Olympus Corporation, Tokyo, Japan). Five random fields
of view were counted in each group. The procedures for the invasion assay were the
same as those for the cell migration assay, except that the membranes were coated with
40 pL Matrigel.

Flow cytometry analysis

After transfection with siRNA-NC or ATAD?2 siRNA, SPC-A1 cells were seeded into a
12-well plate and cultured under normoxia or CIH for 48 h. At the end of the CIH cycle,
cells were harvested, filtered, and centrifuged. Fluorescein isothiocyanate (FITC)-labeled
anti-CD44 (555478) and APC-labeled anti-CD133 (53276) (Cell Signaling Technolo-
gies, Danvers, MA, USA) antibodies were used for surface staining. To evaluate cellular
mtROS, A549 and SPC-A1 cells were treated with 5 uM MitoSOX red mitochondrial
superoxide indicator (Invitrogen, Carlsbad, CA, USA) for 10 min at 37 °C and washed
with phosphate-buffered saline (PBS). The data were analyzed using FlowJo software
(Tree Star Inc., San Carlos, CA, USA).

Western blotting analysis

Cells were lysed using radioimmunoprecipitation assay lysis buffer containing a protease
inhibitor cocktail (P1046; Beyotime Biotechnology, Shanghai, China). The total protein
concentration in the supernatant was measured (Beyotime Biotechnology, Shanghai,
China). The total protein was mixed with 5x sodium dodecyl sulfate—polyacrylamide
gel electrophoresis (SDS-PAGE) loading buffer and heated at 100 °C for 5 min. The pro-
teins were separated using 10% SDS-PAGE and transferred onto a 0.45-um-thick pol-
yvinylidene fluoride (PVDF) membrane (EMD Millipore, MA, USA). After blocking
in 5% skimmed milk at room temperature for 1 h, we incubated the PVDF membrane
overnight with the primary antibody at 4 °C and horseradish peroxidase (HRP)-conju-
gated secondary antibody at 37 °C for 1 h. Immobilon Western Chemilum HRP sub-
strate (EMD Millipore, Billerica, MA, USA) was used to visualize the protein bands.
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The primary antibodies used were anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (5174; Cell Signaling Technologies) and anti-ATAD2 (50563; Cell Signaling
Technologies) antibodies. HRP-conjugated goat anti-rabbit immunoglobulin G (IgG)
(1:20,000; Cell Signaling Technologies) or anti-mouse IgG (1:20,000; Cell Signaling Tech-
nologies) antibodies were used as secondary antibodies.

Reverse-transcription quantitative polymerase chain reaction (RT-qPCR)

TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) was used to extract the
total RNA from cells. A BioPhotometer Plus spectrophotometer was used to test the
purity and concentration of total RNA. Total RNA was reverse-transcribed into comple-
mentary DNA (cDNA) using the ImProm-II reverse-transcription system kit (Promega,
Madison, W1, USA), according to the manufacturer’s protocol. We carried out RT-qPCR
with SYBR Green qPCR SuperMix (Thermo Fisher Scientific, Waltham, MA, USA) and
a ABI 7500 sequence detection system (Applied Biosystems, Foster City, CA, USA).
GAPDH was used as internal control for normalization of ATAD2, HIF-1a, CD133, and
CD44 expression. The relative expression of the target genes was evaluated using the
27244 method. The RT-qPCR primers used in this study are shown in Additional file 1:
Table S1.

Analysis of ATAD2 promoter activity

Briefly, A549 and SPC-A1 cells were transfected with HIF-1a-FLAG or control plasmid.
After 24 h, the cells were transfected with B-galactosidase (B-gal) plasmid and wild-
type or mutant ATAD2 promoter plasmid or pGL3 alkaline luciferase reporter plasmid.
Luciferase activity was measured using a luciferase detection kit (Promega, Madison,
WI, USA), and B-gal activity was also measured. The relative luciferase activity was
measured as the ratio of Luc to B-gal activity.

Tumor sphere formation test

After transfection, the cells were seeded in an ultralow-attachment T25 culture flask
(Corning, NY, USA) for 3 weeks. DMEM/F12 serum-free medium (Invitrogen, Carls-
bad, CA, USA) containing 5 pg/mL insulin, 20 ng/mL epidermal growth factor, 2% B27,
and 20 ng/mL basic fibroblast growth factor was used to culture the spheres. A phase-
contrast microscope (40x ; Olympus, Tokyo, Japan) was used to calculate the number of
tumor spheres.

Immunofluorescent staining

A549 and SPC-A1 cells were grown on sterilized coverslips in a six-well plate. After
treatment, cells were fixed with 4% paraformaldehyde and permeabilized with 0.5%
Triton X-100. The cells were then blocked with 5% bovine serum albumin (Ameresco,
Solon, OH, USA) in PBS containing 0.05% Tween 20 for 1 h and incubated with 5 uM
MitoSOX red mitochondrial superoxide indicator (Invitrogen, Carlsbad, CA, USA).
Subsequently, the coverslips were stained with 4/,6-diamidino-2-phenylindole dihydro-
chloride (DAPI; 1:5000; Beyotime, Shanghai, China) and imaged using a fluorescence
microscope (Nikon, Tokyo, Japan).
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Statistical analysis

GraphPad Prism 5.0 (GraphPad Software, USA) was used to analyze the data, and
the results are expressed as mean =+ standard deviation. One-way analysis of variance
(ANOVA) with multiple comparisons using Dunnett’s test was performed to compare
the differences among groups. The unpaired Student’s ¢-test was used to analyze the
statistical differences between two groups. p<0.05 was considered to be statistically

significant.

Results

Overexpression of ATAD?2 is associated with poor survival in LUAD patients

The Cancer Genome Atlas (TCGA) data analysis showed that ATAD2 RNA levels
were high in patients with LUAD (Fig. 1A). In addition, ATAD2 expression was sig-
nificantly associated with cancer stages (Fig. 1B). As shown in Fig. 1C, high ATAD2
RNA level was related to worse overall survival outcome in LUAD, suggesting that
ATAD?2 may serve as a potential oncogene in lung cancer. We then determined
ATAD?2 expression in four lung cancer cell lines (A549, H460, H1299, and SPC-A1l)
and one human bronchial epithelial cell line via RT-qPCR analysis. We found that
ATAD2 mRNA expression was higher in lung cancer cells than in HBE cells (Fig. 1D).
Furthermore, protein expression of ATAD2 was increased in eight pairs of tissues
from lung cancer patients (Fig. 1E, F). These results imply that ATAD?2 is involved in
lung cancer progression.

ATAD?2 affects lung cancer cell viability and proliferation

Next, we explored the effects of ATAD2 on lung cancer tumorigenesis. A549 and
SPC-A1 cells were used in subsequent experiments. After transfection with the
designed siRNA for 48 h, ATAD2 expression was determined in both cell lines. As
indicated in Fig. 2A, we selected siRNA-01 to improve the knockdown efficiency.
By performing a CCK-8 assay, we observed that ATAD2 knockdown repressed lung
cancer cell viability (Fig. 2B, C). A similar growth-inhibiting effect was consistently
verified using the EdU assay in both cell lines (Fig. 2D). Furthermore, knockdown of
ATAD?2 reduced the colony-forming ability of both cell types (Fig. 2E). These results
suggest that ATAD?2 is essential for growth of lung cancer cells.

Effects of ATAD2 knockdown on lung cancer cell migration, invasion, and stem-cell-like
properties

Migration and invasion are the main characteristics and life-threatening aspects of
lung cancer. Hence, we examined the effects of ATAD2 knockdown on the migration
and invasion of A549 and SPC-A1 cells. ATAD2 knockdown suppressed cell migra-
tion (Fig. 3A, B). In addition, we observed decreased cell invasion ability after ATAD2
siRNA treatment using the Transwell invasion test (Fig. 3C, D). As shown in Fig. 3E,
F, tumor sphere growth was significantly repressed by knockdown of ATAD2. In
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addition, CD133 and CD44 mRNA expression was significantly decreased by loss of
ATAD?2 in lung cancer cells (Fig. 3G, H). These results indicate that loss of ATAD2
represses lung cancer cell migration and invasion.

Effects of ATAD2 overexpression on mtROS production in lung cancer cells

ROS are essential regulators of CSCs, and mtROS are a primary source of ROS. As
shown in Fig. 4A, ATAD2 expression was significantly increased in lung cancer cells.
We found that ATAD2 overexpression notably triggered mtROS production in both cell
lines, as determined using flow cytometry and immunofluorescence staining (Fig. 4B—
D). These results indicate that ATAD2 is involved in mtROS production in lung cancer
cells.

CIH-induced HIF-1a activates ATAD2 during lung cancer progression

As shown in Fig. 5A, there is a positive link between ATAD2 and HIF-1a in LUAD
as determined after consulting http://timer.comp-genomics.org/. Furthermore, over-
expression of HIF-1a significantly enhanced the luciferase activity of the ATAD2 pro-
moter but did not alter the luciferase activity of the CD44 promoter when the HIF-1a
binding site was mutated in A549 and SPC-A1 cells (Fig. 5B, C). These results imply
that HIF-1a acts as a transcriptional promoter of ATAD2. As shown in Fig. 5D, CIH
significantly induced HIF-1a, ATAD2, CD133, and CD44 mRNA expression in A549
cells, which was reduced by the siRNA of HIF-1a. Furthermore, flow cytometry anal-
ysis revealed that ATAD2 siRNA repressed the CD133 and CD44 positive cell ratio
induced by CIH (Fig. 5E, F). These results suggest that CIH-induced HIF-1a activates
ATAD?2 during lung cancer progression.
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cells transfected with SIRNA-NC or siRNA-ATAD2 under normoxia or CIH. Error bars indicate mean £ SD. All
experiments performed in triplicate. *p <0.05

Discussion

OSA is considered to be an important promoter of the occurrence and development of
lung cancer [20]. In this study, we aimed to evaluate the association between OSA and
lung cancer. CIH can enhance apoptosis resistance and metastasis of lung cancer cells by
increasing expression of HIF-1a [21]. In addition, CIH can exacerbate lung cancer pro-
gression in mouse models [22].

In this study, our data show that an increase in ATAD2 expression in lung can-
cer cells and tissues indicates poor prognosis for lung cancer patients. Knockdown of
ATAD?2 reduced A549 and SPC-A1 cell proliferation, migration, and invasion. Intermit-
tent hypoxia caused an increase in HIF-1a levels and promoted ATAD2 expression and
mtROS production, resulting in CSC-like characteristics, which may partly explain the
promotion of lung cancer progression by OSA. Our research reveals the possible mecha-
nism underlying the involvement of ATAD2 in advancing CIH-induced lung cancer. To
the best of the authors’ knowledge, these findings support the biological hypothesis of
adverse outcomes of OSA in lung cancer.

ATAD?2 contains a bromodomain and an ATPase domain, which maps to chromosome
8q24 in cancer [23]. The structure of ATAD?2 suggests that its functions are related to
genome regulation, such as cell proliferation, differentiation, and apoptosis. ATAD2 is
a member of the AAA™ ATPase family, and its overexpression in cancer tissue indicates
poor prognosis [15, 24]. An increase in ATAD2 expression has been identified in many
tumors, including hepatocellular, breast, and lung cancer [25]. ATAD?2 is also required
for prostate cancer cell growth [26].
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Previous studies have found that high ATAD2 expression in patients with lung
cancer suggests poor prognosis, which is consistent with our findings. In this study,
increased expression of ATAD2 was negatively correlated with the overall survival
rate of lung cancer patients. In addition, upregulation of ATAD2 promoted lung CSC
characteristics. In contrast, downregulation of ATAD2 inhibits CSC properties in
esophageal squamous cell carcinoma by blocking the Hedgehog signaling pathway
[27]. Furthermore, we found that ATAD2 overexpression significantly induced mtROS
production in A549 and SPC-A1 cells. Therefore, we hypothesized that ATAD2 over-
expression induces stemness of lung cancer cells via mtROS production.

HIF-1 is a crucial oncogenic transcription factor in hypoxic environments [28, 29]
and has two subunits: HIF-1a and HIF-1p. Under hypoxic conditions, HIF-1a accu-
mulates and transfers to the nucleus and combines with HIF-1B to form activated
HIF-1 [30, 31], which regulates the target gene expression. These genes are involved
in cell proliferation, migration, invasion, and metabolism [32]. Abnormal activation
of HIFs enables some cancer cells to obtain “stemness” abilities [33]. HIF-1 and HIF-2
transcription factors share many target genes, promoting CSC formation and ampli-
fication in cancer [34—36]. CIH occurring during sleep apnea activates HIF-1 during
myocardial injury [37]. Moreover, HIF-1a-dependent upregulation of ATAD2 pro-
motes proliferation and migration of stomach cancer cells [38]. Lysyl oxidase-like 2
(LOXL2) overexpression or hypoxia affects hepatocellular carcinoma progression by
promoting ATAD2 expression [39]. Hypoxic stabilization of mRNA is independent of
HIF but requires mtROS production [40]. Our study observed that the CIH-induced
tumor microenvironment with upregulated HIF-1a and ATAD2 played a critical role
in lung cancer progression and stemness. HIF-la-activated ATAD2 contributed to
lung cancer progression by increasing mtROS levels.

However, our study has some limitations. First, the sample size of patients with
lung cancer was relatively small; therefore, more patients with LUAD suffering from
CIH should be collected for further analysis. Second, only in vitro experiments were
performed, whereas no in vivo animal experiments could be performed in this study.
Third, the screening process for the upstream and downstream molecules of ATAD2
was not fully solid.

In conclusion, the results above suggest that ATAD2 expression was significantly
upregulated in lung cancer tissues and significantly associated with the clinical stage
of lung cancer. Additionally, ATAD2 overexpression may serve as a poor prognostic
factor for lung cancer patients. Furthermore, we revealed that CIH-induced HIF-1a
activates ATAD2 expression, contributing to lung cancer progression by increasing
mtROS levels.
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