of Merck & Co., Inc.: Employee and Shareholder, May hold stock/stock options in the company and Salary. S. Kumar, Merck & Co., Inc.: Employee and Shareholder, Salary. P. Sklar, Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.: Employee and Shareholder, Salary. G. J. Hanna, Merck Sharp & Dohme, a subsidiary of Merck & Co., inc.: Employee and Shareholder, May hold stock/stock options in the company. and Salary. C. Hwang, Merck Sharp & Dohme, a subsidiary of Merck & Co., Inc.: Employee and Shareholder, Salary. W. Greaves, Merck Sharp & Dohme, a subsidiary of Merck & Co., Inc.: Employee, May hold stock/stock options within the company.

Efficacy (FDA Snapshot Approach)	DOR/3 (ISG	TC/TDF QD 6) N=447	Baseline Regimen (DSG) N=223		ISG minus DSG	
ISG vs DSG, Week 24	n	(%)	n	(%)	Difference (95% CI)	
HIV-1 RNA <50 copies/mL	419	(93.7)	211	(94.6)	-0.9 (-4.7, 3.0)	
HIV-1 RNA ≥50 copies/mL	8	(1.8)	4	(1.8)	-0.0 (-2.3, 2.3)	
ISG Week 48 vs DSG Week 24	n	(%)	n	(%)	Difference (95% CI)	
HIV-1 RNA <50 copies/mL	406	(90.8)	211	(94.6)	-3.8 (-7.9, 0.3)	
HIV-1 RNA ≥50 copies/mL	7	(1.6)	4	(1.8)	-0.2 (-2.5, 2.1)	
Safety Outcomes, Week 24	DOR/3TC/TDF QD (ISG) N=447		Baseline Regimen (DSG) N=223		ISG minus DSG	
Lipids, Change from Baseline (PI+rtv Stratum)	Mean Ch	ange (95% CI)	Mean Change (95% CI)		Difference (95% CI)	
Fasting LDL-C (mg/dL)	-16.5 (-	19.4, -13.7)	-1.9 (-6.5, 2.6)		-14.6 (-18.9, -10.4)	
Fasting non-HDL-C (mg/dL)	-24.7 (-	-28.3, -21.2)	-1.3 (-6.2, 3.6)		-23.0 (-28.0, -18.1)	
Adverse Event (AE) Summary	n	(%)	n	(%)	Difference (95% CI)	
One or more AE	308	(68.9)	117	(52.5)	16.4 (8.6, 24.2)	
Drug-related [†] (DR) AE	87	(19.5)	5	(2.2)	17.2 (13.0, 21.5)	
Discontinued due to AE	n	(2.5)	1	(0.4)	2.0 (-0.2, 4.0)	
Discontinued due to DR AE	7	(1.6)	0	(0.0)	1.6 (-0.1, 3.2)	

LB3. Daptomycin Plus Fosfomycin vs. Daptomycin Monotherapy for Methicillin-Resistant *Staphylococcus aureus* Bacteremia: A Multicenter, Randomized, Clinical Trial

Miquel Pujol, MD, PhD¹; Jose-Maria Miro, MD, PhD²; Evelyn Shaw, MD, PhD³; Jose Maria Aguado, MD, PhD⁴; Rafael San-Juan Garrido, MD, PhD⁵; Mireia Puig, MD, PhD6; Carle Pigrau, MD, PhD6; Esther Calbo, MD, PhD7; Jose Miguel Montejo, MD, PhD8; Regino Rodriguez, MD8; Maria Jose Garcia-Pais, MD9; Vicente Pintado, MD, PhD¹⁰; Rosa Escudero, MD¹⁰; Joaquin Lopez-Contreras, MD, PhD¹¹ MD, PhD ; Rosa Escudero, MD ; Joaquin Lopez-Contreras, MD, PhD ; Laura Morata, MD¹²; Milagro Montero, MD, PhD¹³; Marta Andres, MD¹⁴; Juan Pasquau, MD, PhD¹⁵; Belen Padilla, MD, PhD¹⁶; Javier Murillas, MD, PhD¹⁷; Alfredo Jover, MD, PhD¹⁸; Luis Eduardo Lopez-Cortes, MD, PhD¹⁹; Graciano Garcia-Pardo, MD²⁰; Oriol Gasch, MD, PhD²¹; Sebastian Videla, MD, PhD³; Cristion Faba, Mc²²; Natalia Bularoa, Mc²³; Biles Huaru, MD, PhD³; Cristian Tebe, MSc22; Natalia Pallares, MSc23; Pilar Hereu, MD, PhD3; Mireia Sanllorente, MSc³; Maria Angeles Dominguez, MD, PhD³; Jordi Camara, MD³; Ariadna Padulles, MD, PhD³ and Jordi Carratala, MD, PhD³, ¹Infectious Diseases Department, Hospital de Bellvitge, L'Hospitalet llobregat, Spain, ²Infectious Diseases, Hospital Clínic, Barcelona, Spain, ³Hospital de Bellvitge, L'Hospitalet llobregat, Spain, ⁴Hospital 12 de Octubre, Madrid, Spain, ⁵Hospital 12 Octubre, Madrid, Spain, ⁶Hospital Vall d'Hebron, Barcelona, Spain, ⁷Hospital Mútua de Terrassa, Terrassa, Spain, ⁸Hospital de Cruces, Bilbao, Spain, ⁹Hospital Lucus Augusti, Lugo, Spain, ¹⁶Hospital Ramón y Cajal, Madrid, Spain, ¹¹Hospital de la Santa Creu i Sant Pau, ¹³Hospital Ramon y Cajal, Madrid, Spain, ¹⁴Hospital de la Santa Creu i Santa rau, Barcelona, Spain, ¹²Hospital Clínic, Barcelona, Spain, ¹³Hospital del Mar, B, Spain, ¹⁴Consorci Sanitari de Terrassa, Terrassa, Spain, ¹⁵Hospital Virgen de las Nieves, Granada, Spain, ¹⁶Hospital Gregorio Marañón, Madrid, Spain, ¹⁷Hospital Son Espases, Mallorca, Spain, ¹⁸Hospital Arnau de Vilanova, Lleida, Spain, ¹⁹Hospital Virgen Macarena, Sevilla, Spain, ²⁰Hospital Joan XXIII, Tarragona, Spain, ²¹Hospital del Parc Taulí, Sabadell, Spain, ²²Institut d'Investigacions Biomèdiques de Bellvitge UNDEUL Villaguitat la Unagrafica Spaint de Vilanota, Biomèdiques de Bellvitge (IDIBELL), L'Hospitalet llobregat, Spain, ²³Institud d'Investigacions Biomèdiques de Bellvitge (IDIBELL), L'Hospitalet llobregat, Spain

Session: 48. Late Breaker Oral Abstracts: HIV and Antibiotic Trials Thursday, October 4, 2018: 10:30 AM

Background. Daptomycin plus fosfomycin combination has demonstrated synergistic and bactericidal effect in animal models of methicillin-resistant *Staphylococcus aureus* bacteremia (MRSAB), but there is lack of data in humans.

Method. A randomized (1:1), open-label, clinical trial involving adults with MRSAB was conducted at 18 medical centers in Spain. Patients were assigned to receive daptomycin, 10 mg/kg IV daily plus fosfomycin, 2 g IV/6 hour (combination therapy) or to receive daptomycin 10 mg/kg/24 h IV (monotherapy) during 10 up to 14 days for uncomplicated bacteremia and 28 up to 42 days for complicated bacteremia. The primary efficacy endpoints were: (a) treatment success at Test-of-Cure visit (ToC: 6 weeks after end of therapy) and (b) treatment success at 7 days (defined as alive at day 7 and clearance of bacteremia without relapse from 8 to 90 days after randomization), according with the proposed primary endpoints for use in clinical trials in bloodstream infections in adults.

Result. Between December 2013 and November 2017, 674 patients with MRSAB were evaluated and 155 patients were randomized: 74 received combination therapy and 81 monotherapy. In intention-to-treat analysis, (a) at ToC visit successful outcome was achieved in 40 of 74 patients (54,1%) who received combination therapy as compared with 34 of 81 patients (42%) who were given monotherapy (54.1% vs. 42.0%; absolute difference, 12.1%; 95% confidence interval, 0%-27.0%); (b) at 7 days after starting the therapy: a successful outcome was achieved in 69 of 74 patients who received combination therapy as compared with 62 out of 81 patients who received

monotherapy (93.2% vs. 76.5%; absolute difference, 16.7%; 95% confidence interval, 5.4%–27.7%). Combination therapy was associated with lower rates of microbiologic failure than monotherapy at ToC visit (0 vs. 9 patients, P = 0.009). Combination therapy, as compared with daptomycin monotherapy, was associated with a nonsignificantly higher rate of adverse events due to study medication leading to treatment failure and discontinuation of therapy: 6/74 (8.1%) vs. 3/81 (3.7%) (P = 0.31).

Conclusion. The combination of daptomycin plus fosfomycin was more effective than daptomycin alone for treating MRSAB (NCT01898338).

Disclosures. All authors: No reported disclosures.

LB4. A Phase 3, Randomized, Controlled Clinical Trial of Bictegravir in a Fixed-Dose Combination, B/F/TAF, vs. ABC/DTG/3TC in Treatment-Naïve Adults at Week 96

David A. Wohl, MD¹; Yazdan Yazdanpanah, MD²; Axel Baumgarten, MD³; Amanda Clarke, MD⁴; Melanie Thompson, MD⁵; Cynthia Brinson, MD⁶; Debbie Hagins, MD⁷; Moti Ramgopal, MD, FACP, FIDSA⁸; Andrea Antinori, MD⁹; Xuelian Wei, PhD¹⁰; Kirsten White, PhD¹⁰; Sean Collins, MD¹⁰; Andrew Cheng, MD PhD¹⁰; Erin Quirk, MD¹⁰ and Hal Martin, MD, MPH¹⁰, ¹Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, ²Hôpital Bichat Claude Bernard, Paris, France, ³Zentrum für Infektiologie Berlin Prenzlauer Berg (ZIBP), Berlin, Germany, ⁴HIV/Gum and Clinical Trials, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK, ⁵AIDS Research Consortium of Atlanta, Atlanta, Georgia, ⁶Central Texas Clinical Research, Austin, Texas, ⁷Chatham County Health Department, Savannah, Georgia, ⁸Midway Immunology and Research Center, Fort Pierce, Florida, ⁹National Institute for Infectious Diseases Lazaro Spallanzani-IRCCS, Roma, Italy, ¹⁰Gilead Sciences, Foster City, California

Session: 48. Late Breaker Oral Abstracts: HIV and Antibiotic Trials Thursday, October 4, 2018: 10:30 AM

Background. Bictegravir (B), a potent INSTI with a high barrier to resistance, is coformulated with emtricitabine (F) and tenofovir alafenamide (TAF) as the FDA-approved single-tablet regimen B/F/TAF. We report Week 96 results from an ongoing phase 3 study comparing B/F/TAF to coformulated dolutegravir, abacavir, and lamivudine (DTG/ABC/3TC) in treatment-naïve adults living with HIV-1. Primary outcome at W48 demonstrated noninferior virologic responses, similar bone and renal profiles, and no viral resistance.

Methods. We randomized 1:1 HLA-B*5701-negative adults, without HBV and with estimated glomerular filtration rate (eGFR) \geq 50 mL/minute to receive blinded B/F/ TAF (50/200/25 mg) or DTG/ABC/3TC (50/600/300 mg) with matching placebos QD. Primary endpoint was proportion with HIV-1 RNA <50 copies/mL at W48 (FDA snapshot), with secondary analyses at W96. Noninferiority was assessed with 95% confidence intervals (CI) (12% margin). Other secondary endpoints were safety (adverse events [AEs], laboratory abnormalities) and predefined analyses of bone mineral density (BMD) and measures of renal function (eGFR, proteinuria).

Results. A total of 629 adults were randomized/treated (314 B/F/TAF, 315 DTG/ABC/3TC). At W96, B/F/TAF was noninferior to DTG/ABC/3TC: 87.9% vs. 89.8%, respectively, achieved HIV-1 RNA <50 copies/mL (difference –1.9%; 95%CI –6.9%, to 3.1%, P = 0.45). In per-protocol analysis, 99.6% on B/F/TAF vs. 98.9% on DTG/ABC/3TC achieved HIV-1 RNA <50 copies/mL (P = 0.33). Most common AEs overall were nausea (11% B/F/TAF, 24% DTG/ABC/3TC, P < 0.001), diarrhea (15%, 16%), and headache (13%, 16%). Through W96, no participant had emergent resistance to Study drugs. No participant discontinued B/F/TAF due to AEs; five (2%) discontinued DTG/ABC/3TC due to AEs (one after W48). Treatment-related AEs occurred in 28% B/F/TAF vs. 40% DTG/ABC/3TC (P = 0.002); most common was nausea (6%, 17%. P < 0.001). At W96, mean percentage changes in spine and hip BMD were small and similar between groups (table); median change in eGFR was significantly less with B/F/TAF, AF, while median % changes in proteinuria were similar.

Conclusion. At W96, B/F/TAF was virologically noninferior to DTG/ABC/3TC, with no viral resistance or safety-related discontinuations. B/F/TAF was well tolerated with less nausea than DTG/ABC/3TC and similar bone and renal safety.

Table. Changes from baseline in safety paramet	ers at W96

	B/F/TAF (n=314)	DTG/ABC/3TC (n=315)	P value
eGFR, median (mL/min)	-7.8	-9.6	0.01
Renal Biomarkers, median (%)			
Urine Albumin: Creatinine Ratio	-0.3	+5.2	0.25
Urine Retinol Binding Protein: Creatinine	+21.2	+22.1	0.91
Ratio			
Urine Beta-2-Microglobulin: Creatinine Ratio	-30.8	-29.4	0.96
BMD, mean (%)			
Spine ^a	-0.71	-0.22	0.14
Hip ^b	-1.13	-1.26	0.59

^a n=256 (B/F/TAF), n=258 (DTG/ABC/3TC)
^b n=250 (B/F/TAF), n=258 (DTG/ABC/3TC)

Disclosures. D. A. Wohl, Gilead: Grant Investigator and Scientific Advisor, Consulting fee and Research grant. Y. Yazdanpanah, AbbVie: Consultant, Consulting fee. Bristol-Myers Squibb: Consultant, Consulting fee. Gilead: Consultant, Consulting fee. MSD: Consultant, Consulting fee. Prizer: Consultant, Consulting fee. Johnson & Johnson: Consultant, Consulting fee. ViiV Healthcare: Consultant, Consulting fee. A. Baumgarten, AbbVie: Consultant and Speaker's Bureau, Consulting fee and Speaker honorarium. BMS: Consultant and Speaker's Bureau, Consulting fee and Speaker honorarium. Janssen-Cilag: Consultant and Speaker's Bureau, Consulting fee and Speaker hono-