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SUMMARY
Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently
develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appear-
ance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by
mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and
CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-
derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a
hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt
AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced
TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated
inmouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity
is a critical step in the malignant transformation of SCN.
INTRODUCTION

Severe congenital neutropenia (SCN) is an inherited bone marrow

failure syndrome characterized by an almost complete lack of

neutrophils, leading to life-threatening bacterial infections.1 SCN

ismost often causedby autosomal dominantmutations inELANE,

the gene encoding neutrophil elastase, but how these mutations

give rise to severe neutropenia is still largely unknown.1 In thema-

jority of SCN patients, neutropenia is successfully alleviated by

life-long administration of colony-stimulating factor 3 (CSF3),

also known as granulocyte CSF (G-CSF).2 SCN patients are at

risk of developing high-risk myelodysplastic syndrome (MDS) or

acute myeloid leukemia (AML), with a reported median incidence

of 21%, 15 years after initiation of CSF3 treatment.3,4 Leukemic

progression correlates with the appearance of hematopoietic

clones with somatic mutations in CSF3R, resulting in a truncated

form of CSF3R with defective internalization and aberrant

signaling properties.5 These mutant clones arise before MDS or

AML becomes clinically overt, indicating that additional defects

are needed for malignant transformation.

Mutations in RUNX1 are the most prevalent mutations (64.5%)

acquired during leukemic transformation of SCN and typically

occur in clones already harboring somatic CSF3R mutations
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This is an open access article und
(85%).6 RUNX1 is a member of the runt transcription factor family

and is essential for fetal hematopoiesis.7,8 RUNX proteins share

the highly conserved runt homology domain (RHD) involved in

DNA binding and in the interaction with the regulatory protein

core-binding factor b.9 In SCN-MDS/AML, mainly RUNX1

missense mutations in the RHD were found in combination with

the CSF3R-truncating mutations.6,10 Although recurrent muta-

tions in other genes (e.g., encoding the epigenetic modifiers

ASXL1 and SUZ12) were also found, these were far less frequent.

How truncatedCSF3Rmutants andRUNX1mutations in conjunc-

tion with disease-causing ELANE mutations contribute to AML

development in SCN is unknown. To address this question, we

used a combination of in vivo mouse models and in vitro pa-

tient-derived induced pluripotent stem cell (iPSC) models engi-

neered to express patient-specificCSF3R andRUNX1mutations.

RESULTS

CSF3R and RUNX1 Mutations Elevate CSF3-Induced
Proliferation of LK Progenitor Cells
We first investigated how a RUNX1 mutation affects CSF3 re-

sponses of mouse hematopoietic stem and progenitor

cells (HSPCs) in vitro. The patient-specific truncated CSF3R,
orts Medicine 1, 100074, August 25, 2020 ª 2020 The Author(s). 1
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Csf3r-d715, or wild-type (WT) lineage-depleted bone marrow

(BM) cells expressing the patient-specific RUNX1-D171N

(RHD) mutation (Figures S1A and S1B) or an empty vector (ev)

control were cultured in stem cell expansion medium with or

without CSF3 (Figures 1A and 1B). In the absence of CSF3, no

differences in absolute cell numbers between any of the condi-

tions were seen (Figure 1A), whereas addition of CSF3 induced

a strong and sustained hyperproliferative response in Csf3r-

d715 cells that was slightly, but not significantly, extended by

mutant RUNX1 (Figure 1B). Csf3r-d715 cells expressing

RUNX1-RHD (d715-RHD cells) cultured in CSF3 medium

showed selective expansion of lineage-negative, Sca1-negative,

c-Kit-expressing (LK) cells relative to d715-ev control cells,

which showed a more equal distribution between LK and more

primitive LSK (Lineage�, Sca1+, c-Kit+) cells (Figure 1C). Notably,
d715-RHD cell cultures consistently showed a higher number of

LK cells and reduced numbers of differentiated cells relative to

the ev controls from day 5 onward (Figure 1D). d715-RHD cells

also displayed a moderate ability of secondary and tertiary re-

plating in CSF3-containing colony cultures, whereas d715-ev

or WT-RHD cells lacked this capability (Figure 1E). Comparative

transcriptome analysis and subsequent single-sample gene set

enrichment analysis (ssGSEA) of LK cells from CSF3-supple-

mented cultures purified by fluorescence-activated cell sorting

(FACS) on days 2, 5, and 9 showed higher activation of hallmark

pathways of cell proliferation (E2F, G2M checkpoint, and MYC)

and metabolism (mTORC1) in d715-RHD cells relative to d715-

ev cells (Figure 1F). In summary, these results show that muta-

tions in Csf3r and RUNX1 have additive effects on proliferation

of myeloid cells, leading to expansion of LK cells and reduced

production of more mature myeloid cells.

In Vivo Expansion of Csf3r-d715/RUNX1-RHD Mutant
HSPCs Induced by Sustained CSF3 Administration
To address how the Csf3r and RUNX1mutations in combination

with CSF3 administration affect hematopoiesis in vivo, we per-

formed transplantation experiments using lentivirally trans-

duced lineage-negative Csfr-d715 BM cells (Figure S1C).

Western blot analysis confirmed the presence of human

RUNX1-D171N protein (Figure S1D). Transduction efficiency,
Figure 1. Csf3r-d715 and RUNX1-RHD in Conjunction with CSF3 Treat

(A–B) Proliferation of empty vector (ev)- orRUNX1-RHD virus-transduced cells in s

bars show one-sided standard error of the mean (SEM) of 3 independent experim

(C) Representative FACS contour plots showing LK/LSK distribution of d715-ev (

with ± indicating SEM.

(D). Distribution of immature and differentiated cell types in CSF3-containing c

experiments (biological replicates).

(E). CSF3-induced colony formation in primary colony assays and in secondary

licates] performed in triplicate [technical replicates]).

(F). Comparative transcriptome profiles of CSF3-stimulated d715-ev and d715-R

(G). Experimental setup. CSF3/PBS administration started 4 weeks after transpla

(H). Longitudinal analysis of GFP-expressing cells in PB (n = 9 mice per experim

(I). Accumulation of GFP-expressing LK cells in PB of CSF3-treated d715-RHD-tra

16 weeks after transplantation (n = 11 or 12 per group), with ± indicating SEM.

(J) Myeloblast morphology of FACS-purified PB LK cells. The scale bar indicates

(K) CSF3-induced colony formation of PB LK cells (mice 29, 30, and 31) and re

replicates]).

See also Figure S1.
analyzed by flow cytometry based on the presence of the

IRES-GFP cassette in the lentiviral vector (Figure S1C), was

approximately 40%–50% in lineage-negative BM cells (Fig-

ure S1E) and 65% in d715-RHD or d715-ev LSK cells (Fig-

ure S1F). These cells were transplanted into lethally irradiated

WT recipients. Starting 4 weeks after transplantation, mice

were treated three times per week with CSF3 or PBS (n = 9

per group; Figure 1G). GFP+ cells in the peripheral blood (PB)

within each group varied between mice (Figure 1H). Overall,

mice transplanted with d715-RHD BM cells and treated with

CSF3 showed the highest level of long-term chimerism; i.e.,

exceeding 16 weeks following transplantation and 12 weeks

after initiation of CSF3 administration (Figure 1H). Fluctuations

in GFP+ PB cell percentages in individual mice over time sug-

gest that CSF3 propagated the persistence rather than a domi-

nant outgrowth of d715-RHD clones. Strikingly, CSF3-treated

d715-RHD mice had significant percentages (16.5% average,

SEM 7%) of GFP+ LK cells in PB, which was not seen in the

other experimental groups (Figure 1I; <1%). These cells were

characterized as myeloblasts by morphology (Figure 1J) and

comprised 1%–2% myeloid colony-forming cells (Figure 1K;

50–100 colonies/5,000 cells), equivalent to the observations of

in vitro cultures (Figures 1C–1E). Although more than 5%myelo-

blasts in the PB are a characteristic of AML, none of the CSF3-

treated d715-RHD mice showed acute symptoms of AML, such

as bleeding or anemia. In addition, no defect in myeloid differen-

tiation was observed as percentages of GFP+CD11b+GR1+ neu-

trophils in PB were comparable between groups (Figure S1G).

At the time of sacrifice, no excessive GFP+ blasts in the BM

were seen, with the exception of mouse 29 (Figure 2A). On the

other hand, increased numbers of GFP+ cells were detected in

the spleens of d715-RHD CSF3-treated mice (Figure 2B). These

findings suggest that the CSF3-treated d715-RHD mice display

a pre-malignant phenotype characterized by cellular but not

symptomatic features of overt AML.

Premalignant Csf3r/RUNX1 Mutant BM Cells Progress
to AML in Secondary Recipients
The ability to engraft in secondary recipients is a hallmark of mu-

rine leukemia models. To determine to what extent this applied
ment Causes the Expansion of LK Cells

tem cell expansionmedium (A) without CSF3 and (B) with 50 ng/mLCSF3. Error

ents (biological replicates).

left panel) and d715-RHD (right panel) in CSF3-supplemented cultures (day 9),

ultures spanning 23 days. Error bars show one-sided SEM of 3 independent

and tertiary replating cultures (n = 3 independent experiments [biological rep-

HD LK cells on days 2, 5, and 9 of culture (n = 1 sample per time point).

ntation.

ental group, biological replicates).

nsplantedmice but not in other groups. Data are fromPB samples taken 14 and

20 mm.

presentative example of the colony (n = 1 experiment in triplicate [technical
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to the pre-malignant nature of d715-RHD BM cells from CSF3-

treated mice, we transplanted BM cells from mouse 29, which

presented with the highest level of engraftment 25 weeks after

primary transplantation, in sub-lethally irradiated secondary re-

cipients that were subsequently treatedwith CSF3 (n = 6; Figures

2C and 2D). GFP+c-Kit+ cells were detectable in the blood

4 weeks after transplantation and could be detected until the

end of the experiment (Figures 2E and 2F). Contrary to the LK

cells expanding in primary recipients, these cells weakly co-ex-

pressed the myeloid marker CD11b, suggestive of a myeloid

bias within the LK compartment (Figure 2G). High percentages

of GFP+c-Kit+ cells were present in the BM, spleen, and liver (Fig-

ure 2H). Prior to sacrifice, mice were severely anemic because of

an erythroid differentiation block at theCD71+Ter119+ basophilic

and early chromatophilic erythroblasts (RII) stage in the BM and

spleen (Figures S2A and S2B). Histological analysis showed

normo- to hypercellular BM with more than 90% myeloid blast

infiltration with significant nuclear atypia and atypical mitoses

and apoptosis (Figure 2I), consistent with the diagnosis of AML.

Outgrowth of d715-RHD AML without CSF3
Administration
To interrogate whether d715-RHD-derived AML was still depen-

dent onCSF3 administration, we transplanted leukemic cells into

tertiary recipients that were subsequently treated with PBS or

CSF3 (n = 4 per group; Figure 2J). GFP+ cells in the PB were

detectable from 10 weeks until the end of the experiment and

increased over time in PBS- and CSF3-treated groups with

similar kinetics (Figures 2K and 2L). c-Kit+ AML cells weakly ex-

pressed lineagemarkers (Figure 2L) but retained their myeloblast

morphology (Figure 2M). The BM, spleen, and liver contained

equivalent numbers of GFP+ cells independent of CSF3 treat-

ment (Figure 2N), confirming that the outgrowth of AML no longer

depended on CSF3 administration. Immunophenotyping re-

vealed that, in addition to CD11b, the leukemic blasts co-ex-

pressedCD3, suggestive of amixedmyeloid/T-lymphoid pheno-

type (Figure 2O). As expected, all mice developed symptoms of

AML, including severe anemia and a block of erythropoiesis in

the BMand spleen (Figures S2C–S2E; data not shown). Although

significant numbers of GFP� CD71intermediate/lowTer119+ poly/

ortho-chromatophilic erythroblasts and enucleated erythrocytes
Figure 2. Spleen Infiltration and CSF3-Independent Leukemogenic Pro

(A and B) Distribution of GFP-expressing cells in (A) BM and (B) spleen in primar

mice.

(C). Relative distributions of total GFP+ and GFP+c-Kit+ cells in various organs o

(D) Secondary transplant setup; cells from mouse 29 were transplanted into 6 re

(E–G) Expansion of GFP+ cells in PB of 6 secondary recipients (E, biological re

expression on c-Kit+ cells.

(H) Organ distribution of GFP+ and GFP+c-Kit+ cells.

(I) H&E staining of the spine, showing a hypercellular BM with more than 90% m

(J) Tertiary transplantation setup.

(K) Equal expansion of GFP+ cells in PB of CSF3-treated (n = 4) or PBS-treated

(L) The c-Kit+ phenotype of PB GFP+ cells in CSF3- and PBS-treated mice.

(M) Blast morphology of FACS-purified c-Kit+ PB cells.

(N) Organ distribution of GFP+ and GFP+c-Kit+ cells in PBS- or CSF3-treated mi

(O) FACS analysis showing an immature (c-Kit+) mixed myeloid (CD11b+) a

Kit+CD11b�CD3�.
Error bars represent SEM. See also Figure S2.
(RIII/RIV) were found in the liver, these cells did not compensate

for the anemia (Figures S2C, S2F, and S2G).

Leukemic Progression in d715-RHD Mice Is
Accompanied by Elevated Pro-inflammatory Cytokine
Responses
To determine which signaling pathways changed during the

sequential steps of transformation, we performed transcriptome

profiling on FACS-purified BM- or PB-derived LK cells (1) prior to

transplantation, (2) from d715-RHD CSF3-treated primary recip-

ients (pre-leukemic), and (3) c-Kit+ cells from leukemic (second-

ary and tertiary recipient) mice (because these cells co-express

lineage markers). Unsupervised clustering based on gene sets

derived from GSEA-defined hallmark pathways revealed that

LK cells from non-leukemic (t = 0, red), pre-leukemic (primary re-

cipients, blue), and c-Kit+ cells from leukemic (secondary and

tertiary recipients, green) mice clustered based on interferon g

(IFN-g)- (Figure 3A), inflammatory- (Figure 3B), and tumor necro-

sis factor alpha (TNF-a)/nuclear factor kB (NF-kB)-responses

(data not shown), which increased with progressive stages of

transformation.

Comparison of the Mouse Model with Clinical SCN-AML
To determine whether the gene expression changes in the

mouse model mimic the clinical progression of SCN to AML,

we took advantage of bio-banked samples of a previously re-

ported ELANE mutant-SCN patient who received life-long

CSF3 therapy and acquired CSF3R (d715) and RUNX1

(D171N) mutations identical to our mouse model.10 GSEA com-

parisons in the mouse showed that activation of inflammation-

associated pathways TNF-a via NF-kB signaling, IFN-g,

inflammatory response, and interleukin-6 (IL-6)/JAK/STAT3

signaling were significantly elevated in leukemia samples relative

to non-leukemic LK populations (the expression data of WT and

Csf3r-d715 were combined and compared with the combined

data of the eight tertiary transplant recipients; Figure 4A). On

the other hand, canonical proliferative hallmark signatures

(E2F, G2Mcheckpoint, andMYC), initially upregulated in the pre-

malignant state conferred by the activated CSF3R-d715 and

RUNX1-RHD (Figure 1F), were significantly blunted in the

leukemic samples (Figure 4B).
perties of d715-RHD Cells

y recipients, showing enhanced spleen infiltration in CSF3-treated d175-RHD

f mouse 29.

cipients.

plicates), with (F) the c-Kit+ immunophenotype and (G) intermediate CD11b

yeloblast infiltration. The scale bars indicate 200 and 20 mm, respectively.

(n = 4) mice (biological replicates).

ce (n = 4 per group).

nd T cell (CD3+) immunophenotype of AML blasts; the boxes indicate c-
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Figure 3. Elevated Inflammatory Transcriptomes Associated with Leukemic Progression in d715-RHD Mouse Models
(A and B) Heatmap showing unsupervised clustering and expression of the top 100 differentially expressed transcripts in BM and PB samples of control, pre-

leukemic, and leukemic LK/c-Kit+ cells (A) associated with IFN-g signaling and (B) an inflammatory response.
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Transcriptome analysis of FACS-purified CD34+ cells from the

neutropenic phase (SCN 1992) and the AML phase (SCN-AML

2007) showed markedly similar hallmark signature patterns

compared with the mouse model: upregulation of TNF-a via

NF-kB signaling, IFN-g and inflammatory responses, and IL6/

JAK/STAT3 signaling pathways (Figure 4C) and downregulation

of the proliferation signatures E2F, G2M checkpoint, and MYC

(Figure 4D). GSEA comparing the CD34+ cells of the SCN-AML

phase with 3 healthy controls showed the same transcriptional

alterations (Figures S3A and S3B).

In addition, we found 55 of 241 significantly (p < 0.05) upre-

gulated transcripts in SCN-AML samples overlapping with

significantly (q < 0.05) upregulated transcripts in mouse AML

samples (Table S1), whereas 53 of the 188 downregulated

transcripts were overlapping (Table S2). These data furnish a

rich substrate for further studies of the critical downstream

mechanisms contributing to leukemic progression. For
6 Cell Reports Medicine 1, 100074, August 25, 2020
instance, ANXA2, CDKN1A, CISH, DUSP1, FOS, and IL10RA

are prominent inflammatory genes that were commonly

upregulated in mouse AML and patient SCN-AML samples

(Table S1). Similarly, genes that are downregulated merit

further study in the context of inflammation-driven leukemo-

genesis (Table S2).

Whole-ExomeSequencing Identifies aMutation inCxxc4

as a Somatic Clonal Driver for Progression to AML
Because we discriminated a pre-leukemic stage in our mouse

model, we asked whether leukemic progression was caused

by acquisition of additional driver mutations. To address

this, we performed whole-exome sequencing on AML

cells from one secondary recipients (29T1) and eight tertiary

recipients (2911–2918). These leukemic mice harbored a

relatively small number of newly acquired somatic mutations

that were mostly subclonal and varied between individual
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Figure 4. Leukemic Progression of the d715-RHD Mouse Model and SCN (SCN-AML) Is Associated with Increased Inflammatory and
Decreased Proliferative Signaling

(A and B) GSEA analyses comparing control (WT and d715 transcriptional data combined, n = 2) versus leukemic (tertiary recipients 2911–2918, n = 8) LK/c-Kit+

cells showing (A) upregulation of inflammatory signaling and (B) downregulation of proliferative pathways in leukemic mice.

(C and D) GSEA comparing CD34+ cells from the SCN phase (1992) and the SCN-AML phase (2007), showing (C) increased inflammatory pathways and (D)

downregulated proliferation signatures.

ES, enrichment score; NES, normalized ES; FDR, false discovery rate. See also Figure S3 and Tables S1 and S2.
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mice (data not shown). The single mutation present in all

leukemic mice was a clonal heterozygous abnormality (VAF,

0.52 ± 0.06) characterized by a 6-nt (GGCGGC) internal

tandem duplication (ITD) in Cxxc4/Idax, introducing 2 glycine

residues at amino acid position 158 of the WT protein (Fig-

ure 5A). This mutation already appeared in a subclone (VAF,

0.27) in primary recipient mouse 29 and expanded in the
secondary and tertiary recipients, in which all AML cells

harbored the Csf3r-d715, RUNX1-RHD, and Cxxc4-ITD

mutations (Figure 5B). Notably, Csf3r-d715 donor BM samples

did not contain any detectable reads with Cxxc4-ITD muta-

tions, indicating that the mutation was acquired de novo as

a somatic driver mutation during leukemic transformation

(Figure 5B).
Cell Reports Medicine 1, 100074, August 25, 2020 7
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Figure 5. Cxxc4 Mutations and Expression of CXXC4 and TET2 Proteins in AML Cells

(A) Schematic overview of the CXXC4 gene, showing acquisition of a Cxxc4-ITD in mouse leukemic cells.

(B) Fish plot illustrating the clonal pattern of leukemia development.

(C) Immunoblot showing elevated CXXC4 protein levels (36.44 kDa) and reduced TET2 protein levels (212.13 kDa) in pre-leukemic and leukemic samples derived

from primary recipient 29 (biological replicates).

(D) Quantification of TET2/CXXC4 ratios.

See also Figure S4.
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The Cxxc4-ITD Mutation Correlates with Elevated
CXXC4 and Reduced TET2 Protein Levels
To assess the effects of the Cxxc4 mutation, we first deter-

mined its effect on protein expression. The predicted molecular

weight of WT mouse CXXC4 is 36.4 kDa. Immunoblotting

confirmed the presence of this CXXC4 isoform in Csf3r-d715

BM cells (Figure 5C) and showed 7-fold higher expression

levels (7.25 ± 0.64) in pre-leukemic and leukemic samples

harboring the Cxxc4 mutation. CXXC4/IDAX is genetically

closely linked to TET2 and was originally encoded within the

ancestral TET2 gene before it became a separate gene during

evolution.11 CXXC4 is an inhibitor of Wnt/b-catenin signaling.12

Suggestive of elevated CXXC4 activity, transcriptome analysis

using GSEA showed reduced Wnt/b-catenin signaling in

Cxxc4-ITD-expressing leukemia samples (2,911–2,918) relative

to WT Cxxc4 BM LK cells (data not shown). More striking in the

context of leukemic progression, it was shown that CXXC4 ac-

tivates proteolytic degradation of TET2 through a mechanism

involving caspases 3 and 8.11 Indeed, we found that TET2 pro-

tein levels were severely reduced in leukemic relative to normal

samples (0.20 ± 0.08), whereas reduced expression of Tet2
8 Cell Reports Medicine 1, 100074, August 25, 2020
was not observed on a transcriptional level (Figure 5C; data

not shown). Quantification of TET2/CXXC4 ratios illustrates

the strong inverse relationship between TET2 and CXXC4

(ITD) protein levels (Figure 5D).

CXXC4 Mutations in Human AML
TodeterminewhetherCXXC4-ITDmutations similar to those iden-

tified in the mouse model are relevant for human disease, we

analyzed whole-genome sequencing data from 591 AML patients

generated at the Munich Leukemia Laboratory (MLL), comple-

mented by targeted sequencing of 87 consecutive AML patients

from the HOVON102 clinical trial. The CXXC4 protein shows

high homology between mouse and human (Figure S4). In total,

6 CXXC4-ITD mutations were found (Figure 6A). Interestingly,

the insertion of 2 glycine residues caused by the ITD in our

mouse model was also found in 2 de novo AML patients. Besides

the tandem glycine insertions, smaller insertions comprising 1

glycine residue or larger ITDs comprising 6 glycine residues

were found. Cross-referencing with the gnomAD database

(v.2.1.1), which contains sequences from 141,456 unrelated indi-

viduals (https://gnomad.broadinstitute.org/), showed that the

https://gnomad.broadinstitute.org/
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Figure 6. Human CXXC4-ITD Mutation Results in a More Stable CXXC4 Protein and Reduced TET2 Levels

(A) Schematic overview of the human CXXC4 gene, showing CXXC4-ITD mutations in de novo AML.

(B) Overexpression of wild-type (WT) or the CXXC4-ITD (duplication of glycines 160–165) in K562 cells shows a subsequent reduction in TET2 protein levels by

immunoblot.

(C) Representative image and quantification of an immunoblot, showing increased stability of the CXXC4-ITD protein upon prolonged treatment with 1 mg/mL

cycloheximide.

See also Figure S4.
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CXXC4-ITD was absent or detected in 10- to 140-fold lower fre-

quencies than in our cohort. This suggests that some CXXC4-

ITD mutations may be somatic, whereas others may be present

in the germline and predispose to leukemia. The fact that these in-

sertions were all located in or around the glycine repeats suggests

that this region is important for protein expression and/or stability.
The CXXC4-ITD Reduces TET2 Levels and Has a
Prolonged Half-Life Relative to WT CXXC4 Protein
To determine how a patient-specific CXXC4-ITD (Gly160_

165dup) exerts its enhanced effect on reducing TET2 levels rela-

tive to WT CXXC4, we lentivirally introduced both forms in K562

and HEK293T cells. Ectopic overexpression of WT CXXC4 as

well as the CXXC4-ITD resulted in a significant reduction in

TET2 protein levels (Figure 6B), confirming the observations of
Ko et al.11 Because we observed increased CXXC4 protein levels

in murine Cxxc4-ITD leukemic cell samples (Figure 5C), we

wondered whether elevated protein levels are a result of

prolonged protein stability of the CXXC4-ITD protein. Indeed,

translation inhibition by cycloheximide to block de novo protein

synthesis showed that the CXXC4-ITD was maintained at higher

levels thanWT CXXC4 (Figure 6C), providing a plausible explana-

tion for its elevated abundance in the mouse leukemia cells.
CSF3R-d715 RUNX1-RHD Increases Proliferative
Signaling in CD34+CD45+ Cells Derived from Control
iPSCs while Inducing Inflammatory Pathways in SCN
iPSCs
A limitation of themouse transplantationmodel is that it lacks the

disease-causing mutation of ELANE-SCN. However, Elane
Cell Reports Medicine 1, 100074, August 25, 2020 9
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mutations equivalent to those found in SCN patients do not

cause neutropenia in murine models,13 precluding the possibility

to analyze the additional effect of ELANE mutations in murine

models. To model leukemic progression in human SCN, we

introduced the CSF3R-d715 mutation by CRISPR-Cas9-medi-

ated genome editing and the RUNX1-D171N mutation by lentivi-

ral transduction (containing IRES-GFP; Figure S1C) in iPSCs

from an ELANEmutant-SCN patient (Figures S5A–S5C) and per-

formed RNA sequencing on GFP+ CD34+CD45+ hematopoietic

progenitor cells (HPCs) derived from two independent experi-

ments. First we checked, in control iPSCs, whether GFP+

CSF3R-d715 mutant HPCs recapitulated the findings of in vitro

mouse experiments (Figure 1F). When comparing RUNX1-RHD

cells with ev control cells, the expression pattern corroborated

the mouse experiments; e.g., increased proliferation-related

signaling (compare Figure S6A with Figure 1F; the leukemic

mice shown in Figure 3 acquired an additional mutation in

CXXC4, altering the transcriptome). In addition, we observed

reduced inflammatory signaling, establishing that RUNX1 muta-

tions per se do not cause inflammatory signaling but, instead, are

involved in gaining a proliferative advantage (Figure S6A).

In contrast, inRUNX1mutant-expressing cells derived from an

ELANE mutant patient, a slight increase in inflammatory re-

sponses (e.g., IFN-g signaling) was observed compared with

ev controls, which was associated with leukemic progression

in the mouse model and SCN-AML patient (compare Figure S6B

with Figures 1F and 4). In line with the data from control cells and

the in vitro mouse data, the proliferation-related signature G2M

checkpoint and E2F targets were enriched upon expression of

the RUNX1-RHD mutant in an ELANE mutant, CSF3R-d715

background (Figure S6B). However, MYC targets were not

induced, and even inhibited, in ELANEmutant cells (Figure S6B).

These data suggest that the SCN background already primes for

leukemic progression, where the combination of ELANE,

CSF3R, and RUNX1 mutations already shows signs of tipping

the balance between inflammatory and proliferative signaling,

as seen during the leukemic progression in the mouse model

and SCN patient.

Analysis of 5mC/5hmC Levels in Mouse Leukemia
Samples
Several recent studies have linked TET2 to inflammatory re-

sponses and connected loss of TET2 to inflammation-driven

clonal hematopoiesis, pre-leukemia, and MDS.14–19 The effects

of TET2 on repressing inflammation have been assigned to its

methylcytosine dioxygenase activity but also to its ability to re-

cruit histone deacetylase (HDAC)-mediated repressor activity

to pro-inflammatory genes.17,19 To investigate whether the

Cxxc4-ITD and subsequent reduction in TET2 levels altered the

5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)

levels of the DNA, we performed quantitative mass spectrometry

experiments on LK cells derived from leukemic mice.20 Surpris-

ingly, we did not observe major alterations in the proportion of

5mC and 5hmC nucleotides compared with LK cells from WT

or d715 mice (Figure S7A), suggesting that the reduction of

TET2 levels did not alter methylcytosine dioxygenase activity.

This might be due to technical limitations, a redundancy with

other methylcytosine dioxygenases,21 or the fact that reduced
10 Cell Reports Medicine 1, 100074, August 25, 2020
TET2 levels were not restrictive for its enzymatic activity. On

the other hand, this could suggest that a noncanonical function

of TET2, such as its ability to recruit HDAC activity to chromatin,

rather than its enzymatic activity was mainly affected by the

Cxxc4-ITD.

CSF3R-d715 RUNX1-RHD Cells Switch Transcriptional
Signatures from Proliferative to Inflammatory upon
HDAC Inhibition in Human iPSC Models
Wenext aimed to functionally validate the findings from leukemic

mice in a human SCN-derived iPSC model expressing the trun-

cated CSF3R-d715 and the RUNX1-RHD mutant. An obvious

experiment would be to introduce the CXXC4-ITD in these cells

by CRISPR-Cas9-mediated genome editing, but this was techni-

cally infeasible because of the high GC repeat content in the

target region. Instead, to discriminate between the two functions

of TET2 proposed above, we wanted to find out how inhibition of

its enzymatic activity by administration of octyl-(R)-2hydroxy-

glutarate (2HG) and its ability to recruit HDAC activity by admin-

istration of the HDAC inhibitor MS275 (entinostat) affected the

transcriptional profile of CSF3R-d715 RUNX1-RHD expressing

SCN-iPSC-derived CD34+CD45+ HPCs. In line with the unal-

tered 5hmC levels in mouse AML cells, hallmark analyses

showed that 2HG did not induce an inflammatory profile as

observed in Cxxc4 mutant mouse AML cells (Figure S7B). In

contrast, HDAC inhibition with MS275 ignited inflammatory

signaling while inhibiting the proliferative signatures in control

and ELANE mutant cells, recapitulating the signaling profiles of

Cxxc4 mutant mouse AML cells and SCN-AML patient material

(Figures 7A and 7B; data not shown). Although HDAC inhibition

may also affect pathways independent of TET2, these data fit

into amodel of leukemic progression in which TET2 represses in-

flammatory signaling through its ability to recruit HDACs to pro-

inflammatory genes,17,19 whereas DNA hydroxyl methylation

had little or no effect. This model may apply specifically to the

context of leukemic progression of SCN involving acquisition

of CSF3R and RUNX1 mutations but could also be relevant to

other forms of AML (e.g., with RUNX1mutations and/or second-

ary to BM failure syndromes other than SCN).

DISCUSSION

In this study, we investigated how mutations in CSF3R and

RUNX1, frequently associated with leukemic progression of

SCN in conjunction with CSF3 treatment,1 contribute to AML

development. By developing a mouse model with the most

recurrent CSF3R and RUNX1 mutations, we found that this

combination resulted in accumulation of myeloblasts and

myeloid colony-forming progenitors in PB, which persisted for

25+ weeks while on sustained CSF3 treatment. Although myelo-

blasts were found in PB, mice did not reveal signs of overt AML.

These findings agree with clinical observations in an ELANE

mutant SCN patient with CSF3R and RUNX1 mutations (in

the absence of other somatic defects) who showed CSF3-

dependent expansion of a CSF3R/RUNX1 mutant myeloblast

clone that spontaneously disappeared after CSF3 treatment

was stopped.6 These findings heralded that full malignant

transformation of SCN to AML requires additional defects. This
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Figure 7. The HDAC Inhibitor MS275 Induces Inflammatory Signatures in SCN iPSC-Derived CD34+CD45+ Cells

(A and B) GSEAs comparing CD34+CD45+ CSF3R-d715 RUNX1-RHD cells from ELANE mutant SCN cells treated with DMSO or the HDAC inhibitor MS275,

derived from two independent experiments (biological replicates), showing (A) induced inflammatory signaling and (B) reduced proliferative signatures in MS275-

treated cells.

See also Figure S5.

Article
ll

OPEN ACCESS
was confirmed in serial transplantation experiments in which we

identified a clonal mutation in Cxxc4 as a driver of AML develop-

ment. This mutation resulted in increased levels of CXXC4

protein. CXXC4 has been recently shown to control caspase-

mediated degradation of TET2,11 and, in agreement with this,

TET2 levels were severely reduced in AML cells.

CXXC4 mutations were also found in a minority of de novo

AML patients. At what frequenciesCXXC4mutations are present

in SCN-AML or other forms of secondary AML and whether they

coincide with acquisition of other mutations (e.g., in RUNX1) is

currently under study. The possibility that mutations in other

genes affecting the TET2 pathway will have similar conse-

quences for development of SCN-AML must be considered in

this context. In agreement with this, mutations in SUZ12, a

component of EZH2-containing polycomb repressor complex

2 (PRC2), which inhibits CXXC4 expression,22 have been de-

tected in the SCN-AML patient used for this study and others.6,10

Mutations in ASXL1, also recurrent in SCN-AML, may have

similar effects and have recently been functionally connected

to leukemic transformation in conjunction with RUNX1 muta-

tions.23,24 These findings are consistent with the concept that

reduced TET2 levels contribute to leukemic progression of SCN.

Another key finding that emerged from our study concerns the

connection between inflammation, clonal expansion, and

leukemic progression of SCN. A role for inflammation in regu-

lating hematopoietic stem cell fate in normal and several dis-

ease-related conditions, including MDS, has been suggested

previously.15 Some studies showed that pro-inflammatory cyto-

kines initially activate stem cells to exit from a dormant state but,

when chronically active, cause loss of stem cell fitness, which
eventually results in age-related BM failure.25–27 Importantly,

TET2 has been shown to repress pro-inflammatory cytokine

genes in macrophages and dendritic cells, in part by recruitment

of HDAC2,19 whereas, inversely, loss of Tet2 fosters an inflam-

matory state characterized by upregulation of IL-6 and TNF-

a.16,28,29 More recent studies in Tet2-deficient mice showed

that inflammation drives clonal expansion of pre-leukemic

myeloid precursors.14,17,30 Taken together, these findings fit

into a model where reduction of TET2 levels through gene

disruption or downregulation of expression induces an inflamed

state. Acquisition of a RUNX1 mutation would then stimulate

outgrowth of a malignant clone that evolves into AML.

Although the transcriptome analysis of mouse AML cells,

the SCN-AML patient sample, and HDAC inhibitor-treated

SCN iPSC-derived CD34+CD45+ cells showed elevated IL-6-,

IFN-g-, and TNF-a-mediated inflammatory responses,

increased transcription of these cytokine genes themselves

was not seen (data not shown). This could suggest that the in-

flammatory responses were activated by a cell-extrinsic rather

than a cell-intrinsic (autocrine) stimulus. Because these studies

were done on immature CD34+ or c-Kit+ fractions, it is possible

that affected macrophages and/or dendritic cells derived from

these cells and/or environmental cells, e.g., endothelial cells,

produced elevated levels of pro-inflammatory cytokines,

inducing an inflammatory state in immature progenitor popula-

tions in a paracrine manner. An alternative possibility is that the

genomic damage underlying SCN itself activates inflammatory

signaling, e.g., IFN-g-induced pathways, which is aggravated

when TET2 levels are reduced. For instance, increased

IFN-g signaling has been reported in the context of DNA
Cell Reports Medicine 1, 100074, August 25, 2020 11
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double-strand breaks induced by etoposide treatment or X-ray

irradiation of cells.31,32

In conclusion, this study provides insights into sequential

steps in leukemic progression of SCN and identifies pro-inflam-

matory mechanisms as important mediators of this process.

Questions that still need to be addressed are howmutant neutro-

phil elastase proteins shape the ‘‘fertile ground’’ for acquisition of

CSF3R mutations and how CSF3 treatment contributes to re-

shaping this into the cellular state in which elevated inflammatory

responses are induced and tolerated and RUNX1mutations can

be acquired, resulting in progression to AML. Resolving these is-

sues holds promise for clinical management of SCN, and

possibly other leukemia predisposition syndromes, with the

objective to avoid or interfere early in the malignant transforma-

tion of these conditions.

Limitations of Study
Although CSF3R/RUNX1/CXXC4 mutant cells could repopulate

and form AML in multiple secondary (n = 6) and tertiary (n = 8)

recipients, the CXXC4-ITD mutation originally arose in a single

primary recipient (1/9), who acted as a donor for subsequent re-

transplantation studies. Hence, rather than being frequently

involved in the leukemic progression of SCN, the CXXC4-ITD

mutation should be taken as evidence that downregulation of

TET2 and the associated upregulation of inflammatory signaling

contribute to malignant transformation in conjunction with the

CSF3R and RUNX1 mutations. Supporting a role of CXXC4 mu-

tations in human disease, CXXC4-ITD mutations very similar to

those detected in the mouse model were found in a subset of

de novo AML patients, some but not all of which are found in

the healthy population, but at much lower frequencies. Further

studies are needed to address whether CXXC4 mutations in

human AML are somatic or germline. Studies to unravel co-

occurrence with other mutations in, e.g., RUNX1 or TET2 could

provide further insight into the pathogenic mechanism of

CXXC4 alterations. Inhibition of the HDAC-recruiting function

of TET2 with the HDAC inhibitor MS275 provides a possible

mechanism of how reduced TET2 levels can induce inflamma-

tory signaling, but this inhibitor may also affect pathways inde-

pendent of TET2. How TET2 regulates inflammation at specific

gene targets and how RUNX1 mutations affect this process

(e.g., by enabling pre-leukemic cells to escape from inflamma-

tion-mediated exhaustion) merits further study.
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Bacterial and Virus Strains

pMY-RUNX1 retroviral vectors Goyama et al.35 N/A

Lentiviral CSI vector Brian Duncan N/A

pBabe vector Morgenstern and Land36 RRID:Addgene_1764

Biological Samples

Bone marrow and blood samples from SCN

and SCN-AML patient

Beekman et al.10 N/A

Chemicals, Peptides, and Recombinant Proteins

CSF3 (Filgrastim) Zarzio N/A

Ciprofloxacin Centrafarm Cat# 8714632211261

Geltrex LDEV-Free Reduced Growth Factor

Basement Membrane Matrix

Thermo Fisher Scientific Cat# A1413302

mTeSR1 STEMCELL Technologies Cat# 85850

TransIt transfection reagent Mirus Cat# MIR 2300
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Thermo Fisher Scientific Cat# 558451

STEMdiff Hematopoietic Kit STEMCELL Technologies Cat# 053108

SMARTer Ultra Low Input RNA kit for

sequencing

Clontech Version 3 Cat# 634851

Version 4 Cat# 634891

TruSeq Nano DNA Sample Preparation kits Illumina Cat# 20015964

SeqCap EZ HyperPlusCap workflow Roche Cat# 6740278001

MiSeq V2 Nano kit Illumina Version 2 Cat# MS-103-1001

Deposited Data

FastQ files in vitro mouse RNA seq This paper ArrayExpress: E-MTAB-9373

FastQ files in vivo mouse RNA seq This paper ArrayExpress: E-MTAB-9377

FastQ files mouse DNA seq This paper ArrayExpress: E-MTAB-9376

Count files human RNA seq This paper ArrayExpress: E-MTAB-9381

Count files iPSC RNA seq This paper ArrayExpress: E-MTAB-9375

Count files iPSC inhibitor RNA seq This paper ArrayExpress: E-MTAB-9374

Experimental Models: Cell Lines

Human: ELANE-mutant SCN iPSC This paper N/A

Human: control iPSC This paper N/A

K562 ATCC Cat# CCL-243

HEK293T ATCC Cat# CRL-1573

Experimental Models: Organisms/Strains

Mouse: FVB/n Csf3r-d715 Hermans et al.33 N/A

Mouse: FVB/n wt: FVB/NHanHsd Envigo Cat# 862-NL
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CXXC4 forward primer:

AGGGGATAAGGTGGAGAGGA

This paper N/A

CXXC4 reverse primer:

CCCCTGGAACTGCGACAA

This paper N/A
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pCL-eco Naviaux et al.37 RRID:Addgene_12371

pSPAX2 Didier Trono RRID:Addgene_12260

MD2.G Didier Trono RRID:Addgene_12259

px330 Cong et al.40 RRID:Addgene_42230
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GraphPadPrism 5.0c GraphPad Software Inc. RRID:SCR_002798

Adobe Illustrator CC 2018 Adobe Systems Inc. RRID:SCR_010279

FlowJo V10 TreeStar Inc. RRID:SCR_008520

CASAVA Illumina RRID:SCR_001802

FastQC Babraham bioinformatics RRID:SCR_014583

MultiQC RRID:SCR_014982

STAR aligner Dobin et al.41 RRID:SCR_015899

Cufflinks Trapnell et al.42 RRID:SCR_014597

HTSeq-count Anders et al.43 RRID:SCR_011867

DESeq2 Love et al.44 RRID:SCR_015687

R. RRID:SCR_001905

GSEA Mootha et al.45; Subramanian et al.46 RRID:SCR_003199
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ivo P.

Touw (i.touw@erasmusmc.nl).

Materials Availability
Viral constructs and iPSC lines generated in this study will be made available on request, but we may require a payment and/or a

completed Materials Transfer Agreement if there is potential for commercial application.

Data and Code Availability
The RNA sequencing dataset comparing the effect of the introduction of RUNX1-D171N (RHD) inCsf3r-d715mice bonemarrow cells

generated during this study, as shown in Figure 1, is available at ArrayExpress: E-MTAB-9373.

The RNA sequencing dataset comparing different stages of leukemic progression in a mouse model of SCN generated during this

study, as shown in Figures 3 and 4 and Tables S1 and S2, is available at ArrayExpress: E-MTAB-9377.

The RNA sequencing dataset comparing the transcriptome of a SCN patient who progressed to AML (SCN-AML) with the SCN

phase and healthy controls generated during this study, as shown in Figures 4 and S3 and Tables S1 and S2, is available at ArrayEx-

press: E-MTAB-9381.

The DNA sequencing dataset comparing different stages of leukemic progression generated during this study, as shown in Fig-

ure 5, is available at ArrayExpress: E-MTAB-9376.

The RNA sequencing dataset comparing the effect of the introduction of RUNX1-D171N (RHD) in control- or SCN -CSF3R-d715

hematopoietic progenitor cells (HPCs) generated during this study, as shown in Figure S6, is available at ArrayExpress: E-MTAB-

9375.

The RNA sequencing dataset comparing SCN CSF3R-d715 RUNX1-D171N (RHD) HPCs treated with the HDAC inhibitor MS275,

octyl-(R)-2hydroxyglutarate (2HG) or solvent control (DMSO) generated during this study, as shown in Figures 7 and S7, is available at

ArrayExpress: E-MTAB-9374.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animals were kept according to Erasmus MC guidelines and experiments were performed under CCD license EM-

CAVD101002017869. FVB/n Csf3r-d715 knock-in mice,33 were bred at the Erasmus MC animal facility under specific pathogen

free conditions and the mice were genotyped by PCR. FVB/n wild-type (wt) control mice were purchased from Envigo, Horst, the

Netherlands. All animals used were male, single housed, 10-12 weeks old at the start of the experiment, and randomly assigned

to experimental groups.

Lentivirally transduced CSF3R-d715 lineage negative bone marrow cells were transplanted 72 hours after the first transduction.

GFP expression was determined by flow cytometry and 1x105 GFP positive cells were transplanted, together with their GFP negative

counterparts and 1x105 spleen cells, into 8.5 Gy irradiated (Cesium-137, GammaCell GC40) FVB/n wt recipients. Secondary trans-

plant FVB/n wt recipients received 5 Gy irradiation and 3x106 total bone marrow cells together with 1x105 spleen cells. The tertiary
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FVB/n wt recipients were irradiated with 8.5 Gy (IBL637 Cs-137) and received 2x105 total bone marrow cells together with 1x105

spleen cells.

Mice were injected subcutaneously three times a week with 100 mg/kg CSF3 (Filgrastrim, Zarzio) or vehicle control (PBS). Treat-

ment was started five weeks after transplantation in the primary recipients. The secondary recipients started CSF3 treatment four

weeks after transplantation, while the tertiary transplant recipients received CSF3 or PBS treatment two weeks after transplantation.

The tertiary recipients received a higher dose of CSF3 (200 mg/kg). From the start of the experiment, all mice received 50 mg/ml of

Ciprofloxacin in the drinking water.

Patient samples
Ficoll-gradient separated bone marrow and blood cells were obtained and frozen according to established procedures for viable cell

cryopreservation. The study was performed under the permission of the Institutional Review Boards of the Erasmus MC, the

Netherlands (registration numberMEC-2008-387 for biobanking andMEC-2012-030 for the genetic analysis of leukemic progression

in SCN patients).

Generation of iPSC
Bone marrow fibroblasts cultured from a healthy control (22 year old female) and a SCN patient (3 months old female) harboring

ELANE mutation (chr19:852986A > T) I60F were reprogrammed at the iPSC core facility of the Erasmus MC using a previously

described protocol.34 Cells were cultured in mTeSR1 (STEMCELL Technologies) on Geltrex LDEV-Free Reduced Growth Factor

BasementMembraneMatrix (Thermo Fisher Scientific) at 37�Cand 5%CO2, andwere regularly checked for pluripotency and correct

karyotype (Figure S5A).

METHOD DETAILS

Bone marrow isolation and lineage depletion
Bonemarrow (BM)was isolated from femurs, tibias and sternum of themice. Cells were harvested by crushing bones in amortar, and

the harvested marrow depleted from erythrocytes by Stem-Kit lysing solution (Beckman Coulter). The early stem and progenitor

compartment was enriched using the Biotin Mouse Hematopoietic Progenitor (Stem) Enrichment Set (Thermo Fisher Scientific), ac-

cording to the manufacturer’s protocol.

Viral expression constructs, virus production and transduction of BM cells
pMY-RUNX1 retroviral vectors35 were obtained from Gang Huang (Cincinnati Children’s Hospital, Cincinnati). RUNX1b mutant 4518

(D171N, RHD mutant) insert was subsequently cloned into the pBabe vector36 and used in in vitromouse studies. For the in vivo and

iPSC studies, the RUNX1 mutant was inserted into the lentiviral CSI vector (kind gift from Brian Duncan, University College London).

The lentiviral CSI vector was also used to express CXXC4-wild-type and CXXC4-ITD (Glycine 160-165 duplication). All constructs

were tested for correct introduction of inserts by enzymatic digestion and Sanger sequencing. Retroviral supernatants were har-

vested from HEK293T cells 48 hours after transfection with 5 mg of pBabe RUNX1-RHD mutant or empty vector (ev), together

with 5 mg pCL-eco37 and 30 mL TransIt transfection reagent (Mirus). Lentiviral supernatants were obtained from HEK293T cells 48

hours after transfection with 4 mg of the CSI vector, 3 mg pSPAX2, 1 mg pMD2.G and 25 mL FuGENE HD (Promega). Viral supernatant

and 1x106 lineage depleted BM cells were incubated in RPMI medium (GIBCO) supplemented with 10 ng/ml each of murine inter-

leukin-3 (IL-3), interleukin-6 (IL-6, Tebu-bio), stem cell factor (SCF, Preprotech) and granulocyte macrophage colony-stimulating

factor (GM-CSF, Tebu-bio) on retronectin coated dishes (TaKaRa). Fresh virus supernatant was again added after 24 hours and

transduced BM cells harvested another 48 hours later (72 hours after the first transduction).

SDS-PAGE/Immunoblotting
RUNX1 expression was determined using a RUNX1 antibody directed to human AML1 (4334, Cell Signaling Technology) or an anti-

body that recognized both human and mouse AML1 (8529, Cell Signaling Technology) in whole cell lysates. CXXC4 (NBP1-76491,

Novus Bio) and TET2 (ab94580, Abcam) antibodies were used to determine both mouse and human protein levels in nuclear lysates.

Preparation of lysates, and western blot analyses were performed as previously described.38

Murine colony assays
Lineage negative bonemarrow cells from FVB/nmice harboring either a wt or a truncated CSF3Rwere isolated, and retrovirally trans-

duced with either RUNX1 RHD mutant or an ev control. Cells were then seeded for colony formation (4x104/ml) in methylcellulose

(M3234, STEMCELL Technologies) with 50 ng/ml CSF3. Colonies were counted after 7 to 9 days of culture and replated if applicable.

Suspension cultures
1x105 lineage depleted bone marrow cells per ml were plated after transduction into LODISH stem cell expansion medium. LODISH

medium consisted of CellGro GMP serum-free stem cell growth medium (SCGM, CellGenix, Freiburg, Germany) supplemented with

10 ng/ml each of SCF, thrombopoietin (TPO, Preprotech), insuline-like growth factor (IGF, R&D systems), fibroblast growth factor
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(FGF, Preprotech) and with or without 50 ng/ml CSF3. Angiopoietin was harvested as conditioned medium of transfected HEK293T

cells, and added to the culture medium in a 1:5 dilution.

Flow cytometry and cell sorting
Cellular composition of the liquid cultures and in vivo tissues were analyzed using flow cytometry. The following antibodies and re-

combinant proteins were used: Sca1-Pacific blue (PB), CD34-Phycoerythrin (PE), CD48-PE, CD150-PE.Cy7, Ter119 Allophycocya-

nin (APC)(all Biolegend), CD117-APC, CD16/32-APC.Cy7, CD11b-PE, Gr1-APC, CD3-PE.Cy7, CD71 PE (all BD Biosciences), CD19

Alexa Fluor 700 (AF700, Life) and CD117 PerCpCy5.5 (SONY). Lineage positive cells were detected using the murine lineage detec-

tion kit (BD Biosciences) subsequently stained with streptavidin-pacific orange (PO, Fisher Scientific).

SSEA4-PE (Biolegend) and Tra-1-60 Alexa Fluor 647 (AF647, BD Biosciences) were used for regular pluripotency screenings of the

iPSCs. Hematopoietic induction of iPSC was assessed using CD34-PE and CD45-BV421 antibodies (both BD Biosciences). Dead

cells were excluded by using 7-aminoactinomycin-D (7AAD, Life) or 4’,6-Diamidino-2-Phenylindole (DAPI, Fisher Scientific). Flow cy-

tometry was performed using a BD LSRII flow cytometer (BD Biosciences). For subsequent cell sorting a FACSAria (BD Biosciences)

was used. Analysis of FACS data was performed using FlowJo (TreeStar).

Blood, bone marrow, spleen and liver isolation from mice
Peripheral blood (PB) was obtained by cheek puncture. Upon sacrifice, BM was isolated from femurs and tibias of the mice. Cells

were harvested by flushing the bones and subsequently filtered. Cells from spleen and liver were obtained by mashing parts of

the organs through a filter.

Histological and morphological analyses
Mouse organs were fixed in 4% formaldehyde overnight, dehydrated and prepared for paraffin embedding, after which they were

stained with Haemotoxylin and Eosin (H&E).

Cells were attached to glass slides using a Cytospin 4 (Thermo Scientific) according to the manufacturer’s protocol and stained

with May-Gr€unwald Giemsa staining. Stainings were performed according to routine protocols.

Introduction of CXXC4 in K562/HEK293T and protein stability assays
Lentiviral supernatant containing either an ev control, CXXC4-wt or the CXXC4-ITD (duplication of Glycines 160-165) was added to

K562 and HEK293T cells. Transduced cells were sorted for GFP+ expression and subsequently used. To test protein stability of

CXXC4-wt or -ITD, we added 1 mg/ml of the translation inhibitor cycloheximide (Merck) and harvested the cells 0, 8, 16 or 24 hours

after the start of the treatment.

Targeted sequencing of CXXC4
Custom CXXC4 amplicon sequencing was performed on patients of the HOVON102 trial using the Illumina PCR-based Custom Am-

plicon Library Preparation workflow. Forward primer AGGGGATAAGGTGGAGAGGA and reverse primer CCCCTGGAACTGCGA

CAA were used to amplify the Glycine repeat region of CXXC4. Libraries were paired-end sequenced with the MiSeq V2 Nano kit

(Illumina) on the Illumina MiSeq. Bioinformatic analysis was performed as previously described.39

CRISPR/Cas9-mediated genome editing
To introduce the CSF3R-d715 mutation in iPSCs, 2x106 cells were electroporated with 500 ng px33040 (Cas9 plasmid, Addgene

plasmid #42230) and 1500 ng recombination template containing the d715mutation and a puromycin selection cassette (Figure S5B),

using the 4D-Nucleofector System (Lonza), program CA-137. Puromycin selection (300 ng/ml) started 48 hr after electroporation.

Single clones were picked and screened for correct and heterozygous integration of the CSF3R mutation and pluripotency (Figures

S5A and S5B).

Hematopoietic induction and colony assays from iPSC
Hematopoietic progenitor cells (HPCs, CD34+CD45+) were produced with the STEMdiff Hematopoietic Kit (STEMCELL Technolo-

gies) according to the manufacturer’s protocol. Floating cells were harvested at Day 12 of the protocol.

Lentiviral production and transduction of iPSC
Lentiviral supernatant was harvested at 24 and 48 hours after transfection of HEK293T cells with 4 mg of the CSI vector, 3 mg pSPAX2,

1 mg pMD2.G, and 25 mL FuGENE HD (Promega). Viral particles were 100x concentrated by ultracentrifugation (Optima XPN-80,

Beckman Coulter) for 2 hours at 20.000 g and 4�C. Virus (25 ml/ml) and hexadimethrine bromide (polybrene, 4 mg/ml, Sigma) were

added to the hematopoietic induction cultures 60 hours before harvesting the floating cells.

TET inhibitor experiments
DMSO (solvent control), 0.1 mM Octyl-(R)-2HG (Sigma-Aldrich) or 2 mMMS275 (Santa Cruz) was added for 16 hours to the hemato-

poietic induction cultures before harvesting the floating cells.
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RNA isolation and RNA sequencing
RNAwas isolated from FACSpurifiedmouse LK or c-Kit+ cells, humanCD34+ cells from the bonemarrow (SCNphase, 1992) or blood

(AML phase, 2007) or CD34+CD45+ HSCs derived from the iPSCs using TRIzol (Thermo Fisher Scientific) according to the manufac-

turer’s protocol, with the addition of GenEluteTM�LPA(Sigma-Aldrich). For the in vitromouse experiments cDNA was generated with

the SMARTer Ultra Low Input RNA kit for sequencing (version 3, Clontech), while version 4 of the SMARTer Ultra Low Input RNA kit for

sequencing (Clontech) was used for the other samples. Sequencing libraries were generated using TruSeq Nano DNA Sample Prep-

aration kits (Illumina), according to the low sample protocol and run on HiSeq 2500 or Novaseq 6000 instruments (Illumina).

Whole exome sequencing
100 ng genomic DNA was fragmented using enzymatic fragmentation and sample libraries were constructed following the SeqCap

EZ HyperPlusCap workflow User’s Guide version 1.0 (Roche). Unique, dual index adapters (Integrated DNA technologies) were used

for ligation. After ligation of adapters and an amplification step, exome target sequences were captured using in-solution oligonucle-

otide baits (SeqCap EZ Developer Library mm9_exome_L2R_D02). Amplified captured sample libraries were paired-end sequenced

(2x100 cycles) on the HiSeq 2500 platform (Illumina).

Bioinformatics and statistics
Demultiplexing was performed using the CASAVA software (Illumina) allowing for one mismatch in the barcodes. Subsequently qual-

ity metrics were estimated (FastQC, Babraham bioinformatics & MultiQC; https://multiqc.info/) for all of the resulting fastq files. Af-

terward reads were aligned against the Mouse Transcriptome (Gencode m12)/Genome (mm10) or Human Transcriptome (Gencode

v19)/Genome (hg19) using the STAR aligner.41 Abundance estimation was performed using Cufflinks42 (refSeq), and raw counts were

measured with the HTSeq-count software set in union mode.43 Next the measured raw counts were used to create clustering and

principle component plots and perform differential expression analysis both using DESeq244 and R (https://www.r-project.org/).

Finally gene set enrichment analysis, with the hallmark pathways H, was done using the GSEA software (https://www.

gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H).45,46

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean ± SEM. Comparison of two groups was performed using unpaired t test. Statistical analyses were per-

formed usingGraphPad Prism 5.0c (GraphPad Software Inc., SanDiego, CA) or DESeq2. A p value < 0.05was considered significant.
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