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Scleractinian corals are essential ecosystem engineers, forming the basis of
coral reef ecosystems. However, these organisms are in decline globally, in
part due to rising disease prevalence. Most corals are dependent on symbiotic
interactions with single-celled algae from the family Symbiodiniaceae to meet
their nutritional needs, however, suppression of host immunity may be essen-
tial to this relationship. To explore immunological consequences of algal
symbioses in scleractinian corals, we investigated constitutive immune activity
in the facultatively symbiotic coral, Astrangia poculata. We compared immune
metrics (melanin synthesis, antioxidant production and antibacterial activity)
between coral colonies of varying symbiont density. Symbiont density was
positively correlated to both antioxidant activity and melanin concentration,
likely as a result of the dual roles of these pathways in immunity and symbio-
sis regulation. Our results confirm the complex nature of relationships
between algal symbiosis and host immunity and highlight the need for
nuanced approaches when considering these relationships.

Scleractinian corals are key ecosystem engineers, which create the structural basis
of diverse coral reef systems [1]. However, the health of coral reefs worldwide is
deteriorating, largely due to anthropogenic climate change [2]. Changing
environmental conditions such as increased ocean temperatures and ocean acid-
ification have led to coral die-offs [3]; global coral reef cover has declined by 50%
from 1957 to 2007 [4]. The two largest drivers of coral mortality have been disease
outbreaks and bleaching events [5-7]. Previous studies suggest extensive inter-
and intraspecific variation in response to disease [8] and propensity to bleaching
[9]. However, while the factors contributing to variation in bleaching suscepti-
bility have been well studied in many coral species [9,10], the mechanisms
driving variation in coral disease susceptibility largely remain unknown.

The coral immune response consists of pathogen recognition, signalling
pathways, and effector responses [11]. Corals have a variety of pathogen recog-
nition molecules, such as Toll-like receptors and NOD-like receptors, capable of
identifying a diversity of pathogens [12]. Post-recognition, signalling pathways
appropriate defence mechanisms and trigger effector responses [12]. Corals use
effector responses such as melanin production, antioxidants and/or antimicro-
bial peptides to eliminate pathogens [12]. Preliminary evidence suggests that
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natural variation in several immune components might con-
tribute to variation in disease resistance [13-15].

Beyond its role in pathogenic defence, the coral immune
system also plays roles in the establishment and maintenance
of symbioses [16-25]. The onset and maintenance of coral sym-
biosis with Symbiodiniaceae is theorized to circumvent or
modulate the host immune response [19,25-28]. Furthermore,
modification of immunity may extend beyond establishment
of the relationship. In the threatened Caribbean coral Orbicella
faveolata, which is obligately symbiotic, experimentally manipu-
lated higher Symbiodiniaceae density was linked to negative
effects on host immune gene expression [29]. Similarly, a
study of Acropora cervicornis, found a negative correlation
between bleaching and disease, suggesting the reduction in
symbiont density associated with bleaching might reduce
symbiont-associated immune suppression and increase host
capacity to respond to disease [27]. Still understanding of the
prevalence of potential symbiosis-immune trade-offs across
cnidarian species, and the effects of natural symbiont density
variation (i.e. non-stress related) on these trade-offs, is poorly
understood. To better understand how Symbiodiniaceae den-
sity and immunity might be linked in diverse scleractinian
corals, we investigated variation in constitutive immunity
among colonies of the facultatively symbiotic scleractinian
coral, Astrangia poculata, which displays immense natural
variability in densities of its symbiont Breviolum psygmophilum.

2. Material and methods
(a) Sample collection

Astrangia poculata colonies were collected from Fort Wetherill in
Jamestown, Rhode Island in April 2021 (41°28'40” N, 71°21'34”
W) at a depth of 10-15 m, via SCUBA. Colonies were visually
assessed and sorted into either high or low symbiont density
groups (termed ‘brown’ or ‘white’ colonies respectively); 10 colo-
nies of each type were collected. Visual assessment of colony
colour is a reliable method for distinguishing corals with high
symbiont density (greater than 10° cells cm™) from those with
low symbiont density (10*-10°cellscm™ [30]). It should be
noted that we use the terms ‘brown’ and ‘white’ as colonies
grouped in the white category are rarely completely aposymbiotic.
Following collection, the colonies were returned to Roger Williams
University (Bristol, RI) where they were maintained for several
weeks in closed, recirculating systems containing locally sourced
seawater and fed three times weekly with frozen copepod feed.
This period allowed corals to acclimatize to common garden con-
ditions, reducing the effect of environmental variation on our
measured variables. Samples were then flash frozen in liquid
nitrogen and shipped to Texas State University for analyses.

(b) Protein extraction

Tissue was removed from colonies with extraction buffer (TRIS
with DTT, pH 7.8) using protocols outlined by Fuess [31]. First,
tissue was removed and isolated from a fixed surface area
(2.14 cm?) on the flattest portion of the coral for Symbiodiniaceae
density calculation. Then, tissue from the remaining fragment
was removed and isolated into a separate aliquot. Both aliquots
of tissue extracts were homogenized using a Fisherbrand Hom-
ogenizer 150 prior to downstream processing.

The Symbiodiniaceae aliquot was processed using a series of
consecutive centrifugation and wash steps. The homogenate was
centrifuged at 376 RCF for 3min and the supernatant was
removed. The resultant pellet was resuspended in 500 ul of deio-
nized water, and the product was centrifuged again using the

same procedure. This step was repeated, and the sample was pre-
served in 500 pl of 0.01% SDS in deionized water, stored at 4°C.
The host aliquot was processed to obtain subsamples for
protein activity assays and melanin concentration estimation.
Following homogenization, 1 ml of the host aliquot was flash
frozen, and stored at 20°C for melanin concentration estimation.
The remainder of the host aliquot was centrifuged for 5 min at
1301 RCF using an Eppendorf Centrifuge 5804 R. The resulting
supernatant (protein-enriched cell-free extract) was flash frozen
in liquid nitrogen and stored at -80°C for downstream assays.

(c) Symbiont density

Symbiodiniaceae density was estimated using a standard haemo-
cytometer and Nikon Eclipse E600 microscope. Symbiodiniaceae
counts were repeated in triplicate and averaged to calculate
symbiont density/tissue area.

(d) Biochemical immune assays

Biochemical immune assays were conducted following established
protocols for scleractinian corals, with minor modifications necessary
to adapt the procedures for A. poculata [31-34]. Constitutive immu-
nity was measured using assays estimating activity of the
prophenoloxidase cascade (total phenoloxidase activity and melanin
concentration), antioxidant activity (catalase and peroxidase) and
antibacterial activity. All assays were standardized by either protein
concentration or dry tissue weight, as appropriate. Assays were run
in duplicates on 96 well plates using a Cytation 1 cell imaging multi-
mode reader with Gen5 software (BioTek). Full assay details can be
found in elecronic supplementary material, document 1.

(e) Statistical analyses

Prior to statistical testing, outliers were identified and removed if
necessary, using the ‘nooutlier’ function in R. Normality was
assessed using a Shapiro test and homogeneity of variance was
analysed using a levene test. The data were transformed as
needed; Symbiodiniaceae density was square root transformed.
We assessed the effects of symbiont density on each of our
immunological metrics using two approaches. First, we tested
for differences in assay activity between colonies grouped as
white or brown using a t-test. Second, because symbiont density
was highly variable within our groups, we also conducted
correlative analyses (Pearson correlations) to look at direct corre-
lations between symbiont density and activity assay. t-Tests and
correlations were run independently for each assay. All raw data
and code used are available on Dryad [35].

3. Results

Statistical analysis revealed a significant association between
symbiotic state and host immune phenotypes. Both melanin
concentration (f-test, p=0.0004; figure 1a) and catalase
activity (t-test, p = 0.048; figure 1b) were significantly higher
in brown colonies than white. Furthermore, melanin concen-
tration (Pearson correlation, R = 0.64, p = 0.003; figure 1c) and
catalase activity (Pearson correlation, R=0.62, p=0.005;
figure 1d) were significantly positively correlated to symbiont
density. No other assays were significantly associated with
symbiont state or symbiont density (tables 1 and 2).

4. Discussion

Here we used a facultatively symbiotic coral, Astrangia pocu-
lata, to investigate trade-offs between constitutive immunity
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Figure 1. Both symbiont state (brown, white) and Breviolum psygmophilum density affect melanin concentration and catalase activity. (a,b) Box and whisker plots
displaying differences in immune parameters between white and brown colonies for melanin (a) and catalase (b). () Melanin concentration and (d) catalase activity

in symbiont immune assays, according to B. psygmophilum density.

and Symbiodiniaceae density in corals. Past studies have
suggested trade-offs between the maintenance of symbiotic
relationship and immunity in obligately symbiotic corals
[27,29]. By contrast, our results show no trade-offs between
Symbiodineaceae abundance and constitutive immunity.
Instead, we find a positive association between constitutive
immunity and Symbiodineaceae density in A. poculata.
These findings confirm the complex nature of the relationship
between algal symbiosis and immunity in cnidarians and
highlight the need for further study of symbiosis-immune
interplay in diverse systems.

Here we document positive correlations between sym-
biont density and two metrics of constitutive immunity:
catalase activity and melanin concentration. Importantly,
while both systems function in immunity, they also serve sec-
ondary roles in maintenance of coral-algal symbiosis [36].
While antioxidant activity is important in combating ROS
bursts associated with pathogen defence, it is also important
in general stress response, including response to thermal
stressors [37]. Symbiont release of ROS is believed to be a

cause of thermally induced bleaching, or breakdown of
algal symbiosis [38]. Consistent with this theory, increased
antioxidant production is associated with increased resistance
to thermal bleaching [39]. Similarly, in addition to its roles in
encapsulation of pathogens [12], melanin may play second-
ary roles in stress response, including protection of algal
symbionts from UV damage (i.e. symbiont shading; [40]).
Consequently, observed patterns of higher activity of these
two pathways may be indicative of algal symbiont manage-
ment and proactive stress mitigation mechanisms rather
than direct consequences of symbiosis on immunity.

A second hypothesis could explain the observed associ-
ations between Symbiodiniaceae density and immunity more
generally: resource allocation theory. Resource allocation
theory posits that organisms allocate a fixed energetic budget
to competing needs (ex: growth, reproduction and immunity;
[41]). When energy budgets are fixed, increases in any one
category come at the cost of another (i.e. trade-offs; [41]). Con-
sequently, energetic budgets can have significant impacts on
resources allocated to immunity. For example, reductions in
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Table 1. -Test results for each immunological assay.

assay statistic value df. p-value
peroxidase —0.696 13.8 0.498
prophenoloxidase —0.816 18 0.425
catalase 2.19 125 0.0482*
antibacterial 1.03 129 0.321
melanin 496 1.2 0.0004*

Table 2. Pearson correlation results between assay activity and square-root
transformed symbiont density.

assay corr. value df. p-value
peroxidase 0.2430729 17 0.316
prophenoloxidase —0.0130134 18 0.9566
catalase 0.6155106 17 0.005026*
antibacterial —0.06311574 18 0.7915
melanin 0.6900038 17 0. 0011*

energy budgets caused by starvation resulted in decreased
expression of immune genes and resistance to pathogens in
the cnidarian Nematostella vectensis [42]. Indeed, facultative sym-
biosis may be a natural source of variation in energetic budget;
colonies of corals with variable densities of Symbiodiniaceae
may vary in their base energetic budget due to increased photo-
synthetically derived carbon. Past studies have linked increased
photosynthetic energy acquisition to increased Symbiodiniaceae
density [43,44]. Consequently, increased B. psygmophilum den-
sities in A. poculata may increase a colony’s total energetic
budget, allowing for greater resource allocation to immunity
and explaining elevated catalase and melanin levels in colonies
with higher B. psygmophilum density.

Regardless of mechanism, these findings add to a grow-
ing body of work considering the effects of symbiont
density on immunity in cnidarians. Interestingly, previous
work in obligately symbiotic corals suggests a negative
relationship between symbiont density and immune gene
expression [27,29], opposite to this study. A similar pattern
was also observed in another obligately symbiotic coral, Acro-
pora tenuis; immune gene expression was downregulated to
allow for the establishment of symbiosis [45]. However,
these previous studies involved obligately symbiotic corals,
whereas our results describe patterns in a facultatively sym-
biotic coral. Variation in symbiont density, and therefore
energetic budget, is likely more pronounced in the latter
group, affecting our results. Additionally, the past studies
applied broad transcriptomics approaches while this study
only measured a handful of immune effector responses
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