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In this paper we argue that a synthesis of findings across the various sub-areas of
research in complex problem solving and consequently progress in theory building is
hampered by an insufficient differentiation of complexity and difficulty. In the proposed
framework of person, task, and situation (PTS), complexity is conceptualized as a quality
that is determined by the cognitive demands that the characteristics of the task and
the situation impose. Difficulty represents the quantifiable level of a person’s success
in dealing with such demands. We use the well-documented “semantic effect” as
an exemplar for testing some of the conceptual assumptions derived from the PTS
framework. We demonstrate how a differentiation between complexity and difficulty
can help take beyond a potentially too narrowly defined psychometric perspective
and subsequently gain a better understanding of the cognitive mechanisms behind
this effect. In an empirical study a total of 240 university students were randomly
allocated to one of four conditions. The four conditions resulted from contrasting the
semanticity level of the variable labels used in the CPS system (high vs. low) and two
instruction conditions for how to explore the CPS system’s causal structure (starting
with the assumption that all relationships between variables existed vs. starting with
the assumption that none of the relationships existed). The variation in the instruction
aimed at inducing knowledge acquisition processes of either (1) systematic elimination
of presumptions, or (2) systematic compilation of a mental representation of the causal
structure underpinning the system. Results indicate that (a) it is more complex to adopt
a “blank slate” perspective under high semanticity as it requires processes of inhibiting
prior assumptions, and (b) it seems more difficult to employ a systematic heuristic
when testing against presumptions. In combination, situational characteristics, such
as the semanticity of variable labels, have the potential to trigger qualitatively different
tasks. Failing to differentiate between ‘task’ and ‘situation’ as independent sources of
complexity and treating complexity and difficulty synonymously threaten the validity of
performance scores obtained in CPS research.
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INTRODUCTION

Complex problem solving (CPS) is an umbrella term for
a diverse range of approaches to research, learning and
assessment. A common denominator of all these approaches
is the use of a computerized simulation of some abstract or
contextualized system. This is where the main commonality
ends. However, when considering the various different ways
problem solvers can interact with these simulations and the
wide variety of different purposes of their use, it becomes
apparent that the term CPS has many different meanings.
One meaning refers to a research paradigm that aims to study
“complex” cognition in the context of information processing,
decision-making, causal reasoning, or learning (Beckmann, 1994;
Beckmann and Guthke, 1995; Frensch and Funke, 1995; Guthke
et al., 1995). In other domains (e.g., Greiff et al., 2015),
CPS has been considered as an ability-related construct (or
set of constructs). One example is the ability to deal with
uncertainty (e.g., Osman, 2010) with its conceptual – yet not
always empirically aligned – links to reasoning and (fluid)
intelligence (Funke and Frensch, 2007; Stadler et al., 2015).
CPS has also started to establish its use in relation to an
assessment approach, be it in smaller-scale studies in relation
to personnel decisions (Wood et al., 2009) or in relation
to larger-scale educational attainment assessment exercises
such as PISA (OECD, 2013; Funke et al., 2017). Within
an assessment context, CPS is often discussed as a skill or
competency (rather than ability). On the one hand, the shared
use of the term CPS in these contexts tends to belie the
conceptual, and concomitantly, methodological diversity in this
field of research; on the other hand, such diversity in meaning
raises the suspicion of an insufficient conceptual foundation
of CPS.

As a look beyond CPS and at scientific theory building
paradigms generally reminds us, a lack of conceptual
grounding tends to result in definitions for the respective
target constructs that are predominantly operational (rather
than conceptual). This is evident in the CPS literature, as
CPS has often been used as a descriptor of the kind of
behavior observable when individuals are confronted with a
specific kind of challenge (i.e., CPS is what problem solvers
do when dealing with complex problems). As a corollary
of a preponderance of operational definitions, research
and subsequent publications seem to be heavily focussing
on psychometric characteristics of CPS simulations as
measurement tools. In its extreme, such a situation might
be perceived as delegating conceptual decisions to statistical
procedures.

With this paper, we aim to go beyond the psychometrically
driven approach to CPS and to contribute to a more
theory-based positioning of it within a nomological network
of cognition. Our argumentation leads to an empirical
investigation that explicitly differentiates manipulations of
complexity (the conceptual) from experiences of difficulty (the
psychometric) and in so doing, demonstrate the importance of
separating statistical and conceptual issues in the investigation
of CPS.

COMPLEXITY vs. DIFFICULTY

One symptom of a predominantly psychometric view on CPS
is the lack of a distinction between complexity and difficulty
(Beckmann and Goode, 2017). Difficulty is a psychometric
concept with rather limited explanatory value. In general terms,
difficulty provides a descriptive account of some items being
answered correctly by a smaller proportion of individuals than
other items, thus creating the basis for them being labeled as
more difficult. When interested in the reasons for their higher
levels of difficulty, one is confronted with a tautological reference
(common to classical-test-theory) to the lower proportion of
correct responses these items tend to attract. Actual explanations
as to why this might be the case, however, need to go beyond
such circularity. An analysis of the cognitive behavior required
to tackle the problem posed by an item, as well as a reflection
of the circumstances under which the item is expected to be
solved, feeds into the notion of complexity. In this regard,
complexity reflects ex ante considerations of the cognitive
demands imposed by the task and the circumstances under which
the task is to be performed (i.e., predictions), which makes
complexity a primarily cognitive concept. Difficulty is experiential,
person-bound and by definition, statistical. It is a reflection of
how well individuals (with their individual differences in ability,
knowledge, skills, motivation, etc.) deal with complexity, which
makes it a psychometric concept.

At a first and rather pragmatic glance, such distinction may
seem pedantic. After all, so it could be claimed, the presumptions
linking difficulty (statistics) with complexity (theory) are built on
a wealth of replicable scientific evidence. Therefore, so one might
argue, our criticism would be considered not only unfounded in
practice, but even counterproductive to the pursuit of knowledge.
However, it is very easy to demonstrate this is not the case,
and that when considered through person–task–situation (PTS)
interactions, the broader CPS paradigm proves to be particularly
in need of such a distinction. In the following we present a
framework that allows for a conceptual differentiation between
complexity and difficulty in the context of CPS. We then
empirically test core arguments derived from this framework.

We start by taking the perspective of CPS as a research
paradigm that utilizes computerized scenarios as task
stimuli. These computerized scenarios or microworlds can
be conceptualized as systems (e.g., Funke, 1985, 1992). In
their simplest form, such systems comprise two kinds of
variables that are causally linked, input variables and output
variables and the interconnectedness of these system variables
can be algorithmically described through linear structural
equations. Such systems are considered “dynamic” if output
variables change both as an effect of problem solvers inputs and
independently over time.

In the contexts of research, assessment and learning, problem
solvers are usually asked to first explore the unknown causal
structure of these systems. In general, such an exploration phase
serves the purpose of knowledge acquisition. In a subsequent
control phase, problem solvers are then asked to reach and
maintain pre-defined goal states in the output variables. The
objective here is the application or utilization of the knowledge
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acquired during the exploration phase. In the terminology of
generic problem solving, the typical CPS constellation is where
a particular set of operations has to be identified (i.e., knowledge
acquired) that will bring the system from a given initial state to a
set target one (i.e., system control).

CPS IN THE THREE DIMENSIONAL
SPACE OF PERSON, TASK, AND
SITUATION (PTS)

As has been discussed previously (Beckmann, 2010; Birney
et al., 2016; Beckmann and Goode, 2017), psychological research
takes place in the three dimensional space of Person, Task, and
Situation variables. The definition of task has two sub-facets, the
task qua task and the task as behavior requirement (McGrath
and Altman, 1966; Hackman, 1969; Wood, 1986). The task qua
task facet refers to the physical characteristics of the stimuli the
problem solver is confronted with. In the context of CPS, these
are the characteristics of the CPS scenario which include, but are
not limited to, the number of variables or the density of their
interconnectedness. The task as behavior requirement refers to
what the problem solver is instructed to do. In the context of
CPS, this could be, for example, to either freely interact with
the given system to uncover its causal structure, or to control
this system, i.e., to reach and maintain a set of target states in
the output variables. Both, task qua task and task as behavior
requirements contribute interactively to the complexity of the
CPS task. That is, being confronted with the same system (task
qua task) but with different instructions – as communicated task
as behavior requirement – results in different tasks with different
levels of complexity. In short, different tasks require different
sets of expected1 (cognitive) behavior and therefore contribute
differently to complexity.

The definition of situation refers to the environment or the
circumstances in which a given task is to be performed (“task
environment” as described by Newell and Simon, 1972, p. 55).
In the context of CPS this includes situational characteristics
such as whether a causal diagram (i.e., a graphical representation
of the causal structure) is available or not when being asked
to control the system. Knowing or being able to anticipate the
target states during the exploration phase (or not) would be
another situational characteristic. As these and other variations
in circumstantial characteristics are also expected to result in
differing sets of cognitive behaviors (despite being confronted
with the same system and the same instruction), the situation is
conceptualized as another contributor to complexity.

So far we have identified that both the task (with its two facets
task qua task and task as behavior requirement) and the situation
contribute to complexity. The third category of variables is
linked to Person and includes, inter alia, individual differences in
reasoning ability, information processing capacity, motivation,
working memory, experience, and knowledge. Observed

1We emphasize expected here because it highlights that complexity is based on ex
ante developed expectations regarding the set of cognitive behaviors necessary to
deal with the challenge posed by the task in conjunction with the situation.

performance is the resultant of the difficulty individuals’
experience in dealing with the complexity imposed by the task
and the situation. In short, difficulty is the observable, subjective
reflection of complexity.

Experimental research in psychology, irrespective of its
focus, builds on observing variation in one component of this
tripartite system of variables (i.e., Person, Task, and Situation)
whilst the variation in the other two is either controlled for
or, more or less systematically manipulated. The dominant
experimental paradigms can be defined by their focus on one
of these three components. For instance, in an assessment
context, test takers are confronted with a standardized set
of tasks under standardized instructions (e.g., to control a
particular microworld) and in standardized situations (e.g., after
a knowledge acquisition phase that resulted in a causal diagram,
which is made available on the computer screen). Standardization
ensures that all test takers are dealing with the same level of
complexity (as it is defined by the system, the instructed task
and the situation), so that observed variability in performance
scores between (and occasionally within) individuals can be
attributed to individual differences in conceptually relevant
person characteristics (e.g., reasoning ability).

In comparison, in the context of cognition research,
participants are confronted with systems (task qua task) or
situations that differ systematically as part of experimental
manipulations. Randomization in the allocation of participants
to conditions aims at controlling for potential effects of
individual differences. This allows for observed variability in
average performances scores across conditions to be attributed to
differences in complexity caused by the variation in task and/or
situation characteristics.

In the context of instructional design research, as another
example, the situational features of a (learning) task are
systematically varied (e.g., availability and location of
information – say, 0, 1, or more mouse-clicks away) whilst
the task as behavior requirements (e.g., to acquire structural
knowledge) and the task qua task (i.e., the system) are kept
the same across learners. Observed performance differences
are then interpreted as indications of how various situational
variables (e.g., interface features) make a learning task more or
less complex.

In sum, complexity and difficulty are different concepts.
Failing to differentiate between the two is problematic in
at least two ways. First, equating (observation-based and
psychometrically derived) difficulty with complexity serves to
perpetuate the circular argument of that what is difficult must
be complex, and what makes something complex is its difficulty.
Second, equating (task and situation analysis based) complexity
with difficulty creates the dilemma of not being able to “explain”
why the same level of complexity (as set by the task and the
situation) results in different individuals experiencing varying
levels of difficulty (as observed via differences in performance
scores). The first problem creates the risk of a tautological trap
that is often associated with operational definitions of constructs;
the second problem seems to negate the role of the individual
or person and therefore promotes a rather “un-psychological”
perspective per se. For CPS to be taken beyond a predominantly
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psychometric approach, the differentiation between complexity
and difficulty is a necessary precondition. Otherwise, by
remaining too narrowly focussed at a psychometric level, CPS
could just as appropriately be labeled Difficult Problem Solving
(i.e., DPS) – a term which can be readily recognized as data driven
and theoretically vacuous.

Projecting CPS-related research and its findings onto the
tripartite system of Person, Task, and Situation as briefly outlined
above provides a framework for the necessary differentiation
between complexity and difficulty. In the following we use the
semantic effect (Beckmann, 1994; Beckmann and Guthke, 1995;
Beckmann and Goode, 2014), as an exemplar for how the PTS-
based differentiation between complexity and difficulty can help
take CPS beyond a psychometric perspective and subsequently
gain a better understanding of the cognitive mechanisms behind
this effect.

VARIABLE LABELS AS SITUATIONAL
CHARACTERISTIC – A SOURCE OF
COMPLEXITY OR DIFFICULTY?

Previous research has repeatedly shown that seemingly minor
changes of situational characteristics such as using semantically
laden labels for system variables in comparison to semantically
neutral labels have profound effects on performance (Beckmann,
1994; Beckmann and Guthke, 1995; Beckmann and Goode, 2014).
In these studies, problem solvers tend to acquire less knowledge
and subsequently control the system rather poorly when the same
system is presented as a ‘Cherry Tree’ with input variables labeled
‘Light,’ ‘Water,’ and ‘Temperature’ linked to output variables
labeled ‘Cherries,’ ‘Leaves,’ and ‘Beetles’ in comparison to a
‘Machine’ with input variables labeled as control dials ‘A,’ ‘B,’ ‘C’
and output variables labeled display ‘X,’ ‘Y,’ ‘Z.’ This phenomenon
was initially described as the ‘Semantic Effect’ (e.g., Beckmann,
1994).

Projecting the semantic effect onto the tripartite framework of
Person, Task, and Situation (PTS) implies that whilst presenting
problem solvers with the same system (i.e., keeping the task qua
task constant) and instructing them to execute the same tasks
(i.e., keeping tasks as behavior requirements constant) still creates
systematic variability in performance (i.e., indicating differences
in difficulty) when a situational characteristic (e.g., the semantic
meaning of variable labels) is varied.

As previous research has suggested, problem solvers
confronted with system labels high in semanticity tend to
approach the task of exploring a complex, dynamic system
with a set of presumptions regarding the interrelatedness of
system variables, whilst problem solvers working with variable
labels low in semanticity tend to start with a “blank slate”
concerning the causal structure of the system (Beckmann and
Goode, 2014). In the former situation, knowledge acquisition
would require a process of systematically eliminating presumed,
yet not existing relationships and therefore reducing the
complexity of the internal representation of the system’s
causal structure. In the latter situation, knowledge acquisition
from a “blank slate” perspective would require a process of

systematically compiling knowledge and therefore building up
the complexity of the internal representation of the system’s
causal structure. Predicting whether the cognitive processes
involved in eliminating presumptions are more complex than
those in relation to compiling knowledge would be challenging
from a purely psychometric perspective.

Concomitantly, the observed performance differences in the
context of the semantic effect are associated with differences
in the systematicity of the exploration behavior (Beckmann
and Goode, 2014). Systematicity in exploration behavior is
reflected in a specific sequence of interventions. First, all
inputs are left at zero. Any changes in the outputs can then
be interpreted as autonomic changes (i.e., eigendynamics).
Subsequent interventions should then focus on the effects
of each input variable on any of the output variables in
isolation, i.e., changing only one input at a time. Only
such “Vary-One-or-None-At-a-Time” heuristic (VONAT, see
Beckmann and Goode, 2014; p. 279; Beckmann and Goode, 2017)
creates informative system state transitions that allow problem
solvers to derive knowledge regarding the causal structure of the
system. In contrast, changing more than one variable at a time or
to miss the zero change intervention creates what de Jong and van
Joolingen (1998, p. 185) describe as “inconclusive experiments,”
which impedes successful knowledge acquisition.

AIMS AND HYPOTHESES

We use the phenomenon of the semantic effect as an exemplary
case for testing the conceptual assumption derived from the
PTS framework that situational variables – in addition to task
variables – present a potential source of complexity.

First, and based on findings from previous research (e.g.,
Beckmann and Goode, 2014) we expect problem solvers working
with variable labels high in semanticity to be less systematic in
their exploration behavior (Systematicity Hypothesis). We then
address the question whether the inferior CPS performance
observed under semantically rich conditions (i.e., the semantic
effect) can be explained by (1) supposedly higher cognitive
demands associated with a process of reducing the complexity of
an internal representation of the causal structure of the explored
system, or by (2) problem solvers “simply” not employing the
appropriate heuristic (i.e., systematically testing against a priori
assumptions). In the context of the PTS framework, results in
accordance to (1) would recommend situational variables as
contributors to complexity; results in accordance to (2) would
suggest that situational variables contribute to the difficulty of
dealing with a complex dynamic system.

The validity of a conceptual distinction between complexity
and difficulty, which is based on the PTS framework, can be
tested by observing the effect of explicitly instructing problem
solvers to systematically explore the system by either starting with
the presumption that all relationships exist (thus requiring to
eliminate non-existing relationships and to reduce the complexity
of the mental representation of the causal structure) or by starting
with the presumption that no relationships exist (thus requiring
to compile the set of relationships that exist and to build up the
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complexity of the mental representation of the causal structure).
If eliminating presumptions to arrive at the correct model of
the system is more complex (via imposing greater demands
on cognitive behavior) than starting with a blank slate then
performance scores should worsen (both knowledge and control
performance). Should, however, performance scores improve,
this would suggest that problem solvers fail to engage in cognitive
behavior that they are in fact capable of (Complexity–Difficulty
Hypothesis). In psychometric terminology, the latter outcome
would suggest that semanticity has the potential of introducing
“construct-irrelevant difficulty” (Messick, 1995), and therefore
represents a threat to validity.

METHODS

Participants
The sample comprised of 240 students from two Australian
universities across a wide range of subjects, including
engineering, business studies, science related subjects and
medicine (60% female, mean age 22.7 years).

Materials
To test both the Semanticity-Hypothesis and the
Complexity–Difficulty Hypothesis four different versions of
a CPS scenario with three input and three output variables
were created (Figure A1 shows the causal diagram and the
underpinning equations that govern this system). These four
versions were embedded in a 2 (semanticity: high vs. low) by 2
(instruction: compile vs. eliminate) between subject design. In
the two high semanticity versions, variable labels related to a
Cherry Tree were used (i.e., ‘HEAT,’ ‘LIGHT,’ and ‘WATER’ for
the input variables and ‘CHERRIES,’ ‘LEAVES,’ and ‘BEETLES’
for the output variables). In the two low semanticity versions,
variables low in semantic value were used (i.e., ‘INPUT A,’
‘INPUT B,’ and ‘INPUT C’ and ‘OUTPUT U,’ ‘OUTPUT V,’
and ‘OUTPUT W,’ respectively), referring to a ‘BLACK BOX.’
For each of the two semanticity conditions two instruction
conditions were created. In the compile conditions problem
solvers were instructed to explore the causal structure of the
given system by starting with ‘. . . the assumption that no
relationship existed, and to systematically find out which of
the possible links do, in fact, exist.’ In the eliminate conditions
problem solvers were instructed to explore the causal structure
of the system by starting with ‘. . . the assumption that all the
relationships existed, and to systematically find out which of the
possible links do, in fact, not exist.’

Procedure
After completing a demographics questionnaire participants
were randomly allocated to one of the four CPS conditions.
The CPS systems were presented in a non-numerical, graphical
format on the computer screen (see Figure 1). Prior to being
instructed to start exploring the system under the assumption
that either all or none of the relationships existed, participants
allocated to the high semanticity condition (i.e., Cherry Tree)
were asked to indicate their expectations regarding the causal

FIGURE 1 | Partial screen captures of two of the four experimental conditions
(top: compile condition for high semanticity; bottom: eliminate condition for
low semanticity).

structure that might underpin the system. This information was
used to test whether the actual implemented causal structure
could be perceived as counterfactual to “common” expectations.

Phase 1 – Knowledge Acquisition: Participants were first
instructed to acquire knowledge of the system variables’
interconnectedness. To do so they were given two cycles with
seven trials each where they could freely change the values of
the three input variables in their respective system and observe
the subsequent changes in the output variables. After each
exploration trial participants were asked to record their insights
regarding the causal structure of the system in form of a causal
diagram presented on screen. After the first cycle of seven trials
the values for the output variables were reset, the causal diagram,
however, remained on the screen.

In the compile conditions, the initial causal diagram consisted
of dotted arrows representing possible links (see left panel in
Figure 1 for the Cherry Tree version). Over the course of the
knowledge acquisition phase these arrows had to be changed into
either solid arrows (indicating assumed links) or deleted arrows
(indicating assumed non-links).

In the eliminate conditions, the initial causal diagram
comprised solid arrows for all possible relationships (see right
panel in Figure 1 for the Black Box version). During the
process of knowledge acquisition in this condition, arrows linking
variables that were in fact identified as being unrelated were
expected to be deleted from the diagram leaving only those
arrows in the causal diagram for which a link is assumed to
exist.

Phase 2 – Control: In the second phase, participants were
asked to control their respective system using their developed
causal diagram, which represented their previously acquired
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causal knowledge. Participants had two control cycles with seven
intervention trials each to reach and maintain two different
target states, which were indicated as red horizontal lines in the
respective panels of the output variables (Figure 2). After the first
control cycle, the values for the output variables were reset and a
different set of target values were given. Problem solvers were not
informed about these target states prior to the respective control
phase.

Operationalizations
Systematicity of exploration behavior is operationalized via three
ordinal categories. The intervention sequence necessary for being
able to identify the underlying causal structure of the explored
system comprises one exploration intervention where all inputs
were left at zero followed by three exploration interventions
where only one input was changed. Problem solvers who
executed this sequence in this order at least once across their 14
exploration trials received a systematicity score of 2 (VONAT).
Those who either failed to employ the zero intervention or
where it did not precede the three single change interventions
(i.e., traditional VOTAT) received a systematicity score of 1,
otherwise a score of 0 was given. The rationale is that in
systems with autoregressive dependencies an all preceding zero
intervention is a necessary precondition to have the chance to
correctly identifying direct effects using subsequent single change
interventions.

Knowledge acquisition. The task of exploring a system to
find out its underlying causal structure can be conceptualized
as a “relationship detection task.” Taking CPS beyond a
mere psychometric approach (i.e., by looking at more than
the percentage of correctly identified relationships) should be
reflected in the performance score used. We therefore based
the operationalization of knowledge acquisition performance on
a signal detection model that Snodgrass and Corwin (1988)
introduced in the context of recognition memory. In this model
the combined probability of correctly identifying existing and
non-existing relationships (i.e., hits and correct rejections, resp.)
form the sensitivity index Pr (Formula 1). Knowledge scores
based on this operationalization have a theoretical range from
−0.98 to 0.98, where a score below zero indicates inaccurate
knowledge, whilst a score above zero indicates more accurate
knowledge.

Pr = (Hit rate)−(False Alarm rate) (1)

In this model a Bias Index (Br) can also be derived, which
reflects a problem solver’s tendency to either “see” or “not to see”
relationships when in fact they are uncertain. Bias scores (Br,
Formula 2) range from 0 to 1, where values below 0.5 indicate a
conservative response tendency (i.e., “guessing that relationships
do not exist”) and values above 0.5 indicate a liberal response
tendency (i.e., “guessing that relationships exist”).

Br =
False Alarm rate

1− (Hit rate)− (False Alarm rate)
(2)

Control performance. An operationalization of control
performance by means of a simple metric of the distance between

actual and target state after the final control intervention with
limited reflection of the process, resembles the psychometric
notion of a criterion-based assessment. That is, it does not
differentiate between problem solvers who have reached the
target state earlier and having to spend most of the time
stabilizing the system, and problem solvers who reached the
target closer to the end of the control cycle. As discussed
in the context of measuring knowledge acquisition, given
our aim to take CPS beyond a psychometric approach, the
operationalization of control performance needs to better reflect
how problem solvers cope with the cognitive demands (i.e.,
complexity) imposed by the start-target state discrepancy and the
system characteristics (e.g., the dependency structure of output
variables).

Finding the correct control intervention (i.e., set of inputs)
that brings the system at or closest to the target state can
be conceptualized as navigating the problem space. Different
systems differ in their size and navigability as a function of
(a) system characteristics such as the number and kind of
dependencies, and/or (b) situational characteristics, such as
the start-target discrepancy problem solvers must bridge. In
order to allow for comparisons of performance scores across
different studies, using different systems and/or different start-
target discrepancies, performance scores need to be standardized
against the size of the problem space of the respective system
and start-target discrepancy. To achieve this standardization, we
propose to operationalize control performance via the Euclidean
distance between the intervention vector (i.e., values entered for
the input variables) used by the participant and the vector of
optimal interventions (i.e., inputs that would have brought the
outputs at or closest to the target states2) for each trial of a control
cycle (i.e., at each decision-input point). A standardization
against the size of the problem space can be achieved by dividing
the trial specific deviation scores by the trial specific difference
between the vectors of pessimal and optimal intervention inputs
[see formula (3)]. Consequently, control performance scores
represent the averaged (across the seven control trials) deviation
of the actual from the optimal intervention relative to maximal
possible deviation for each and every trial. Their theoretical
range is from 0 (worst possible, i.e., pessimal) to 1 (i.e.,
optimal).

avEuXr =
1
m

m∑
t=1

{1− [

√∑k
i=1(optimalti − actualti)2√∑k

i=1(pessimalti − optimalti)2
]} (3)

m: number of trials across control cycles (14 in this study),
k: number of input variables (three in this study).

2The vector of ideal inputs would bring the system exactly to (or would maintain)
the target state. Restrictions of the range of possible input variables (e.g.,
introduced for practical reasons) might prevent reaching the target state in any
one single intervention. In such cases (i.e., the ideal values fall outside this range),
the values were adjusted to the nearest possible values, and these then constituted
the vector of optimal inputs. In cases when the ideal values are within the range of
possible inputs, the ideal values were used as the optimal input.

Frontiers in Psychology | www.frontiersin.org 6 October 2017 | Volume 8 | Article 1739

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-01739 October 7, 2017 Time: 19:36 # 7

Beckmann et al. Difficult vs. Complex Problem Solving

FIGURE 2 | Screen capture from the control phase in the high semanticity condition.

RESULTS

The analyses are presented in two parts. First, we test two
prerequisites, (1) the potential incompatibility of the underlying
causal structure with the common expectation associated with a
“real” cherry tree, and (2) the effectiveness of the instructions to
start with the assumption that either all relationships existed or
none of the relationships existed (manipulation check). In the
second set of analyses we focus on the Systematicity-Hypothesis
and the Complexity–Difficulty Hypothesis. Table 1 provides an
overview of the descriptive statistics in study-related variables
across the experimental groups.

As a first step, we tested whether a potential semanticity
effect might simply be explained by the causal structure that
underpins the CPS system being counterfactual to what one
would expect in a “real” cherry tree. To this end we analyzed
the problem solvers’ expectations regarding the causal structure
of the Cherry Tree prior to being instructed to explore the
system (i.e., using the Sensitivity Index Pr to operationalize
prior expectations as prior knowledge). The resulting average
Pr(0) of−0.03 (SD = 0.21 based on NCT = 124) indicates

no systematic misalignment of common expectations with the
actual causal structure (see Figure A1). In the case where the
implemented system structure stood in contrast to common
expectations (i.e., being “counterfactual”) the sensitivity index
would have been substantially closer to −1.00. In cases where
the implemented system structure would agree with a commonly
held set of expectations – if such consensus existed in the
first place – the resulting sensitivity index would be closer to
+1.00. In the latter case, problem solvers would have already
possessed knowledge that they were expected to acquire during
the subsequent exploration phase. Both the average
hboxtextitPr value of around zero and the fact that expectations
regarding the existence of relationships are equally distributed
across the 12 possible variable links replicates what was found
in earlier studies contrasting CPS scenarios with high and low
semanticity (Beckmann, 1994; Beckmann and Goode, 2014,
2017). A counterfactual causal structure can therefore be ruled
out as an alternative explanation for a potential semantic effect.

Instruction Manipulation: In a next step, we checked
whether the instruction to start with the assumption that
either all relationships existed (eliminate condition) or none
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TABLE 1 | Descriptive statistics.

Conditions Variables

Semanticity Instruction N Bias Br [1] M
(SD)

Systematicity
[No,VOTAT,VONAT]

frequencies

Knowledge
acquisition

Pr [14] M (SD)

System
control

avEuXr M
(SD)

Low (Black Box) Compile 57 0.17 (0.19) [3,28,26] 0.57 (0.30) 0.65 (0.12)

Eliminate 59 0.89 (0.19) [15,25,19] 0.41 (0.35) 0.60 (0.12)

High (Cherry Tree) Compile 63 0.35 (0.27) [18,33,12] 0.20 (0.25) 0.55 (0.09)

Eliminate 61 0.87 (0.20) [14,34,13] 0.33 (0.36) 0.59 (0.13)

of the relationships existed (compile condition) was reflected
in problem solvers’ response behavior during the knowledge
acquisition phase. Problem solvers’ ability to follow these
instructions should be identifiable in the trajectories of the bias
scores (Br) over the course of the two exploration cycles with
their seven trials each. We expect problem solvers in the eliminate
condition to start with a bias score greater than 0.5 and close
to 1.00 as this would indicate an instruction-induced tendency
“to guess that there is” a relationship when in fact (still) in a
state of not knowing. Problem solvers in the compile condition,
however, were expected to start with a conservative bias (i.e., a
Br score below 0.5 and close to zero), which would indicate a
response tendency of “guessing that there is not” a relationship
when in the state of (yet) not knowing. In both conditions, we
expected bias scores to become more neutral (i.e., Br ≈ 0.5)
over the course of the exploration trials and when progressing
in acquiring knowledge. The left panel in Figure 3 depicts the
differing bias trajectories for the “Black Box” conditions; the
right panel shows them for the “Cherry Tree” conditions. It
is interesting to note that the final convergence occurs at a
level of around 0.75 for all conditions. This seems to indicate a
general propensity to slightly err on the positive, i.e., to rather
assume that there are relationships than running the risk of
missing one.

The trajectories seem to suggest that the instruction has led
to the expected differences in response behavior, confirming
the effectiveness of the instruction manipulation, in general.
Two further suggestions seem to emerge. First, the slopes for
the eliminate conditions are markedly less steep than the ones
for the compile conditions (F4.1,968.5 = 76.455, p < 0.001,
η2
= 0.224)3, which seems to suggest that reducing complexity

is more challenging than increasing it, regardless of semanticity.
Second, the starting point of the compile condition for “Cherry
Tree” is not as low as it is for “Black Box” (Br[1]: t118 = 4.13,
p < 0.001, dcompile−BBvsCT = 0.76), which seems to suggest that
adopting a “blank slate” perspective is more challenging in a
system with high semanticity.

Systematicity
To test the Systematicity-Hypothesis we conducted an ordinal
logistic regression analysis where problem solvers’ VONAT score

3Greenhouse-Geisser correction of df s for the F-test was applied due to sphericity
(χ2

90 = 2201.984, p < 0.001).

was regressed on the semanticity condition and the instruction
condition they have been allocated to. The results indicate
(see Table 2) that problem solvers who were asked to explore
a system with low semanticity (i.e., Black Box) were 2.24
time more likely to employ a systematic exploration heuristic
(i.e., using VOTAT or VONAT) than problem solvers working
on a system that used variables labels high in semanticity
(i.e., Cherry Tree). Being instructed to either systematically
eliminate erroneously presumed relationships or to identify
existing relationships in the causal model of the respective
system did not, however, make a substantial difference in the
level of systematicity with which problem solvers explored the
system.

Complexity – Difficulty
To address the Complexity–Difficulty Hypothesis we tested
in a final step whether the effect of the instruction differs
between the two levels of semanticity in terms of the
knowledge acquisition performance and control performance
metrics. Given both metrics produced comparable effects and
interpretations, we report them together. As expected, the
ANOVAs resulted in a main effect of the situational factor
“semanticity,” with overall lower performance scores (knowledge
acquisition: F1,236 = 29.863, p < 0.001, η2

= 0.11; control
performance: F1,236 = 14.048, p < 0.001, η2

= 0.06) for
the high semanticity condition (i.e., Cherry Tree) relative to
the low semanticity condition (“Black Box”). This replicates
the semantic effect once more (Beckmann, 1994; Beckmann
and Guthke, 1995; Beckmann and Goode, 2014). Across the
two semanticity conditions, the task factor “instruction” seems
to have no effect on performance scores overall (knowledge
acquisition: F1,236 = 0.119, p = 0.730, η2

≈ 0.00, control
performance: F1,236 = 0.027, p = 0.870, η2

≈ 0.00). However,
the presence of an interaction effect (knowledge acquisition:
F1,236 = 13.235, p < 0.001, η2

= 0.05, control performance:
F1,236 = 7.544, p = 0.006, η2

= 0.03), indicates that when being
instructed to start with the assumption that all relationships
existed and consequently systematically eliminate unjustified
presumptions showed a positive effect on both knowledge
acquisition and control performance in conditions of high
semanticity (i.e., Cherry Tree), but it resulted in systematically
lower performance scores in the condition where problem solvers
were working with low levels of semanticity (i.e., Black Box, see
Figure 4).
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FIGURE 3 | Comparison of bias (Br ) trajectories between the two instruction conditions for each of the two semanticity conditions.

TABLE 2 | Ordinal logistic regression of systematicity (VONAT) on semanticity and
instruction.

Estimate SE Wald χ2 df p Odds ratio

Semanticity
(Black Box vs. Cherry Tree)

0.804 0.251 10.256 1 0.001 2.24

Instruction
(compile vs. eliminate)

−0.307 0.246 1.557 1 0.212 0.74

Summary
Knowledge acquisition, especially in systems with high levels of
semanticity, can be conceptualized as a process of transforming
a presumption structure into a knowledge structure. The
instruction to start with the assumption that all possible
relationships between system variables existed aimed at creating a
presumption structure with high levels of complexity. If we were
to use the number of relationships in a system (NoR) as a crude
quantifier of complexity (see Beckmann and Goode, 2017 for a
more detailed discussion) the process of knowledge acquisition
under this instruction requires the reduction of complexity from
a NoRpresumed = 12 to NoRactual = 6. In contrast, the instruction
to start with a “blank slate” (i.e., assuming that no relationship
exists) aimed at creating a situation where complexity needed to
be increased from NoRpresumed = 0 to NoRactual = 6. The slope
differences in bias scores between the two instruction conditions
suggest that decreasing the complexity of a presumption structure
is more challenging than is building up the complexity of a
knowledge structure, regardless of the semanticity of the explored
system.

If we were to interpret the difference in the initial Bias-scores
between the two instruction conditions as an indicator of
how well problem solvers were able to adopt a “full slate”
or “blank slate” perspective then the significant interaction
effect between semanticity and instruction would indicate that
the instruction–adoption differs between the two semanticity
conditions. Problem solvers tend to struggle adopting a “blank
slate” perspective under the high semanticity condition. From

a cognitive task analysis point of view, we could surmise that
adopting a “blank slate” perspective under high semanticity
conditions requires the suppression of preconceived expectations
regarding the causal structure of the system as they are
triggered by the semanticity of the variable labels. The process
of suppression or decontextualization seems to add to the
complexity of the task of knowledge acquisition in CPS-systems
high in semanticity. In short, semanticity, as a situational
characteristic of CPS, has the potential of being a source of
complexity.

We have also argued that systematicity (i.e., the creation of
informative mini-experiments that help to identify the existence
or non-existence of relationships between system variables) is
a necessary precondition for successful knowledge acquisition,
independent of instruction conditions or semantic embedment
of the system. Our findings, however, suggest that problem
solvers working under high semanticity conditions are on average
less likely to engage in systematic exploration behavior. At
this stage, it is difficult to conceive of a “cognitive argument”
that would predict that the heuristic of systematically testing
against presumptions (as required in the eliminate conditions)
is cognitively more demanding than testing for evidence of the
existence of relationships (as would be required in the compile
conditions). This, in conjunction with the fact that problem
solvers in the compile condition with low semanticity were able
to be more systematic, leads to the conjecture of seeing the failing
to employ a suitable or necessary heuristic as an indication of
the greater difficulties problem solvers seem to have. In short,
semanticity as a situational characteristic of CPS might also be
a potential source of (unnecessary) difficulty.

In switching the focus from the bias score (indicating the
adoption of the instructed behavior) and systematicity score
(indicating the level of engaging in planned and coordinated
behavior) onto performance (i.e., knowledge acquisition as
well as control), the data suggest that in conditions of high
semanticity, it is more effective to start with the presumption
that all relationships might exist (“full slate”) rather than to
start pretending that none exist. This requires systematic testing
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FIGURE 4 | Disordinal interaction effects of semanticity and instruction on knowledge acquisition (left) and system control (right).

against a priori assumptions regarding the system’s underlying
causal structure, with the emphasis on “systematic.” In conditions
with low semanticity, however, it seems less effective to start with
presumptions of existing relationships (it is safe to assume that
such presumptions would likely be a result of conscious efforts
to guess). The more “natural” starting position here would be
something more akin to a “blank slate” (or, knowing that one
does not know), which then would require a systematic testing
for evidence regarding the system’s underlying causal structure.

The fact that knowledge acquisition and control performances
in the high semanticity conditions still fall short of those shown
in low semanticity conditions (i.e., replicating the “semantic
effect”) can be explained via two factors. First a complexity factor,
which reflects the additional cognitive demands associated with
suppressing presumptions when trying to adopt a “blank slate”
starting position under high semanticity conditions, and second
a difficulty factor, which reflects the tendency of problem solvers
to not adopt a systematic approach to exploration behavior.

GENERAL DISCUSSION

These reflections should not be misunderstood as an
unconditional plea against the use of semantically laden
variable labels in CPS. The answer to the question of what
kind of systems should be used is once more the infamous: it
depends. It depends on the purpose of the use of CPS scenarios.
If, for instance, we aim to measure problem solvers’ ability to
draw inferences based on observed outcomes of systematic
experimentation, we need to consider that arguably minor
changes in situational characteristics, such as the semanticity of
variable labels, have the potential to prevent the spontaneous
employment of systematic experimentation (see also Beckmann
and Goode, 2014). Under these circumstances, it would be
inappropriate to interpret performance scores as indicators of
problem solvers’ reasoning ability or to expect them to correlate
highly with reasoning measures. If, however, the aim was to
predict “real life decision making” and given that “real life

problems” are always semantically anchored, then using systems
with high semanticity might be appropriate. The “construct
purity” (or uni-dimensionality, in psychometric terms) of the
measure, however, is likely to be compromised, which needs to
be reflected (a) in expectations regarding inter-test correlations
and (b) in the way performance scores are interpreted. Schoppek
and Fischer (2015) make a convincing case for conceptualizing
CPS performance scores as indicators of a competency, whereby
a competency is a conglomerate of knowledge, reasoning ability,
thinking skills and motivational variables. The PTS framework
proposed here can help draw attention to the often-overlooked
potential impact that situational characteristics might have on
the composition of knowledge, reasoning ability, thinking skills
and motivational variables in performance scores obtained
from dealing with supposedly homomorphous CPS systems.
For instance, the practice of aggregating performance scores
obtained in multiple minimal complex systems (e.g., Funke,
2014; Stadler et al., 2016) with various levels of semanticity might
be psychometrically desirable (e.g., maximizing reliability). At
the same time, however, this very practice could (inadvertently)
turn out to be a threat to construct validity if performance scores
are underpinned by qualitatively different cognitive processes
(e.g., compiling vs. eliminating), varying levels of functional or
dysfunctional prior knowledge, and/or differences in perceived
personal relevance of the semantic context these systems are
embedded in. The PTS framework might also be (in-)formative
for on-going discussions as to whether CPS performance scores
are more than g or not (e.g., Gonzales et al., 2005; Wüstenberg
et al., 2012; Hundertmark et al., 2015; Schoppek and Fischer,
2015; Stadler et al., 2015).

The use of semantically laden cover stories or variable labels
to induce a stronger sense of “real life” relevance of the CPS
experience for the participants in our laboratory studies or
large scale assessment exercises should also not be mistaken
as a shortcut to what some might call ecological validity. If
we were to define ecological validity as the meaningfulness,
appropriateness and usefulness of inferences drawn based on
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performance scores obtained using an assessment tool, one would
have to convincingly demonstrate that the problems posed in
the assessment situation have triggered the same cognitive or
affective processes as they are expected to be involved when
dealing with complexity, uncertainty and dynamics in the “real
world.” Otherwise we run the risk of simply falling prey to
our own make-believe. Proper validation requires an ex ante
specification of the cognitive or affective processes expected
to be involved when dealing with complexity, uncertainty and
dynamics in the “real world.” The distinction between complexity
and difficulty, as being proposed here, can help moving beyond
psychometrics-driven post hoc interpretations of mean scores and
correlation patterns.

The differentiation between complexity and difficulty can
also help improving the conceptual and psychometric quality
of the assessment or research tools we use in the context of
CPS. For instance, result patterns indicating that problem solvers
overall experienced fewer difficulties (i.e., better performance)
than the ex ante specifications of complexity would have led us
to expect, could suggest that problem solvers might not have had
to engage in the sequences of cognitive processes anticipated.
Certain task-independent situational features could have enabled
the use of prior knowledge or chunked information cues (Wood,
1986) and consequently created “construct-irrelevant easiness”
(Messick, 1995). Conversely, “construct-irrelevant difficulty”
(Messick, 1995) could result from a misalignment between
(empirically observed) performance scores and (theoretically
pre-determined) complexity specifications, where the former is
systematically lower than the latter would have suggested. This
could have been triggered by situational variables (inadvertently)
preventing problem solvers from engaging in the anticipated
sequence of cognitive behaviors. Both instances present a threat
to validity that might be overlooked if complexity and difficulty
are treated synonymously.

The main intent of this paper was to contribute to the
discussion around taking CPS beyond a narrowly defined
psychometric approach. We are of the view that a predominantly
psychometric perspective tends to fall short in appropriately
capturing the essence of CPS, namely complexity. We identified
the lack of a differentiation between complexity and difficulty as
a major barrier to achieving conceptual progress in CPS research.
To redress this, we introduced the Person–Task–Situation
(PTS) framework which, through the theoretical distinction it
makes between its constituent factors, enables a conceptual
differentiation of complexity and difficulty. The differentiation
provides a theory-based platform for studying cognition (e.g.,
information processing, learning, decision making, reasoning)
beyond an atheoretical psychometric lens.

Complexity as a concept also includes a qualitative dimension,
whilst difficulty is exclusively quantitative. Complexity is
a cognitive concept that reflects the interactive effects of
information processing demands imposed upon the cognitive
system by task and situation characteristics (i.e., the T and the S
in the PTS framework). Difficulty is a psychometric concept that
reflects the level of success problem solvers have in dealing with
complexity. The integration of the person (i.e., the P in the PTS
framework) introduces individual differences in ability, memory,

knowledge and attitudinal variables as potential explanatory
factors for observed performance differences. Cognition research
in general, and CPS research in particular, focuses on studying
the links between complexity and difficulty. By ignoring their
conceptual differences and treating them synonymously, CPS
research runs the risk of loosing sight of its cognition-based
origins and failing to utilize its potential.

As a case in point, we used the “semantic effect” to
test these conceptualizations. We were able to show that
by using the same system (i.e., keeping the task qua task
constant) and asking problem solvers to freely explore the
system to find out its underlying causal structure (i.e., keeping
the task as behavior requirement constant), but varying the
system’s semantic embedment via using different variable labels
(i.e., varying a situational variable) systematic differences in
exploration behavior occurred. Failing to differentiate task
and situation as independent sources of complexity and by
treating complexity and difficulty synonymously the resulting
performance differences would erroneously be attributed to
individual differences in person-related variables.

The conceptual distinction between complexity and difficulty
paves the path for taking CPS beyond a psychometric approach.
In fact, it is instrumental to bringing the “psycho-” back into
psychometric. Otherwise one tends to operate with a “metric”
that is agnostic to theory, and can therefore not be scrutinized
for validity. The validity question is the core element of empirical
research in psychology that relies on a strong conceptual
underpinning. Psychometrics is a tool for linking the theoretical
and the empirical and should not be used as a substitute for either.

The study presented here is not intended as a
comprehensive test of the PTS framework that underpins
the complexity–difficulty distinction. Instead, the paper should
be considered as an invitation and orientation for future work.
The theoretical analyses and empirical outcomes we report
support the proposed complexity framework in demonstrating
that it is both specific enough to allow for testable hypotheses,
yet broad enough to allow modifications and refinements.
Our work also contributes to efforts to better understand
the person–task–situation tripartite. Future conceptual and
empirical contributions will be necessary to further develop
and refine a common framework that considers the interplay of
the person, the task and the situation and has complexity at its
conceptual core. This, so we have argued, is particularly pertinent
to a research paradigm such as CPS that carries complexity in
its label. Efforts to this end will support the better integration of
research findings from existing and future studies on CPS.
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APPENDIX

FIGURE A1 | Diagram and set of equations for the causal structure of the CPS system used in this study.
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