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Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous disease

that affects more than 800,000 patients worldwide each year. The variability of HNSCC

is associated with differences in the carcinogenesis processes that are caused by two

major etiological agents, namely, alcohol/tobacco, and human papillomavirus (HPV).

Compared to non-virally induced carcinomas, the oropharyngeal tumors associated

with HPV infection show markedly better clinical outcomes and are characterized by

an immunologically “hot” landscape with high levels of tumor-infiltrating lymphocytes.

However, the standard of care remains the same for both HPV-positive and HPV-negative

HNSCC. Surprisingly, treatment de-escalation trials have not shown any clinical benefit

in patients with HPV-positive tumors to date, most likely due to insufficient patient

stratification. The in-depth analysis of the immune response, which places an emphasis

on tumor-infiltrating immune cells, is a widely accepted prognostic tool that might

significantly improve both the stratification of HNSCC patients in de-escalation trials and

the development of novel immunotherapeutic approaches.

Keywords: head and neck squamous cell carcinoma, human papillomavirus (HPV), tumor microenvironment,

immune infiltrate, antitumor immune response, treatment de-escalation

INTRODUCTION

Head and neck squamous cell carcinomas (HNSCCs) are a heterogeneous group of epithelial
tumors that are localized in the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx
with an estimated global incidence of more than 800,000 new cases per year (1). In general,
heavy tobacco and alcohol exposure have been determined to be the most important risk
factors for HNSCC. In the 1990s, human papillomavirus (HPV) was described as an emerging
etiological agent of oropharyngeal cancer [oropharyngeal squamous cell carcinoma (OPSCC)]. In
the following years, the incidence of HPV-associated tumors of the tonsils and base of the tongue
has markedly increased, especially in the developed world. Recently, the proportion of patients
with HPV-associated OPSCC may be as high as 70–90%, depending on the patients’ region of
origin (2, 3).

HPVs are small double-stranded DNA viruses from the family Papillomaviridae. At present,
more than 200 different HPV types have been identified, including 16 “high-risk” types that are
preferentially found in precancerous and cancerous lesions (4, 5). In OPSCC, the most commonly
detected type is HPV16 (>80%) followed by HPV18 (3%) (6). In contrast to tobacco- and
alcohol-related mutagens, which induce mutagenesis in broad areas of the cells that form the
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stratified squamous cell epithelium of the upper aerodigestive
tract, the carcinogenic activity of HPV is localized to the
reticulated epithelium of the tonsillar crypts, thereby promoting
the malignant transformation of epithelial cells within the
oropharyngeal region (Figure 1) (7). Additionally, whereas
>80% of HPV-negative tumors bear mutations in TP53, HPV-
associated tumors mostly harbor wild-type TP53 (8). During
HPV infection, the HPV-derived oncoprotein E6 binds to host
tumor suppressor protein p53, inducing its ubiquitin-mediated
degradation, whereas the oncoprotein E7 inactivates pRb (9,
10). Inactivation of pRb results in overexpression of p16 (11),
which is used as a valid marker for HPV status assessment in
OPSCC patients.

Although the process of carcinogenesis differs markedly
between HPV-associated OPSCC and HNSCC of other etiology,
both types of tumors have a high tumor mutational burden
(TMB). In general, tumors with high TMB express higher
levels of neoantigens that can be recognized by the immune
system (12). Surprisingly, high TMB correlated in HNSCC
patients with unfavorable immune expression signatures and
poor clinical outcome (13). Besides carcinogen exposure, a
significant part of mutations in HNSCC can be attributed to the
activity of apolipoprotein B mRNA editing enzyme, a catalytic
polypeptide-like 3 (APOBEC3) family of cytosine deaminases.
In accordance with the well-defined role of the APOBEC
family in viral restriction, APOBEC3 mutations are particularly
prominent in HPV-associated OPSCC. Contrary to the general
TMB mentioned above, immune cell infiltration was positively
associated with APOBECmutational burden in HNSCC (14, 15).

Smoking and alcohol consumption on the one hand and
HPV infection on the other hand can also markedly affect the
composition of the salivarymicrobiome. It has been reported that
microbes and their products can influence cancer development
and progression, antitumor immune response, and in the upshot
patients’ survival (16–18). Therefore, the specific impact of the
shifts in the oral salivarymicrobiome duringHNSCC progression
needs further evaluation.

Patients with HPV-associated tumors are typically diagnosed
with large, cystic metastatic cervical lymph nodes; however,
they are highly responsive to standard treatment approaches
and have significantly better prognoses compared to HPV-
negative patients (19–21). Due to the discrepancy between
the predictive value of the standard staging algorithm in
patients with HPV-negative and HPV-positive HNSCC, the
eighth edition of the American Joint Committee on Cancer
Staging Manual proposed a new, independent staging system
for HPV- associated OPSCC (22). Consequently, since 2018,
HPV-associated OPSCC and HPV-negative HNSCC have been
considered distinct diseases with independent classification
and multiple, significant differences in their clinicopathological
features (Table 1). In contrast to squamous cell carcinoma of
the oropharynx, the clinical impact of HPV and its detection
in non-oropharyngeal HNSCC have not been confirmed to date
and need to be further evaluated. In silico study published by
Chakravarthy et al. (30) showed that althoughHPV-positive non-
oropharyngeal HNSCC shared a gene expression signature and
basaloid morphology with HPV-positive OPSCC, HPV-positivity

in non-oropharyngeal HNSCCwas not associated with improved
patients’ prognosis. The major difference between HPV-
associated non-oropharyngeal and oropharyngeal HNSCCwas in
the level of tumor-infiltrating immune cells, suggesting a crucial
role of immune response in the disease outcome.

The excellent prognosis of HPV-positive OPSCC patients
also initiated discussions about treatment de-escalation
strategies, which may achieve similar efficacy with decreased
toxicity in this particular group of patients (31, 32). The
standard treatment regimens, which mainly include curative
chemoradiotherapy or surgery followed by adjuvant radiotherapy
or chemoradiotherapy, are highly effective; however, they are
associated with substantial long-term morbidity, which escalates
with treatment intensity and negatively impacts the quality of the
patients’ lives (32). However, due to the existence of a subgroup
of “high-risk” HPV-positive OPSCC patients with a poor
prognosis, patient stratification according to HPV status alone is
insufficient for successful treatment deintensification. A positive
correlation between heavy smoking and poor clinical outcome,
as reported by several authors (25, 31, 33), led to the use of
smoking status as a cofactor in some de-escalation clinical trials
(25, 34). In addition to smoking history, the immune signature
might be another important cofactor for the precise selection
of patients for de-escalation regimens. Although pan-cancer
analyses reveal both HPV-negative and HPV-positive HNSCC
as malignancies with a high level of immune cell infiltration
(35), HPV-positive OPSCCs show in general markedly higher
densities of tumor-infiltrating lymphocytes (TILs) and belong
to the immunologically “hottest” of all cancer types (29, 35–37).
This feature was reported to be positively correlated with
patient survival in a wide range of malignancies (36, 38–42).
However, HPV-positive tumors are heterogeneous, and some
of the patients with confirmed HPV-associated OPSCC were
shown to have immunologically “colder” tumors with low levels
of TILs and markedly worse clinical outcome (26, 42, 43).
Indeed, Ward et al. (26) described a prognostic model based
on the TIL density, smoking status and T stage, and this model
can effectively identify the subgroup of HPV-positive patients
with poor survival who should be excluded from treatment
deintensification trials.

It is widely accepted that the shape of the antitumor immune
response is a significant factor that determines a patient’s clinical
outcome. Thus, it is thought that the detailed characterization
of the tumor microenvironment will translate into targeted
therapeutic approaches and significant improvements in both
overall survival and quality of life following treatment. This
review will summarize the knowledge about the immune cell
infiltration of the remarkable HNSCC tumor microenvironment
with respect to HPV status.

IMMUNE MICROENVIRONMENT OF HEAD
AND NECK SQUAMOUS CELL
CARCINOMA TUMORS

In the 1950s, the theory of immune surveillance was proposed
by Burnet (44). According to this concept, the immune system
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FIGURE 1 | Processes of carcinogenesis in human papillomavirus (HPV)-negative and HPV-associated head and neck squamous cell carcinoma (HNSCC). Tobacco-

and alcohol-related mutagens induce widespread mutagenesis in the cells that form the stratified squamous cell epithelium of the upper aerodigestive tract, including

the nasal cavity (NC), oral cavity (OC), nasopharynx (N), oropharynx (OP), hypopharynx (HP), and larynx (L). HPV preferentially infects the basal cell layer of the

reticulated epithelium of the tonsillar crypts, thus promoting the malignant transformation of epithelial cells within the oropharyngeal region (OP).
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TABLE 1 | Features of HPV-negative and HPV-positive HNSCC.

Feature HPV− HPV+ References

Risk factors Tobacco,

Alcohol

HPV (23)

Incidence Decreasing Increasing (24)

Most common anatomic site Oral cavity, Larynx Oropharynx (20)

Age Older Younger (25)

Race Non-Caucasian Caucasian (20)

Education level Lower Higher (24)

5-years overall survival 48% 80% (26)

Histological subtype Keratinizing Non-keratinizing (27)

LN metastases 55.7% 86% (20)

Mutational spectrum TP53, CDKN2A, MLL2, CUL3, NSD1, PIK3CA, NOTCH PIK3CA, DDX3X, CYLD, FGFR (28)

Density of tumor-infiltrating immune cells Lower Higher (29)

HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; LN, lymph node.

constantly recognizes and destroys emerging malignant cells
before they can develop into detectable tumors. This theory is
supported by the fact that cancers, including HNSCC, are more
prevalent in immunosuppressed patients (45, 46). To escape the
control of the immune system, tumor cells develop multiple
strategies that make them unrecognizable by immune cells or
that efficiently suppress the immune response. The mechanisms
of tumor immune evasion include the reduction of antigen
presentation due to the loss of major histocompatibility complex
(MHC) class I expression, the production of immunosuppressive
cytokines, such as interleukin (IL)-10 and transforming growth
factor (TGF)-β, the resistance to apoptosis, and the expression of
Fas ligand (FasL), which is capable of inducing the death of TILs
(47). Together with the recruitment of regulatory T cells (Tregs)
and myeloid-derived suppressor cells (MDSCs) into the tumor,
these mechanisms help to establish an immunosuppressive
microenvironment, which supports tumor growth (47, 48).
Despite the prevailing immunosuppressive character, the pattern
of immune cell infiltrate markedly differs between HPV-
associated and HPV-negative tumors (29, 37) (Figure 2). Indeed,
not only the density of tumor-infiltrating immune cells but
also their phenotypes and functional capacities distinguish
immunologically “hottest” HPV-positive tumors with good
prognosis from immunologically “colder,” high-risk HNSCC.
The individual features of the tumor-infiltrating immune cell
populations are discussed below, and their prognostic impact is
summarized in Table 2.

TUMOR-ASSOCIATED MACROPHAGES

Macrophages are monocyte-derived innate immune cells that,
as sentinel and effector cells, play an essential role in the
maintenance of tissue homeostasis, the control of pathogens,
and the overall surveillance of tissue changes (65). According
to their mechanisms of activation and subsequent roles in
the polarization of the immune response, macrophages are
divided into two main phenotypes. Inflammatory “fighting”
M1 macrophages are activated by interferon (IFN)-γ and are

involved in antitumoral helper T (Th)1 immune responses. Anti-
inflammatory “healing”M2macrophages, which are alternatively
activated by IL-4, IL-10, IL-13, and/or prostaglandin E2, are
associated with protumoral Th2 immune responses (66–69).

Macrophages are mainly recruited from the bone marrow via
colony-stimulating factor 1 (CSF-1) and monocyte chemotactic
protein 1 (MCP-1) signaling, which are particularly driven by the
hypoxic conditions in the tumor tissue (70, 71). M1 macrophages
express inducible nitric oxide synthase (iNOS) and produce
nitric oxide (NO), IL-12, IL-23, tumor necrosis factor (TNF),
IL-1β and IL-6, whereas anti-inflammatory M2 tumor-associated
macrophages (TAMs) secrete immunosuppressive cytokines and
express arginase-1, which promotes the depletion of extracellular
arginine and leads to the metabolic suppression of tumor-
infiltrating T cells (65, 69, 71). Additionally, TAMs, as a major
source of C-C motif chemokine ligand (CCL)22, help recruit
Tregs into the tumor microenvironment via the CCL22/C-X-C
motif ligand (CXCL)4 pathway (72, 73).

In HNSCC, TAMs generally show the tumor-promoting
M2 phenotype that is associated with the production of the
immunosuppressive cytokines IL-10 and TGF-β, and their
presence in the tumor microenvironment is positively correlated
with lymph node status and poor prognosis (71, 74–76).
However, although the overall density of TAMs is comparable
in HPV-positive and HPV-negative tumors (29, 37), Gameiro
et al. (37) reported a significantly lower proportion of M2
macrophages in HPV-associated tumor tissues compared to
that in HPV-negative tumor tissues. Similarly, Chen et al. (49)
observed a higher M1/M2 macrophage ratio in HPV-positive
tumors compared to that inHPV-negative tumors. Importantly, a
high M1/M2 ratio correlated with better prognosis in both HPV-
positive and HPV-negative HNSCC patients. Both analyses were
performed at the mRNA level using publicly available databases.

MYELOID-DERIVED SUPPRESSOR CELLS

Myeloid-derived suppressor cells (MDSCs) form a heterogeneous
population of immature myeloid cells, which under
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FIGURE 2 | Pattern of tumor-infiltrating immune cells in the human papillomavirus (HPV)-negative and HPV-associated head and neck squamous cell carcinoma

(HNSCC) microenvironments. Although myeloid cells prevail in the HPV-negative tumor microenvironment, HPV-associated tumors are mostly characterized by high

numbers of tumor-infiltrating lymphocytes. Neutrophils and myeloid-derived suppressor cells (MDSCs) are not included, as it was not possible to extrapolate the

relative proportions of these cell populations from published data.

TABLE 2 | Prognostic impact of tumor-infiltrating immune cell populations in

HNSCC.

Prognostic

marker

Impact on

prognosis HPV-

Impact on

prognosis HPV+

References

High M1/M2 ratio Positive Positive (49)

MDSC NA NA

Neutrophils None Negative (49)

NK cells Positive NA (50)

mDC Positive None (51–54)

pDC Negative NA (55, 56)

CD8+ T cells Positive Positive (36, 42, 43, 57)

CD4+ T cells None None (49, 57, 58)

Tregs Contradictory Contradictory (59–63)

B cells NA Positive (43)

IL-10+ Bregs Negative NA (64)

HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; M1/M2
ratio, ratio between inflammatory M1 and anti-inflammatory M2 macrophages; NK cells,
natural killer cells; MDSC, myeloid-derived suppressor cells; mDC, myeloid dendritic cells;
pDC, plasmacytoid dendritic cells; Bregs, regulatory B cells; NA, not available.

physiological conditions represent only 0.5% of peripheral
blood mononuclear cells (PBMCs) and consist of precursors
of granulocytes, monocytes, and dendritic cells. There
are two major subsets of MDSCs in humans, namely,

Lin−HLA-DR−/loCD11b+CD14−CD15+CD33+ granulocytic
PMN-MDSCs and Lin−HLA-DRneg/loCD11b+CD14+CD15−

monocytic M-MDSCs (77, 78). Pathological MDSC
accumulation is associated with chronic inflammation
and cancer progression, and MDSCs are known to exhibit
significant immunosuppressive and protumorigenic functions.
These tumor-promoting activities include the production of
immunosuppressive cytokines IL-10 and TGF-β, the secretion
of angiogenic factors, NO and reactive oxygen species (ROS),
the promotion and activation of Tregs, and the induction of
arginine and cysteine deprivation, which result in the metabolic
suppression of tumor-infiltrating T cells and the production
of soluble factors that support tumor growth and invasion
(71, 77, 79, 80).

MDSCs are mainly recruited to the tumor microenvironment
via the prostaglandin E2-induced chemokines CCL2, IL-8,
and CXCL12 (80, 81). Additionally, tumor cells are capable
of producing mediators of chronic inflammation, such as
granulocyte-macrophage colony-stimulating factor (GM-CSF),
vascular endothelial growth factor (VEGF), TNF-α, IL-1β, and
IL-6, which induce the generation and expansion of MDSCs in
situ (80, 82). In HNSCC patients without a defined HPV status,
the proportion of circulating PMN-MDSCs negatively correlated
with overall survival. These peripheral blood-derived MDSCs
were capable of suppressing T cell proliferation and cytokine
production (83). Similarly, Chikamatsu et al. (84) reported

Frontiers in Oncology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 1701

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Fialová et al. Immune Landscape of HNSCC

elevated levels and suppressive activities of MDSCs in the
peripheral blood of HNSCC patients. In HPV-negative HNSCCs,
tumor-derived MDSCs created a significant proportion of
tumor-infiltrating immune cells and were capable of efficiently
suppressing T cell (85) and natural killer (NK) cell functions (86).
As all of these studies either did not specify the HPV status of
the patients or included HNSCC patients with tumors localized
outside the oropharynx, there is no report about the proportions
and suppressive capacities of MDSCs in HPV-associated HNSCC
to date.

NEUTROPHILS

Neutrophils represent the most abundant population of
immune cells in humans and play an essential role in
antimicrobial immune responses and wound healing (87).
Depending on the signals from the tumor microenvironment,
neutrophils can be either protumorigenic or antitumorigenic;
however, most published studies describe neutrophils as tumor-
promoting cells with a strong impact on the antitumor immune
response (87, 88).

Similar to other malignancies, neutrophils were found at
elevated levels in the peripheral blood of HNSCC patients, and
their frequencies were inversely correlated with the frequencies
of lymphocytes (89, 90). Patients with HPV-associated tumors
had significantly lower levels of circulating neutrophils compared
to patients with HPV-negative tumors, and the high absolute
number of neutrophils correlated with poor prognosis in HPV-
positive patients but not HPV-negative patients (91). However,
if the abundance of neutrophils was related to the levels of
circulating lymphocytes, a high neutrophil-to-lymphocyte ratio
(NLR) was associated with poor prognosis in both groups of
patients. As expected, patients with HPV-associated tumors
showed lower NLR ratios compared to patients with HPV-
negative tumors (89). Surprisingly, in patients with advanced
oral squamous cell carcinoma (OSCC), both very high and very
low NLRs were reported to be associated with increased risk of
death (92). The authors suggest that compared to early-stage
OSCC, where low NLR indicates unaffected immune system,
in advanced-stage tumors, very low NLR may be a marker of
immune system exhaustion.

The only publication that mentions the levels of neutrophils
in the tumor microenvironment is an in silico study published
by Chen et al. (49), which reported significantly lower levels
of tumor-infiltrating neutrophils in HPV-associated samples
compared to those in HPV-negative samples. Additionally, high
infiltration of neutrophils was correlated with poor outcome
in patients with HPV-associated HNSCC and was determined
to be an independent prognostic marker based on the Cox
proportional hazard model.

NATURAL KILLER CELLS

NK cells are generally considered to be effector lymphocytes
of the innate immune system; however, they express a wide
spectrum of activating and inhibitory receptors, which efficiently

empower their cytotoxicity against virus-infected and tumor
cells while concurrently ensuring self-tolerance (93). NK cells
are known to recognize cells that escape detection by cytotoxic
T cells due to the abnormal surface expression of HLA class
I molecules. Indeed, a reduction in HLA class I expression
is a very common mechanism used by viruses, such as HPV,
and tumor cells to evade the host immune response (94).
There are two major groups of NK cells, namely, cytokine-
producing CD56brightCD16dim immunoregulatory NK cells and
CD56dimCD16bright cytotoxic NK cells.

In HNSCC patients, peripheral CD56dim NK cells were
shown to be functionally impaired and preferentially targeted
for apoptosis (95). Subsequently, plasma TGFβ1 and soluble
MHC class I chain-related peptide A (sMICA) were determined
to be the main factors driving the loss of the functional
capacities of peripheral NK cells in HNSCC (96). Although
an in silico study published by Chen et al. (49) revealed
no difference between the NK cell gene signatures in HPV-
negative and HPV-positive HNSCC samples, Wagner et al. (50)
found significantly higher numbers of tumor-infiltrating CD56+
NK cells in the microenvironment of HPV-positive OPSCC
specimens compared to those in the microenvironment of HPV-
negative OPSCC specimens. These cells mostly coexpressed
granzyme B and CD16, suggesting their cytotoxic capacity and
were correlated with increased overall survival independent of
the HPV status of the patients.

MYELOID DENDRITIC CELLS

Myeloid dendritic cells (mDCs) are the most important antigen-
presenting cells (APCs) with the highest capacity to initiate
adaptive immune responses. Immature mDCs efficiently capture
and process antigens, but due to the lack of co-stimulatory
molecules, they are rather tolerogenic and may actually inhibit
T cell responses (97, 98). Upon stimulation with microbial
stimuli and inflammatory cytokines IL-1, TNFα, and IL-12,
mDCs undergo maturation and migrate into T cell-rich areas of
lymphoid organs. Mature mDCs produce substantial amounts of
IL-12 and express high levels of HLA molecules and high levels
of co-stimulatory molecules that are equally essential for T cell
activation (99, 100).

Compared to healthy controls, HNSCC patients had
significantly lower numbers of CD11c+ DCs in their peripheral
blood. Interestingly, the decreased mDC levels normalized
after tumor resection (101). In squamous cell carcinoma of
the tongue, the presence of a high level of peritumoral CD1a+
DCs was shown to be associated with improved overall patient
survival (52). High densities of stromal CD1a+ Langerhans
cells were later confirmed to be a positive prognostic marker
in HPV- HNSCC but not in HPV+ HNSCC (54). Similarly, in
laryngeal (51) and oral (53) cancer patients, low densities of
S-100+ DCs were associated with poor prognosis. To the best of
our knowledge, compared to HPV-negative HNSCC, mDCs have
not been considered a valid prognostic factor in HPV-associated
oropharyngeal tumors to date.
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In silico studies published by Chen et al. (49) and Gameiro
et al. (37) did not reveal any statistically significant differences in
the expression of mDC-related genes between HPV-positive and
HPV-negative HNSCC samples (37, 49). In contrast, we observed
significantly higher levels of CD45+LIN-HLA-DR+CD14-
CD11c+ mDCs in HPV+ oropharyngeal tumors compared
to those in HPV-negative HNSCC using flow cytometry (29).
However, we did not show any differences between the
densities of tumor-infiltrating DC-LAMP+ activated mDCs
in HPV+ and HPV- oropharyngeal tumor samples using
immunohistochemical staining, and we did not observe any
associations between theDC-LAMP+mDCdensities and patient
outcomes (43).

PLASMACYTOID DENDRITIC CELLS

Plasmacytoid dendritic cells (pDCs) play an essential role in
the antiviral immune response and are characterized by their
considerable production of IFNα in response to viral RNA or
DNA, which are recognized by intracellular Toll-like receptors
TLR7 and TLR9, respectively (102). Additionally, depending
on the activation status of pDCs, these cells may act as
efficient antigen-presenting cells or induce the differentiation and
expansion of Tregs (103, 104).

Similar to other solid tumors, the pDCs infiltrating HNSCC
were shown to be functionally impaired and were thought to be
rather protumorigenic. Indeed, Hartmann et al. (105) reported
a diminished capacity of HNSCC-infiltrating pDCs to produce
IFNα upon TLR9 stimulation with CpG motif-containing
oligonucleotides. Moreover, tumor-derived supernatants
harvested from primary tumor cell cultures and HNSCC cell
lines inhibited IFNα production in control peripheral pDCs.
Bruchhage et al. (106) later suggested that IL-10 might be the
major cytokine responsible for the impairment of pDC functional
capacity in the HNSCC microenvironment. Consistent with
these findings, high densities of pDCs were associated with poor
prognosis in oral squamous cell carcinoma patients (55, 56).

T LYMPHOCYTES (TUMOR-INFILTRATING
LYMPHOCYTES)

T lymphocytes are the pillars of adaptive immunity and are
known to be essential in the control of tumor progression.
Consequently, most of the immunotherapeutic protocols in
cancer management, including highly successful immune
checkpoint inhibitors, target T cell-related immune responses.
Three major classes of T cells can be distinguished according
to their primary function: cytotoxic CD8+ T cells, which are
capable of killing infected or malignant cells; helper CD4+ T
cells, which provide essential signals to B cells and polarize the
immune response via cytokine production; and Tregs, which
suppress the activity of other lymphocytes and help maintain
peripheral tolerance.

Similar to the observations in othermalignancies, the densities
of CD8+ tumor infiltrating T cells were positively correlated with

improved clinical outcome in both HPV-associated and HPV-
negative HNSCC (36, 42, 43, 57, 107, 108). In general, tumors
associated with HPV show significantly higher levels of T cell
infiltration, especially CD8+ T cell infiltration (29, 36, 37, 49).
Additionally, significantly higher proportions of CD8+ T cells
infiltrating HPV-associated HNSCC were reported to be capable
of producing pro-inflammatory cytokines, namely, IFNγ and IL-
17 (29). However, a subgroup of cases with low proportions of
infiltrating TILs and prognosis comparable to that of patients
with HPV-negative tumors can be identified among HNSCC
patients with HPV-positive tumors (26). These data suggest that
the quantity and quality of the immune infiltrate is a valid
prognostic tool that may markedly improve the stratification of
HNSCC patients. Indeed, it has been shown that HPV-specific
CD8+ T cells are detectable in 64–75% of HPV-positive HNSCC
samples (109–111). These functional HPV-specific T cells were
shown to be mostly PD-1+Tim-3- (111), and their presence was
associated with improved overall survival (110). Thus, in addition
to the density of CD8+ T cells, the presence of HPV-specific T
cells seems to be a valid prognostic marker that can be used for
better patient stratification.

In the case of CD4+T cells, our study based on flow cytometry
data showed significantly higher numbers of naive CD4+ T cells
but not Th1 cells and Th17 cells in the tumor microenvironment
of HPV-positive HNSCC samples compared to those in the
tumor microenvironment of HPV-negative samples (29). A gene
expression study published by Gameiro et al. (37) revealed
higher numbers of follicular T helper (Tfh) cells and Tregs, but
not memory CD4+ T cells, in HPV-associated tumor samples
compared to those in HPV-negative tumor samples. Higher
numbers of Tregs in HPV-positive HNSCC were also reported
by several studies based on immunohistochemical staining of
tumor sections (36, 58, 112). Unlike CD8+ T cells, the role
of Tregs in HNSCC is not fully understood. Whereas, some
studies suggest a negative impact of tumor-infiltrating Tregs
on disease progression (60, 62), other publications reported
a positive correlation between high densities of Tregs and
patient outcome (59, 61, 63). The high numbers of tumor-
infiltrating Tregs observed in immunologically “hot” HPV-
associated tumors suggest that the proportions of Tregs or the
CD8+ T cell/Treg ratio, rather than Treg numbers alone, might
truly reflect the shape of the immune response within the tumor
microenvironment. Indeed, we have observed that although
the numbers of Tregs were slightly higher in HPV-associated
HNSCC samples, the proportions of these cells were actually
lower (29). Thus, the whole pattern of immune cells, which
also reflects the relationships among various cell populations,
provides the best information about the prevailing status of the
immune response within the tumor microenvironment.

B LYMPHOCYTES

It is well-known that B lymphocytes play a central role in humoral
immunity due to their capacity to produce antibodies. Different
subsets of B cells are able to recognize either polysaccharides
or lipid antigens, which leads to T cell-independent responses,
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or protein antigens, which are presented to Tfh cells in
the lymph nodes, Payer’s patches, and spleen via HLA class
II molecules. During T cell-dependent activation, Tfh cells
stimulate B cell activation and differentiation into antibody-
secreting plasmablasts via the CD40L-CD40 pathway and IL-21
and IL-4 production. Additionally, B cells can undergo further
maturation in germinal centers and develop either into long-
lived plasma cells that secrete high levels of antibodies or into
memory B cells. Compared to the T cell-independent pathway of
B cell activation, the T cell-dependent pathway of B cell activation
leads to the production of high affinity class-switched antibodies
(113, 114). In addition to antibody production, B cells are capable
of producing immunomodulatory cytokines and chemokines,
can play a role as antigen-presenting cells, and can efficiently
stimulate both CD4+ T cells and CD8+ T cells (114–116).

Compared to T cells, the role of B cells in cancer immunology
has been less extensively explored and generally underestimated.
Thus, the role of B cells in tumor progression remains
controversial. Whereas, B cells were shown to be rather
protumorigenic in mice, high levels of tumor-infiltrating B cells
in humans were mainly associated with good outcome and
longer overall survival (114, 117). However, recent studies have
shown that B cells play an essential role in the response to
immune checkpoint inhibitors and thus might be much more
important for successful immunotherapeutic approaches than
expected (118).

In HNSCC, B cell signatures were able to distinguish
between HPV-associated and HPV-negative carcinomas, with
a significantly higher expression of B cell-related genes in
HPV-associated tumors (37, 43, 49, 119). These data were
confirmed at the cellular level, and significantly higher densities
of tumor-infiltrating CD20+ B cells were observed in the
microenvironment of HPV-associated tumor sections than in
the microenvironment of HPV-negative samples (43, 112, 120).
Compared to samples with low infiltrates of lymphocytes, B
cells derived from TIL-rich tumors were shown to be activated
and to express high levels of HLA and costimulatory molecules.
Consistent with these findings, high B cell density was associated
with good prognosis in OPSCC patients regardless of HPV
status (43). Importantly, B cells were shown to create aggregates
with CD8+ T cells, and the frequency of these B cell–
CD8+ T cell interactions was positively associated with the
proportions of HPV-specific CD8+ T cells infiltrating the tumor
microenvironment, suggesting the importance of B cells for the
T cell-related antitumor immune response (43). In contrast, the
proportion of IL-10-producing regulatory B cells (Bregs) in HPV-
associated tumor tissues was comparable to the levels of Bregs in
control tonsils, indicating that Bregs do not accumulate in the
tumor microenvironment of HPV-associated HNSCC (43). In
HPV-negative tongue squamous cell carcinoma, the proportions
of IL-10+CD19+ Bregs were also very low (below 1%); however,
their levels were significantly enhanced compared to adjacent
tissue and were significantly correlated with poor outcome in
univariant, but not multivariant, survival analysis (64).

Besides the direct association between B cell densities in the
tumor microenvironment and the disease outcome, the presence
of antibodies against HPV16 E6 and E7 oncoproteins in patients’
sera was positively correlated with the recurrence-free survival of

HPV-positive OPSCC patients (121, 122). These findings support
the importance of B cell-mediated immune responses in HPV-
associated OPSCC.

CYTOKINE AND CHEMOKINE PROFILE

Similar to other malignancies, higher levels of pro-angiogenic
cytokines IL-8 and VEGF were detected in HNSCC patients’
sera compared to healthy controls (123). Expression
of these cytokines by HNSCC cells was confirmed by
immunohistochemistry (IHC), showing up to 90% of VEGF-
positive tumors (123, 124). Together with pro-angiogenic
effects, IL-8 and VEGF are known to promote tumor growth
and metastasis (125). Comparing plasma levels of cytokines
in HNSCC patients and healthy controls, Lathers et al. (126)
showed that the cytokine profile of HNSCC patients is shifted
toward Th2 bias. Indeed, HNSCC patients had significantly
higher levels of IL-4, IL-6, and IL-10 in the plasma compared
to controls. In agreement with this finding, lower levels of
IFNγ were observed in HNSCC patients; however, the levels of
IL-1, IL-2, and GM-CSF were increased, whereas Th1 cytokine
IL-12 and immunosuppressive TGFβ remained unchanged
(126). IL-6 and IL-10 were detected in HNSCC cell lines,
primary HNSCC cells, as well as tumor-infiltrating immune
cells (123, 127–129). Moreover, serum levels of IL-6 negatively
correlated with HNSCC patients’ prognosis (130). Despite
exerting many pro-inflammatory properties, protumorigenic IL-
6 is a pleiotropic cytokine, which affects cell growth, maturation,
survival, and migration during immune responses (131, 132). In
colorectal cancer, IL-6 was shown to stimulate IL-10 production
by tumor cells (133). The role of IL-10 in cancer progression
has been extensively studied. Mostly, IL-10 is regarded as
an immunosuppressive, anti-inflammatory cytokine, which
promotes tumor escape from immune surveillance. However,
IL-10 was also shown to inhibit tumor-induced angiogenesis,
enhance the production of NO, and increase tumor cell line
immunogenicity in some preclinical models (134). Besides pro-
angiogenic and Th2 cytokines, HNSCC tissues were reported
to produce high levels of pro-inflammatory TNFα (29, 127).
Immunohistochemical staining revealed that TNFα is mainly
produced by tumor cells, TAMs, endothelial cells, stromal
fibroblasts, and inflammatory tumor-infiltrating immune cells
(127, 135, 136).

As most of the studies did not include HPV status, little
is known about the differences in cytokine profile of HPV-
positive and HPV-negative HNSCC. Partlová et al. (29) reported
no statistically significant differences in cytokine production in
cell culture supernatants derived from HPV-positive and HPV-
negative HNSCC, although HPV-positive samples produced
higher levels of IL-2, IL-17, IL-23, and IFNγ and slightly
lower levels of IL-1β, IL-6, and TNFα compared to HPV-
negative samples. However, HPV-positive samples produced
markedly higher levels of pro-inflammatory chemokines CXCL9
and CXCL10, which characterize immunologically “hot” tumors
(137). Additionally, HPV-positive samples produced significantly
higher levels of CCL17 and CCL21. Via interaction with CCR4
and CCR8, CCL17 induces chemoattraction of T cells (mainly
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Tregs and Th2 cells), macrophages, and activated NK cells (138–
140). Surprisingly, in HNSCC, the levels of CCL17 positively
correlated with the densities of Th17, Th1, and cytotoxic
T cells, but not Tregs and macrophages (29). In secondary
lymphoid organs, CCL21 attracts naive T cells facilitating
their co-localization with antigen-stimulated DCs in T cell
zones. In addition to chemoattraction, CCL21 favors expansion
of CD4+ and CD8+ T cells and induces Th1 polarization,
whereas Tregs are hyporesponsive to both CCL21-induced
migration and CCL21 co-stimulation (141). In HNSCC, levels
of CCL21 positively correlated with the frequency of Th17
cells (29).

CONCLUSIONS

Despite the markedly better prognosis of HNSCC patients with
HPV-associated tumors and despite the recent segregation of
HPV-associated and HPV-negative HNSCC into two different
entities, the standard of care management remains the same
in both groups of patients. Clinical trials focused on treatment
deintensification strategies have not provided the necessary
evidence to date to support deintensification protocols. The
recently published multicenter DeESCAlaTE and RTOG 1016
clinical trials showed a significant decrease in tumor control in
patients with HPV-associated OPSCC treated with radiotherapy
plus cetuximab compared to those treated with radiotherapy
plus cisplatin-based chemotherapy, and, moreover, there was
no benefit in terms of reduced toxicity (142, 143). Indeed,
the appropriate selection of patients who would profit from
deintensified treatment is essential; however, a valid biomarker
that is suitable for the precise stratification of patients with HPV-
associated tumors has not yet been approved. As the density
and pattern of the immune infiltrate in tumor tissues has been
repeatedly associated with patient outcome in a wide range of
malignancies, including HPV-associated HNSCC, high densities
of CD8+ T cells and especially B cells or the presence of HPV-
specific T cells within the tumor tissue might be considered
possible biomarkers in treatment deintensification clinical trials.
However, these markers would be applicable in surgically treated
patients only, as tissue specimens are necessary for precise IHC
or flow cytometry-based analyses. For non-surgically treated
patients, IL-6 plasma levels and NLR might be candidates for
stratification biomarkers. Nevertheless, to validate a biomarker,
a large multicenter study needs to be performed to establish a
proper cutoff. A precise and comprehensive immune monitoring

of completed deintensification clinical trials would enable to
preselect a biomarker worth validating.

The current knowledge about the HNSCC microenvironment
might be also translated into novel immunotherapeutic
approaches. Immune checkpoint inhibitors (ICIs) made a
true breakthrough in cancer immunotherapy; nevertheless,
primary or acquired resistance often accompanies this approach.
Strategies combining multiple approaches thus achieve the
highest response rate in cancer patients. In HNSCC, anti-
PD-1 monoclonal antibodies nivolumab and pembrolizumab
were recently approved as first-line treatment for patients
with metastatic or unresectable, recurrent disease (144).
Enhancement of Tim-3 expression on T cells following PD-1
blockade as a mechanism of acquired resistance (145) provides
a rationale to combine anti-PD-1 therapy with anti-Tim-3
antibodies. High efficacy of simultaneously administered
antigen and anti-PD-1 antibody (146) and the absence of
Tim-3 overexpression in HPV E6/E7 peptide-stimulated T
cells following PD-1 blockade (111) favors combining immune
checkpoint inhibitors with HPV-specific vaccine. Indeed, the
overall response rate of 33% was achieved with this approach in a
phase 2 clinical trial enrolling incurable HPV16-positive OPSCC
patients (147).

The importance of B cells in both patient stratification (43)
and response to anti-PD-1 therapy (118, 148) suggests that
B cells might be a useful target in future immunotherapy
protocols. Thus, B cell-activating molecules, such as CD40
agonist antibodies, which are already tested in multiple clinical
trials (149), might be interesting partners in novel combination
approaches to immunotherapy.

Consequently, patient stratification as well as present
immunotherapeutic approaches might be further refined based
on the current knowledge of the HNSCC microenvironment,
allowing beneficial changes in the standard of care for the
treatment of HPV-associated HNSCC.
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