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In Brief
Neurodegenerative diseases are
characterized by the abnormal
accumulation of aggregated
proteins in the brain. Using
in vivo pulse isotope labeling, we
screened the proteome for
changes in protein turnover and
abundance in multiple mouse
models of neurodegeneration.
These data suggest that the
disease state of pathologically
affected tissue is characterized
by a proteome-wide increase in
protein turnover and repair. In
contrast, in healthy wild-type
mice, aging in the mammalian
brain is associated with a global
slowdown in protein turnover.
Highlights
• Multidimensional proteomic screen to detect imbalances in mouse models of disease.• Increased proteome turnover in multiple symptomatic neurodegeneration mouse models.• Healthy aging is associated with a global decrease in protein turnover.
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RESEARCH
Multidimensional Dynamics of the Proteome in
the Neurodegenerative and Aging Mammalian
Brain
Byron Andrews1, Alan E. Murphy2,3,‡ , Michele Stofella4,‡ , Sarah Maslen1,
Leonardo Almeida-Souza1,5 , J. Mark Skehel1 , Nathan G. Skene2,3, Frank Sobott4, and
René A. W. Frank1,4,*
The amount of any given protein in the brain is determined
by the rates of its synthesis and destruction, which are
regulated by different cellular mechanisms. Here, we
combine metabolic labeling in live mice with global
proteomic profiling to simultaneously quantify both the
flux and amount of proteins in mouse models of neuro-
degeneration. In multiple models, protein turnover in-
creases were associated with increasing pathology. This
method distinguishes changes in protein expression
mediated by synthesis from those mediated by degrada-
tion. In the AppNL-F knockin mouse model of Alzheimer’s
disease, increased turnover resulted from imbalances in
both synthesis and degradation, converging on proteins
associated with synaptic vesicle recycling (Dnm1, Cltc,
Rims1) and mitochondria (Fis1, Ndufv1). In contrast to
disease models, aging in wild-type mice caused a wide-
spread decrease in protein recycling associated with a
decrease in autophagic flux. Overall, this simple multidi-
mensional approach enables a comprehensive mapping of
proteome dynamics and identifies affected proteins in
mouse models of disease and other live animal test
settings.

In the mammalian brain, the rate of protein turnover typically
ranges from minutes to several days and is determined by
both the rate of synthesis and degradation (1–5). This
extraordinary flux poses a particular challenge for the brain
because information must outlive the molecular substrates in
which they are stored (6, 7) but is a necessary protein repair
mechanism to counter the accumulation of damaged proteins
(8, 9). In the adult brain, almost all neurons are terminally
differentiated and most neuronal protein repair is not helped
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by mitotic cellular turnover, as applies in many other tissues.
The rate of proteome turnover is regulated by multiple factors
and mechanisms, including ubiquitin-proteasome and
autophagy-mediated degradation (10–12). Protein turnover
perturbations cause severe neurological dysfunction (13).
Indeed, the most common neurodegenerative diseases are
characterized by imbalances in the turnover of a few proteins,
resulting in their accumulation into misfolded protein
aggregates (14, 15). These inclusions appear to be resistant to
cellular mechanisms of protein repair (16). Abnormal in-
clusions in nonneuronal cell culture have been shown to have
widespread impact on the proteome and its functions (17–19).
However, it is not known if neurodegenerative diseases have
an impact on global proteome turnover in the mammalian
brain.
Neurodegenerative diseases are characterized by syn-

apse loss, cognitive decline, and eventual neuronal death.
What triggers these diseases is unknown, except for a very
small subset that is caused by familial mutations (20, 21).
Yet, even in these rare cases, a comprehensive under-
standing of what downstream pathological pathways are
involved in cognitive decline, synapse, and neuronal loss is
lacking (22).
In most neurodegenerative diseases, including Alzheimer’s

disease (AD), it is apparent that pathology arises over many
years, perhaps decades (15, 23, 24). Consequently, pathology
in the early stages of the disease could be masked by
increased repair and adaptation (25–28). Therefore, methods
capable of detecting these changes in repair could indicate
the earliest upstream pathways of the disease (22).
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Multidimensional Dynamics of the Proteome
To study AD, mouse models provide an excellent setting
because genetic approaches can be applied within an or-
ganism that is neuroanatomically and molecularly similar to
humans (29). Many useful models are available that show
varying signs of cognitive decline and synaptic loss, but none
reflect the full cascade of pathology including neuronal death
(30). Thus, approaches are required that can reconcile the
range of molecular abnormalities in different mouse models of
disease and identify affected molecular pathways.
In vivo metabolic labeling and global proteomic profiling

have the capacity to measure the dynamics of individual
proteins throughout the proteome (31–35). Measuring pre-
cisely the absolute turnover rates of individual proteins
in vivo is important, though challenging, because of the
diverse routes of metabolite incorporation and recycling
(9, 36). In contrast, measuring the relative change in protein
turnover in disease models compared with control animals
could enable the identification of pathways altered in the
disease state. Here, we first established a method using
13C heavy lysine (K6) labeling to detect global proteome
turnover change in mice. Next, we developed the assay to
simultaneously measure changes in protein turnover and
abundance in vivo. This multiplex screen of proteome dy-
namics is applicable to any protein in any tissue and dis-
tinguishes between changes driven by synthesis or
degradation of a protein. We applied this screen to quantify
~1000 proteins in three mouse models of neurodegenerative
disease at presymptomatic and symptomatic ages. In all
models that we tested, increased neuropathology is asso-
ciated with increased protein turnover and changes in the
amount of some specific proteins, caused by measurable
alterations in their synthesis or degradation. Finally, we used
the method to investigate the proteome dynamics that are
associated with aging in healthy mice. Global protein turn-
over decreased with age, which was associated with a
slowdown in autophagy. This resource reveals novel
signatures of pathology, facilitates comparisons between
different mouse models of disease, and contrasts neuro-
degeneration with the mechanisms of aging.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

A sample size of three mice in each cohort was used for each
experiment. Disease model and control cohorts in each experiment
consisted of a disease model and age-matched controls. Disease
and control mice were bred from founder mice, ensuring a highly
similar genetic background. Five independent experiments were
performed testing (i) 113 days postnatal age (P113) TgCRND8 (37), (ii)
P285 TgCRND8, (iii) P186 AppNL-F/NL-F knockin (38), (iv) P548 AppNL-
F/NL-F knockin, and (v) P120 SOD1-G93A mice modeled ALS (39). The
change in the mean global proteome turnover in mouse models of
disease was compared with wild-type with a two-sided unpaired
Student’s t test and considered significant below a threshold p <
0.05.
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Metabolic Labeling of Live Mice

Animals were treated in accordance with UK Animal Scientific
Procedures Act (1986) and NIH guidelines. All animal experiments
were approved by the MRC Laboratory of Molecular Biology AWERB
(Animal Welfare and Ethical Review Board). Mouse genotyping was
performed by PCR using primers specific for the mutant allele on every
mouse. Mouse proteins were globally labeled 13C heavy lysine
(Lysine-6; K6) by feeding with mice Lys-6 food (Silantes) for 6 to
8 days. All transgenic models of disease were fed K6 food for 6 days,
as were the control mice used in the aging analysis. To counteract the
decline in protein turnover that is observed in age, the 18-month-old
AppNL-F/NL-F and control of mice were fed for 8 days. Mice were kept in
cages separated by genotype and labeled in groups of six: three
control and three experimental mice. The mass of each mouse and
food consumed were recorded throughout the experiments, and the
primary control for assessing the level of heavy label incorporation
was the measurement of plasma protein turnover.

At the end of the labeling period, the mice were culled and all major
organs were collected and immediately frozen in liquid nitrogen,
including blood plasma and cerebrospinal fluid. The brain was
dissected into eight separate regions, and each area was frozen
individually and immediately (olfactory bulb, caudate putamen, hip-
pocampus, cortex, colliculus, cerebellum, thalamus, and hindbrain).

Mouse Tissue Fractionation

Mice were culled by cervical dislocation or by overdose of pento-
barbital. Organs were immediately dissected on ice, including the
separation of brain areas and harvesting of cerebrospinal fluid, and all
tissue and humors were snap frozen in liquid nitrogen. Tissue was
homogenized manually in H buffer (320 mM sucrose, 2 mM HEPES at
pH 7.3 with protease inhibitors). Volumes of H buffer were scaled to
mass of tissue (232 mg tissue = 5 ml H buffer). Nuclei were pelleted by
centrifugation at 1000g, and this pellet was homogenized for a second
time in H buffer and pelleted as above. Membranes were pelleted from
the supernatant at 21,000g, and all fractions were divided into small
portions and flash-frozen in liquid nitrogen. This procedure was
applied to the hippocampus, cortex, and spinal cord. Plasma proteins
were diluted 1:40 with PBS and added to LDS sample buffer (Thermo
Fisher) directly. For extraction, tissue fraction pellets were resus-
pended in H buffer, and extraction/precipitation buffer added to the
suspension as appropriate. Extraction/precipitation buffer consisted
of 25 mM Tris, pH 8, 50 mM NaCl, 2 mM TCEP, protease inhibitors,
benzonase (Novagen), and detergent—proteins from the membranes
were solubilized in deoxycholate or Triton X-100 (0.8% w/v or 1% v/v
final, respectively), and proteins from the nuclear fraction were
precipitated in Triton X-100 or GDN (1% final). Solubilized material
was cleared by ultracentrifugation at 12,000g for 40 min, 8C, and
precipitated material was pelleted by centrifugation at 21,000g for
25 min, 8C. Solubilized or precipitated material was prepared for SDS-
PAGE by addition of LDS sample buffer, and cysteines were alkylated
with 10 mM iodoacetamide prior to electrophoresis through 1 mm
thick 4 to 12% Bis-Tris acrylamide gels (Thermo Fisher). Proteins were
stained with colloidal Coomassie blue, and 16 sections, each 4 ×
4 mm, were cut from each sample lane and diced into 1 mm cubes
separately. These polyacrylamide cubes containing the fractionated
proteins were prepared for mass spectrometric analysis using the
Janus liquid handling system (PerkinElmer). Briefly, the excised protein
gel pieces were placed in a well of a 96-well microtitre plate and
destained with 50% v/v acetonitrile and 50 mM ammonium bicar-
bonate, reduced with 10 mM DTT, and postalkylated with 55 mM
iodoacetamide. After alkylation, proteins were digested with 6 ng/μl
trypsin (Promega) overnight at 37 ◦C. The resulting peptides were
extracted in 2% v/v formic acid, 2% v/v acetonitrile. In some cases,
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the peptides extracted from 16 gel sections were combined into four
samples for LC-MS. The conditions of detergent fractionations and
digestion with trypsin were chosen from several rounds of optimiza-
tion experiments to maximize peptide coverage and quantification.

Mass Spectrometry and Data Analysis

The protein digest was analyzed by nano-scale capillary LC-MS/MS
using an Ultimate U3000 HPLC (Thermo Fisher Dionex) to deliver a
flow of approximately 300 nl/min. A C18 Acclaim PepMap100 5 μm,
100 μm × 20 mm nanoViper (Thermo Fisher Dionex), trapped the
peptides prior to separation on a C18 Acclaim PepMap100 3 μm,
75 μm × 250 mm nanoViper (Thermo Fisher Dionex). Peptides were
eluted with a 120 min gradient of acetonitrile (2%–50%). The analytical
column outlet was directly interfaced, via a nano-flow electrospray
ionization source, with a hybrid quadrupole orbitrap mass spectrom-
eter (Q-Exactive Plus Orbitrap, Thermo Fisher). Data-dependent
analysis was carried out, using a resolution of 30,000 Da for the full
MS spectrum, followed by ten MS/MS spectra. MS spectra were
collected over an m/z range of 300 to 2000. MS/MS scans were
collected using a threshold energy of 27 for higher-energy collisional
dissociation (HCD). Each tryptic peptide containing lysine-6 produced
a peptide ion pair differing by 6.02 Da (divided by charge state).

For SILAM analysis of protein turnover, peptide pairs were located
with MaxQuant 1.5.0 and identified with Andromeda using a reviewed
version of the mouse Uniprot database (release_2013_01, 17082 for-
warded entries) (40), allowing two missed cleavages at Lysine/Argi-
nine. Cysteine carbamidomethylation was set as a fixed modification
and N-acetylation of protein and oxidation of methionine as variable
modifications. The mass tolerance was set to ± 20 ppm for MS
and ± 0.5 Da for MS/M, and data were filtered with a 1% FDR at
peptide and protein level. Each detergent fraction was analyzed with
MaxQuant individually, and quantified proteins were forwarded for
analysis if they were found in at least two of three biological replicates
in both control and experimental animals. A final nonredundant
merged dataset was generated excluding quantifications of the same
protein from different detergent fractions; keeping the protein mea-
surement with the greatest difference in Lysine-6 incorporation be-
tween the control and experimental animals. Two-tailed Student’s t
tests (p = 0.05) were performed on the ratios of incorporation in control
and experimental animals. As detailed in Figure 1A, the SILAM ratio is
a direct readout of protein turnover.

For Label-Free Quantification of the same datasets, the maxLFQ
functionality of MaxQuant 1.5.0 was used (41). However, proteins in
each detergent fraction were forwarded for subsequent analysis only if
they were found in every single mouse of that fraction (six of six). The
protein quantification data were integrated by averaging the quantities
from each high-quality detergent fraction together on a mouse-by-
mouse basis. Two-tailed Student’s t tests (p = 0.05) were performed
on the levels of protein in control and experimental animals.

Importantly, it was essential to observe the peptide pairs at least
twice, by using a double count requirement for quantification in
MaxQuant. We found experimentally that if the pairs of peptides were
measured only in a single scan, peptide ratios were erroneously found
in over 2% of identified proteins in an unlabeled sample (57 ratios in
2733 identifications, data not shown).

Immunohistochemistry

Mice were euthanized by cervical dislocation or by overdose of
pentobarbital when they were transcardially perfused with PBS. Brains
were divided along the midline, and half was submerged in OCT
(optimal cryotomy) solution in a cut-away plastic mold—the other half
was kept for biochemical analysis. OCT-submerged brains were
frozen by submersion of the mould into a beaker of isopentane that
was subsequently chilled in liquid nitrogen. The frozen brain sections
were cut at a thickness of 14 um using a cryostat (Leica) and postfixed
using freezing methanol. Sections were blocked using 3% BSA or
10% goat serum in PBS with 0.2% Triton X-100 and probed with
primary antibodies [Mouse anti-Abeta (6E10; Covance, 803001) and
Rabbit anti-PSD95 (Abcam, ab18258] overnight at 4 ◦C. Secondary
antibodies were conjugated to Alexafluor 488 or 647 (Thermo Fisher)
and were applied to the samples for 2 h before mounting the slide
using ProLong Antifade mountant with DAPI (Thermo Fisher). Images
were acquired using a Zeiss LSM780 confocal microscope, then
viewed and analyzed in Fiji. All antibody combinations were validated
by controls with individually absent primary antibodies.

Immunoaffinity Protein Purification

Frozen membrane fractions were resuspended in H buffer and
solubilized in DOC extraction buffer (as above) for 1 h. The extract was
cleared by ultracentrifugation (120k x g, 40 min, 8C). Antibodies were
added to the cleared extract and left to bind overnight at 4C. The
antibodies and adsorbed proteins were reclaimed by the addition of
protein G Dynabeads (Sigma) for 40 min the following day. After
washing twice with a solution containing 25 mM Tris, pH 8, and 50 mM
NaCl, the antibodies and the adsorbed proteins were eluted with SDS.

Expression Weighted Cell Type Enrichment (EWCE) Analysis

Differentially expressed genes (DEGs) were first derived using
limma (42). Between-array quantile normalization was performed using
the voom function. The gene lists from the experiments were then
filtered to remove genes with multiple MGI symbols and genes, which
were not present in the EWCE reference dataset (supplemental
Table S6). EWCE used single-cell RNA sequencing (scRNA-Seq)
dataset as a reference to derive cell type enrichments based on the
inputted DEGs. The origin of scRNA-Seq datasets matched that of the
proteomic data: cortex/hippocampus (43) and spinal cord (44) for
β-amyloidosis (TgCRND8 and AppNL-F/NL-F) and TgSOD1-G93A pro-
teomic datasets, respectively. For each experiment, EWCE's analysis
was conducted on the top 1% of up- and downregulated DEGs, using
bootstrap sampling repeated 10,000 times and a Benjamini and
Hochberg adjusted p value threshold of 0.05.

Functional Clustering Analysis

Proteins that changed their turnover dynamics were functionally
clustered by the DAVID online tool (https://david.abcc.ncifcrf.gov/
home.jsp), using KEGG pathways. Functional annotation charts were
exported and visualized using String (45) to depict experimentally
determined protein–protein interactions.

RESULTS

Detecting Proteome Turnover in Mouse Models of Disease

There are multiple approaches capable of measuring protein
turnover (46–49). We devised a simple approach that matched
the following three criteria: (1) requires minimal experimental
design, (2) is amenable to cohorts of multiple test and control
mice, and (3) enables straightforward identification of pep-
tides, label incorporation, and turnover. To quantify changes in
protein turnover, mice were fed a diet in which the essential
amino acid, lysine (K0), was replaced with a 13C stable isotope
derivative (K6) for 6 to 8 days (Fig. 1A). The rate of K6 incor-
poration was directly quantified by the ratio of K6 to K0 in
each mouse (supplemental Fig. S1A). We benchmarked the
accuracy of identifying heavy–light peptide pairs using a
decoy unlabeled dataset, which indicated an empirical FDR of
Mol Cell Proteomics (2022) 21(2) 100192 3
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Multidimensional Dynamics of the Proteome
2% and 0.01% using single and double counting of K0-K6
pairs, respectively. Therefore, double counts were used
throughout.
To validate this simple method of measuring changes in

protein turnover and its applicability to neurodegenerative
disease, we used TgCRND8 mice, an aggressive transgenic
mouse model of familial AD that overexpresses hAPP (37).
This mouse line develops several pathologies characteristic of
AD including β-amyloid plaques, synapse loss, and behavioral
phenotypes (37). Three 3-month-old TgCRND8 and three age-
, sex-, and genetic background-matched control mice were
labeled with K6 food for 6 days. At the end of this labeling
FIG. 1. Metabolic labeling of live mice to measure changes in prot
labeling method for measuring changes in protein turnover in mice. Coh
food until the desired labeling window. The groups of mice are then switc
orbitrap LC-MS/MS.Middle, ion pairs with a 6 Da difference in mass were
K6. The relative incorporation of K6 was calculated in disease and wild-typ
each protein and plotted (x-axis) to highlight slowdown or increases in pro
incorporation, y-axis). B, top, immunohistochemical detection of synaptic
of presymptomatic TgCRND8 (P113) mouse brain. Bottom, scatter plot
tomatic (P113) TgCRND8mice (see supplemental Table S1). In total, 1392
(2–3 mice in each cohort). The mean difference of K6 incorporation for eac
(y-axis). Three TgCRND8 and three age-, sex-, and background-matche
decrease in protein turnover for hippocampal proteins with both a slow an
proteins in the hippocampus of TgCRND8 and WT mice. An overall 6.1%
Error bars indicate SEM. **p < 0.01. D, bar chart showing average plasm
was detected (p = 0.128, n = 118). Error bars indicate SEM. ns, not signi
and WT mice. No significant difference was detected (p = 0.17, n = 590
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period, the hippocampi from these mice were collected for
LC-MS (Fig. 1A). Measuring the change in K6 incorporation
between disease and control tissues gave a snapshot of
proteome turnover associated with the disease.
In each tissue sample from each mouse, we identified an

average of 72,261 peptides (±4231 sd), with a total of 130,516
unique peptides identified in the cohort. Of this total, 67,416
peptides contained at least a single lysine residue, and we
identified light–heavy (K0-K6) labeled peptide pairs in 41.25%
of them, enabling the quantification of label incorporation in
27,752 peptides (supplemental Table S1). Overall, these data
gave rise to 10,973 (±392 sd) identified proteins, and K6
ein turnover. A, left, schematic summarizing the 13C heavy lysine (K6)
orts of genetically and age-matched mice were maintained on regular
hed to K6 diet for an identical period before tissues were processed for
detected and sequenced, corresponding to peptides with and without
e mice. Right, the mean difference in K6 incorporation is calculated for
tein turnover versuswhether a protein has fast or slow turnover (WT K6
marker, left, Psd95 and right, β-amyloid pathology in sagittal sections
showing protein turnover changes in the hippocampus of presymp-
proteins were quantified in both diseased and healthy cohorts of mice
h protein (x-axis, Tg - WT) was plotted against the incorporation in WT
d WT mice were K6 labeled for 6 days. These data indicate a global
d fast turnover. C, bar chart showing average protein turnover of 1392
slowdown in turnover was recorded in the hippocampus (p = 0.0037).
a protein turnover in TgCRND8 and WT mice. No significant difference
ficant. E, bar chart showing average liver protein turnover in TgCRND8
). ns, not significant.
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incorporation was quantified in 2685 (±190 sd) proteins per
tissue sample. The change in turnover was calculated using
proteins detected in at least two mice from each cohort, giving
a screen that measured 1392 protein turnover changes in the
TgCRND8 hippocampus with high-quality MS data. A few
proteins were absent from the screen because they contain
very few lysine-containing peptides. One example of these
proteins, ApoE, was of particular interest because of its as-
sociation with AD. Therefore, to quantify these extremely
scarce ApoE peptides, we enriched samples by immu-
noaffinity purification before MS analysis (supplemental
Fig. S1B). In principle therefore, this in vivo approach can
detect changes in protein turnover of any lysine-containing
protein in any tissue.
Incorporation of K6 ranged from 1.4 to 70.9%, indicative of

a large dynamic range of protein turnover. Remarkably,
although there is minimal β-amyloid pathology at this age
(Fig. 1B and supplemental Table S1), an overall 6.1% slow-
down in the global average protein turnover (GAPT) was
measured in TgCRND8 hippocampus (p = 0.0037 n = 1392,
Fig. 1C). In contrast, serum (p = 0.128, n = 118) and liver (p =
0.17, n = 590) protein turnover did not change significantly
(Fig. 1, D and E), indicating that the decrease in protein turn-
over is specific to the pathologically affected forebrain tissue.
As a further control to account for amino acid recycling rates,
the precursor K6 concentration was determined using pep-
tides containing more than one lysine in disease and control
samples (46, 50). No difference was detected (supplemental
Table S2), indicating that changes in K6 incorporation
directly measure changes in protein turnover.
If turnover changes are associated with β-amyloidosis, then

as pathology progresses, one would expect protein turnover
changes to reflect the increasing load of β-amyloid pathology.
To test this possibility, we repeated our turnover measurement
at P285, by which age TgCRND8 has pervasive amyloid de-
posits throughout the forebrain (Fig. 2A, top, and
supplemental Table S1). Surprisingly, examination of the
protein turnover in the older TgCRND8 model did not extend
the slowdown that was seen at 113 days of age. Instead, at
285 days of age, an 18% increase in hippocampal GAPT (p <
0.0001, n = 847, Fig. 2, A and B), whereas in serum protein
GAPT was unchanged, indicating that the change in proteome
flux was restricted to the locus of β-amyloidosis. Overall, these
proteome turnover data indicate discordance in proteome ki-
netics between early and late stages of pathology in the
TgCRND8 model of AD.

Proteome Turnover in the AppNL/F Knockin Mouse Model of
AD

In progressive diseases, identifying protein turnover
changes that precede pathology could indicate upstream
molecular pathways involved in the disease. However, in
transgenic models of disease, including TgCRND8, one
cannot distinguish between bone fide pathological
mechanisms and effects that result from ectopic over-
expression of the APP precursor. Therefore, to test in the
absence of overexpression, we used a knockin mouse model
of familial AD, AppNL-F/NL-F, which lacks these potential arti-
facts (38). Protein turnover was measured at P186 and P548,
which are time points before and after widespread β-amyloid
pathology, respectively.
In presymptomatic P186 AppNL-F/NL-F forebrain, no signifi-

cant change in GAPT was detected (Fig. 2, C and D). However,
in P548 AppNL-F/NL-F mice with advanced β-amyloidosis,
forebrain GAPT increased by 15.7% (p < 0.0001, n = 721), with
53 proteins being made or degraded faster (Fig. 2E and
supplemental Table S1). No significant change was detected
in serum proteins (Fig. 2F). Thus, an increase in protein flux is
associated with increasing pathology in the AppNL-F/NL-F

knockin mouse model of β-amyloidosis.

Protein Turnover in Tissue Undergoing Cell Death

Late stages of neurodegenerative diseases are character-
ized by widespread neuronal death. To test for proteome
turnover changes in tissues undergoing neuronal death, we
K6-labeled 3-month-old TgSOD1-G93A mice (39), a mouse
model of familial amyotrophic lateral sclerosis (ALS). At this
age, TgSOD1-G93A mice displayed rear gait phenotypes,
indicating spinal cord pathology and extensive neuro-
degeneration. In TgSOD1-G93A spinal cord GAPT increased
17.7% in the diseased mice compared with control (p =
0.0001, n = 496, Fig. 2, G and H and supplemental Table S1).
In contrast, plasma protein GAPT was unchanged (p = 0.417,
n = 89). Overall, in all models at late stages, a marked increase
in overall protein flux was detected. These data could give
insight into the particular pathways. However, this raises the
question whether or not increased turnover is coupled to the
gain or loss in the abundance of proteins, or if the increased
turnover corresponds to the futile cycles of increased repair.

Dynaplot: A Comprehensive Map of Proteome Dynamics

The kinetics of protein turnover drives the abundance of all
proteins (11). Therefore, the simultaneous measurement of
turnover and abundance of each protein can give a compre-
hensive description of proteome dynamics and mechanistic
insight. Having established a method for screening changes in
protein turnover, we next combined turnover measurements
with relative abundance measurements by exploiting recent
improvements of label-free quantification (MaxLFQ) (41). In
each mouse model of disease dataset, an average of 4357
proteins (±654 sd) were quantified by label-free quantification
(supplemental Fig. S2 and supplemental Table S3). Proteins
were quantified in all mice in 98.0% (±2.0%) of the proteins
that were used for turnover analysis, giving excellent
reproducibility.
Plotting turnover versus abundance changes (hereon

referred to as a dynaplot) is potentially a powerful tool
because the coordinate space of these measurements infers
Mol Cell Proteomics (2022) 21(2) 100192 5



FIG. 2. Differences in protein turnover in transgenic and knock-in models of AD and a transgenic model of ALS. A, top, immunohis-
tochemical detection of synaptic marker, left, Psd95 and right, β-amyloid pathology in sagittal sections of symptomatic TgCRND8 (P285) mouse
brain. Bottom, scatter plot showing protein turnover changes in the hippocampus of symptomatic (P285) TgCRND8 mice (see supplemental
Table S1). In total, 847 proteins were quantified, and the difference in turnover characteristics between proteins in diseased and healthy ani-
mals was plotted as described in Figure 1B (2–3 mice in each cohort). B, left bar chart showing the average hippocampal protein turnover of 847
proteins in TgCRND8 and WT mice. An overall 18.0% increase in protein turnover was detected (p < 0.0001). Error bars indicate SEM. ***p <
0.0001. Right bar chart showing average plasma protein turnover in TgCRND8 and WT mice (2–3 mice in each cohort). No significant difference
was detected (p = 0.102, n = 74). Error bars indicate SEM. ns, not significant. C, scatter plot showing protein turnover changes in the cortex of
presymptomatic (P186) AppNL-F/NL-F mice (see supplemental Table S1). In total, 721 proteins were quantified, and the difference in turnover
characteristics between proteins in diseased and healthy animals was plotted as described in Figure 1B (2–3 mice in each cohort). D, left bar
chart showing the average cortex protein turnover of 721 proteins in AppNL-F/NL-F and WT mice (2–3 mice in each cohort). No change in protein
turnover was detected (p < 0.0735). Error bars indicate SEM. ns, not significant. Right bar chart showing average plasma protein turnover in
AppNL-F/NL-F and WT mice (2–3 mice in each cohort). No significant difference was detected (p = 0.534, n = 48). Error bars indicate SEM. ns, not
significant. E, top, immunohistochemical detection of synaptic marker, left, Psd95 and right, β-amyloid pathology in sagittal sections of
symptomatic AppNL-F/NL-F (P500) mouse brain. Bottom, scatter plot showing protein turnover changes in the cortex of symptomatic (P548)
AppNL-F/NL-F mice from (see supplemental Table S1). In total, 721 proteins were quantified, and the difference in turnover characteristics between
proteins in diseased and healthy animals was plotted as described in Figure 1B (2–3 mice in each cohort). F, left bar chart showing the average
cortex protein turnover of 847 proteins in AppNL-F/NL-F and WT mice (2–3 mice in each cohort). An overall 15.7% increase in protein turnover was
detected (p < 0.0001). Error bars indicate SEM. ***p < 0.0001. Right bar chart showing average plasma protein turnover in AppNL-F/NL-F and WT
mice (2–3 mice in each cohort). No significant difference was detected (p = 0.961, n = 95). Error bars indicate SEM. ns, not significant. G, scatter
plot showing protein turnover changes in the spinal cord of acutely symptomatic (P120) TgSOD1-G93A mice (see supplemental Table S1). In
total, 496 proteins were quantified, and the difference in turnover characteristics between proteins in diseased and healthy animals was plotted
as described in Figure 1B (2–3 mice in each cohort). H, left bar chart showing the average protein turnover of 496 proteins in the spinal cord of
TgSOD1-G93A and WT mice (2–3 mice in each cohort). An overall 17.6% increase in protein turnover was detected (p < 0.0001). Error bars
indicate SEM. ***p < 0.0001. Right bar chart showing average plasma protein turnover in TgSOD1-G93A and WT mice (2–3 mice in each cohort).
No significant difference was detected (p = 0.417, n = 89). Error bars indicate SEM. ns, not significant.

Multidimensional Dynamics of the Proteome
the mechanism of change, as depicted in Figure 3A. In prin-
ciple, changes in turnover can be regulated by either the rate
of synthesis or degradation. Therefore, six scenarios arise: (1)
increased steady state levels driven by an increase in protein
6 Mol Cell Proteomics (2022) 21(2) 100192
turnover indicates the net synthesis rate has increased. (2)
Increased steady state levels can also be driven by a net
decrease in turnover, which reflects a decrease in the rate of
protein degradation. Similarly, two distinct mechanisms for
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decreasing the steady state level of proteins can be directly
inferred: (3) decreased steady state levels driven by a
decrease protein turnover, which is the result of a net
decrease in protein synthesis, and (4) decreased steady-state
levels driven by an net increase in protein turnover, which is
driven by a net increase in degradation. Finally, proteins can
occupy coordinate space on the dynaplot in which (5) in-
creases or (6) decreases in protein turnover are uncoupled
from steady-state changes. These futile cycles reflect an in-
crease and decrease in the rate of protein repair.
A dynaplot showing the change in flux versus the change of

abundance of each protein is depicted in Figure 3. In each
disease mouse model imbalances in turnover resulted in
changes in abundance of a subset of the proteome (Fig. 3, B–
F). Comparing 6-month- and 18-month-old AppNL-F/NL-F

showed a fivefold increase in the number of significantly
FIG. 3. Multidimensional measurement of proteome dynamics in
turnover (x-axis, K6 label) plotted against the change in protein abundanc
protein that can be attributed to a net increase (red) or decrease (blue) i
degradation. Change in turnover that does not result in a change in ste
decreasing repair (brown). B, dynaplot of hippocampal proteins in presym
control mice (2–3 mice in each cohort). Proteins that were significantly d
were significantly different in steady-state amount (p < 0.01) are highlight
(P285) TgCRND8 mice, as compared with healthy, matched control mice
mice, as compared with healthy, matched control mice. E, dynaplot of c
with healthy, matched control mice. F, dynaplot of hippocampal proteins
healthy, matched control mice. See supplemental Table S4.
changed proteins (Fig. 3, D and E and supplemental Table S3).
Thus, increased pathology correlated with increased imbal-
ances in the proteome.
Multiple cell types have been implied in the pathogenesis of

AD, including neurons and astroglial cells (22). The latter are
known to proliferate particularly early in mouse models of AD
(51) and might contribute to the changes in turnover and
abundance detected in our proteomic data. To examine if
affected genes in each disease model converged on particular
cell types, we used expression weighted cell type enrichment
(EWCE) analysis (52). Only P285 TgCRND8 showed significant
enrichment in astrocytes and ependymal cells based on the
label-free protein quantification levels (correct p < 0.05, Fig. 4,
A and B), but only in older mice (P258). Interestingly, this
enrichment may be related to the prion protein promoter used
to drive ectopic expression of the transgene in TgCRND8 (37),
live mice. A, schematic of a dynaplot showing the change in protein
e (y-axis, LFQ). The coordinate space of the plot reflect dynamics of a
n the rate of synthesis; net increase (magenta) or decrease (yellow) in
ady-state expression indicate change in flux of increasing (green) or
ptomatic (P113) TgCRND8 mice, as compared with healthy, matched
ifferent in turnover (p < 0.01) are highlighted in green, while those that
ed in red. C, dynaplot of hippocampal proteins in acutely symptomatic
. D, dynaplot of cortex proteins in presymptomatic (P186) AppNL-F/NL-F

ortex proteins in symptomatic (P548) AppNL-F/NL-F mice, as compared
in acutely symptomatic (P120) TgSOD1-G93A mice, as compared with
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FIG. 4. Cell type enrichment and proteins with perturbed dynamics converge on presynaptic functions in mouse model of Alzheimer’s
disease. A, cell type enrichment of the top 1% of differentially expressed genes from each experiment (P113 and P285 TgCRND8; P186 and
P548 APPNL-F/NL-F) for both protein turnover (K6) and label-free protein quantification levels (LFQ). Cell type enrichment was produced using
Expression Weighted Cell Type Enrichment (EWCE) with bootstrap sampling repeated 10,000 times. y-axis, cell type. x-axis, standard deviations
from the mean specificity in that cell type. *, corrected p < 0.05 (Benjamini and Hochberg). B, same as A but for TgSOD1-G93A using spinal cord
EWCE dataset. Inhib. and Excit., spinal cord inhibitory and excitatory neurons, respectively. OL, oligodendrocytes. Ependymal SC, spinal cord
ependymal cells. CP epithelial, chorid plexus epithelial cells. C, gene ontology enrichment using KEGG database (see Experimental Procedures)
identified left, synaptic vesicle recycling, and right, mitochondrial pathways enriched with the proteins whose turnover (green) or steady-state
amount (red) has significantly changed in symptomatic (P548) AppNL-F/NL-F cortex. Purple and blue edges indicate empirically determined
protein–protein interactions and protein homology, respectively.

Multidimensional Dynamics of the Proteome
which is most active in astrocytes and epithelial cells (53). In
contrast, the absence of significant enrichment of particular
cell types in the AppNL-F/NL-F knockin mouse line, in which
8 Mol Cell Proteomics (2022) 21(2) 100192
there is no overexpression of a transgene, is consistent with
alterations in the proteome distributed among many cell types.
However, we cannot exclude that our samples sizes were
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insufficiently powered to detect cell-type enrichments with
effect size of protein turnover and abundance changes in
animal models.
Since multiple different proteins were differentially affected,

we explored if different pathways are impacted at early and
late stages of pathology (supplemental Table S4). Analysis of
the symptomatic AppNL-F/NL-F dataset using the KEGG
showed that significantly changed proteins converged on
several pathways that appear to be prevalent in presynaptic
functions, including synaptic vesicle recycling and mitochon-
dria (Fig. 4). Thus, multidimensional proteome dynamics have
identified specific proteins and pathways dysregulated as a
consequence of disease (supplemental Table S3).

Proteome Dynamics of Aging and Autophagic Flux

Aging is the greatest known risk factor for developing
neurodegenerative disease, including AD (54). It is commonly
held that protein turnover slows with age (1, 55). Therefore, we
measured the change in proteome dynamics associated with
aging in wild-type mice varying in age from 3 to 17 months
(Fig. 5A and supplemental Table S5). Strikingly, 98% of the
proteins measured showed decreasing K6 incorporation with
FIG. 5. Proteome dynamics associated with aging in healthy mice.
total, 360 proteins were used to compare turnover across all ages (n = 3
top): 1.063e−06, 4.557e−14, 1.220e−05, 6.799e−14, 0.003, 0.175. B, average
P285 (n = 4), P548 (n = 11). No significant change in appetite associate
from top) = 0.127, 0.675, 0.047, 0.694, 0.011, 0.692. C, dynaplot of mouse
control mice from P113 to P186 (sky blue), to P285 (blue), and to P548
visualization between different ages of mice. D, bar graph showing appa
Turnover was estimated by percentage heavy lysine incorporation (P6) in
significant.
age (between 113 and 503 days of age, p = 6.2 x 10−16, n =
360). Thus, the global average protein turnover decreased
significantly with age (Fig. 5A). Since the K6 label is delivered
by diet, as a control we measured average food consumption,
which indicated no decline in food consumption with age
(Fig. 5B). The average levels of protein abundance did not
change significantly (Fig. 5C and supplemental Table S5),
consistent with earlier reports(56). Overall, these aging data
could provide a rich resource for exploring molecular mech-
anisms associated with aging.
Next, we explored our proteome dynamics dataset to identify

potential mechanisms that could explain the aging-associated
global decrease in proteome turnover, focusing on mecha-
nisms that could drive proteome wide changes. One such
candidate is autophagy, the dynamics of which are challenging
to follow (56, 57). A prominent marker of autophagy is LC3, and
this showed a significant decrease in K6 incorporation that was
tightly associated with aging (Fig. 5D). However, the steady-
state levels of LC3 fluctuated but did not correlate with
increasing age (supplemental Table S5). Thus, autophagic flux
decreases with age and provides a mechanism that in part ex-
plains the global decrease in proteome turnover.
A, average protein turnover in healthy mouse cortex at various ages. In
at each postnatal age). p values for the comparisons (descending from
food consumption of mice at different ages: P113 (n = 4), P186 (n = 2),
d with aging was detected. p values for the comparisons (descending
cortex proteins depicting the change in proteome dynamics in healthy
(dark blue). These data are expressed ratiometrically to allow simpler
rent decrease in turnover of LC3, marker of autophagy, as mice age.
mice at postnatal days 113, 186, 285, and 503. *p < 0.05. n.s., non-
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DISCUSSION

Using a novel combination of live mouse labeling and pro-
teomic profiling, we have developed a method for simulta-
neously measuring the flux of proteome-wide changes in
turnover and steady-state abundance. By combining both
measurements, this approach distinguishes changes that are
mediated by protein synthesis versus degradation and en-
ables the direct estimate of changes in protein flux. We tested
this method in multiple mouse models of disease, which
revealed global effects as well as identifying individual path-
ways associated with pathology. Next, we applied the method
to aging in wild-type mice and observed a decline in protein
turnover that could be partially explained by a decline of
in vivo autophagic flux.
This methodological framework should be especially useful

for identifying proteins and molecular pathways in other live
animal test settings, including disease models, learning, and
behavior (58). Establishing the cause of an imbalance in
turnover could be essential for understanding diseases and is
likely to highlight new targets for pharmaceutical intervention.
Indeed, there is a growing body of evidence that correcting
imbalances in proteome dynamics can slow the onset of
disease symptoms (59, 60).
There is also increased appreciation that better mouse

models are needed to identify targets for therapeutic inter-
vention in neurodegenerative diseases, including AD (61). The
comprehensive proteome dynamics provided insights that
enable the direct comparison of multiple different mouse
models (62). Comparing the overexpressing hAPP transgenic
model (TgCRND8) at early and late stages of the disease
indicated large yet discordant effects on protein turnover.
Since changes did not correlate with increasing pathology, it is
difficult to distinguish molecular mechanisms altered by
overexpression of the transgene from changes associated
with β-amyloidosis in this mouse line. In contrast, turnover
changes identified in models that do not rely on ectopic
overexpression (AppNL-F/NL-F knockin model) were correlated
with increased pathology.
In all models tested at symptomatic stages, global average

protein turnover increased suggesting a disease-associated
proteome-wide state of repair. Increased proteomic flux
drove abundance imbalances caused by increased synthesis
of one subset of the proteome and increased degradation of
another (Fig. 3 and supplemental Table S4). This is consistent
with transcriptomic data from AD postmortem samples that
suggested increased autophagy-mediated turnover (63). It is
likely transcriptional programs are involved in regulating the
increase in proteome flux (64). Also, an increased flux of Aβ
has been detected in familial AD patients (65).
In contrast to disease, it is intriguing that turnover declines

as wild-type mice age, whereas steady-state levels of the
proteome in mice appear to show no global change associ-
ated with age (66). This is consistent with similar reports of
10 Mol Cell Proteomics (2022) 21(2) 100192
proteome turnover decline in invertebrates (67), albeit protein
abundance in aging invertebrates appears to change (67, 68).
Our turnover measurements of LC3 enabled an estimation of
autophagic flux, which also declined with aging, suggesting
that the global turnover decrease associated with aging could,
at least in part, be mediated by a slowdown in autophagy.
Overall, it is striking that while aging in wild-type animals is

associated with a decrease in flux, whereas aging in all three
neurodegenerative disease models caused an increase in flux.
Thus, these mouse models suggest that neurodegenerative
diseases are not an acceleration of aging, but rather represent
a state of proteome imbalance and increased repair. As
improved models of neurodegenerative disease are devel-
oped, applying comprehensive proteome dynamics is ex-
pected to give important phenotypic, molecular, and
mechanistic insight.
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