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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with familial inheritance (fALS) in 5% to 10%
of cases; 25% of those are caused by mutations in the superoxide dismutase 1 (SOD1) protein. More than 100
mutations in the SOD1 gene have been associated with fALS, altering the geometry of the active site, protein folding
and the interaction between monomers. We performed a functional analysis of non-synonymous single nucleotide
polymorphisms (nsSNPs) in 124 fALS SOD1 mutants. Eleven different algorithms were used to estimate the
functional impact of the replacement of one amino acid on protein structure: SNPs&GO, PolyPhen-2, SNAP, PMUT,
Sift, PhD-SNP, nsSNPAnalyzer, TANGO, WALTZ, LIMBO and FoldX. For the structural analysis, theoretical models
of 124 SNPs of SOD1 were created by comparative modeling using the MHOLIine workflow, which includes Modeller
and Procheck. Models were aligned with the native protein by the TM-align algorithm. A human-curated database
was developed using the server side include in Java, JMOL. The results of this functional analysis indicate that the
majority of the 124 natural mutants are harmful to the protein structure and thus corroborate the correlation between
the reported mutations and fALS. In the structural analysis, all models showed conformational changes when
compared to wild-type SOD1, and the degree of structural alignment varied between them. The SOD1 database
converge structural and functional analyses of SOD1; it is a vast resource for the molecular analysis of amyotrophic
lateral sclerosis, which allows the user to expand his knowledge on the molecular basis of the disease. The SOD1
database is available at http://bioinfogroup.com/database.
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Introduction

Amyotrophic  lateral sclerosis (ALS) is a fatal
neurodegenerative disorder characterized by the adult onset of
progressive dysfunction and loss of upper motor neurons in the
motor cortex and lower motor neurons in the brainstem, spinal
cord, and their associated tracts. ALS has a worldwide annual
incidence of approximately 1.5 to 2 cases/100,000 and a
prevalence of 6-8 cases/100,000 [1]. Age is an important
predictive factor for the occurrence of the ALS, which is more
prevalent in patients between 55 and 75 years old [2].

Most cases of ALS are sporadic; only 5-10% have genetic
origin (familial Amyotrophic Lateral Sclerosis - fALS), and only
approximately 20% of the fALS cases have mutations in Cu/Zn
superoxide dismutase (SOD1) [3]. The X-ray crystal structures
of CuzZn SOD proteins from many species have been solved,
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predominantly in the fully metallated state, and the structure is
highly conserved [4]. The mechanisms by which protein
misfolding and aggregation induce cytotoxicity in
neurodegenerative disorders are not yet established. For
several of these disorders, e.g., Alzheimer's and Huntington’s
disease, the precursor proteins are structurally flexible and thus
completely free to adopt pathogenic structures [5]. The protein
SOD1 is a stable and perfectly soluble metalloenzyme that
must first be locally or globally unfolded to acquire pathological
function [6]. Consistent with this requirement, a remarkable
property of the mutations associated with ALS on SOD1 is the
decrease in the protein stability [7,8]. Currently, over 120
mutations in the SOD1 gene related to fALS have been
described [1].

The mutations occur all over the protein structure: at the
active site, at the B sheet and at the monomer interface [9].
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Although the biophysical properties among the mutant
enzymes vary greatly, the mutants cause exactly the same
disease. The mutations change the active site geometry, the
folding of SOD1 and the interaction between the monomers
[10]. The mutation A4V on SOD1 is considered the most
severe mutation linked to fALS, resulting in patient death only
11 months after the beginning of the symptoms [4]. The
mutations that are located at the bonding region of the metallic
ions are responsible for great alterations in the bonding
capacity of the metallic ions and in the SOD1 activity. In
contrast, the mutations that are found spread in other protein
regions are called “wild-type like” for having similar
characteristics to the wild-type enzyme [11].

The human next-generation sequencing and genome-wide
association study (GWAS) projects generate millions of
previously unknown single nucleotide variations (SNVs). Each
newly sequenced genome reveals an average 300,000 new
SNPs [12]. One of the main interests in human genome
research is to discover whether specific nsSNPs affect human
health.

Several computational methods are available to predict when
a mutation is disease related, starting from the protein
sequence and/or protein multiple sequence alignments. The
methods are based on the following: (1) sequence homology,
(2) empirical rules, (3) structural criteria, (4) artificial neural
networks, (5) decision trees, (6) random forests, and (7)
support vector machines (SVMs). Evolutionary information that
is encoded in the sequence profile is the most important piece
of information for improving predictive performance, as
indicated by the results of several predictors described in the
literature [13].

We have recently performed a structural modeling and in
silico analysis of human superoxide dismutase 2 (SOD2) [14].
In this study, we collected the natural variants of SOD1 for in
silico analysis, which can determine whether these variants
influence the protein’s three-dimensional structure or stability.
Possible effects of the missense variants on protein function
could be inferred using bioinformatics tools designed
specifically for these types of interpretation, such as
PolyPhen-2 [15]. Because of the importance of understanding
which variants are disease-related, programmes such as
SNPeffect [16], PhD-SNP [17], PMUT [18], SIFT [19], SNAP
[20] [21], SNPs&GO [13] and nsSNPAnalyzer [22] were utilised
to predict whether a given single-point protein mutation
affected the protein function. For the structural analysis,
theoretical models of 124 SNPs of SOD1 were created by
comparative modeling using the MHOLIine workflow [23], which
includes Modeller [24] and Procheck [25]. Models were aligned
with the native protein by the TM-align algorithm [26].

Despite progress in protein structure prediction, comparative
modeling remains the only method that can reliably predict the
3D structure of a protein with an accuracy that is comparable to
that of a low-resolution experimentally determined structure
[27]. A model calculated using a template structure that shares
more than 30% sequence identity is indicative of an overall
accurate structure [28]. In this work, comparative modeling was
performed using templates with high-resolution X-ray structures
(< 2A) and more than 99% sequence identity.
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As a result, a human-curated database was developed using
the server side include in Java, JMOL, for biologists and
clinicians to explore SOD1 nsSNPs and the resulting changes
in structure and function. This database is freely available at
http://bicinfogroup.com/database/ and will be regularly
updated.

Materials and Methods

Sequence retrieval
The sequence of the human SOD1 [UNIPROT: P00441]
were retrieved from the UNIPROT database [29].

Achievement of the mutant natural variations of SOD1

The 124 natural variants of the human SOD1 that are
associated with ALS were obtained from the OMIM database
[30], UNIPROT database [29], and ALSOD [31], which provide
systematic and in-depth qualitative and quantitative overviews
of genetic research in both familial and sporadic ALS.

Functional analysis of the mutant sequences

The mutant proteins were functionally analyzed using eleven
different algorithms: SIFT, nsSNPAnalyzer, SNPs&GO,
Polyphen 2, PMUT, PhD-SNP, SNAP, TANGO, WATLZ,
LIMBO, and FoldX (Table S1).

Structural conformation and conservation analysis of
SOD1

ConSurf (ConSurf v3.0), a bioinformatics tool based on the
phylogenetic relations between homologous sequences, was
used to evaluate the conservation at each amino acid position
of the SOD1 protein [32,33]. This algorithm included a multiple
alignment, in which a minimum BLAST score of 80% homology
between the possible options of sequences and the human
SOD1 was used as selection criterion for homologous
sequences.

Comparative modelling

The mutant models were built using the MHOLIine workflow
[23] with the crystallographic structure of human SOD1 as the
template. The TM-scores and root mean square deviations
(RMSDs) of the mutant structures with respect to the wild-type
structure were calculated using TM-Align [26].

Creation of the SOD1 database

A human-curated database was developed using the server
side include in Java, JMOL. The database at http:/
bioinfogroup.com/database contains the results obtained from
this work. The data contained on the site were individually and
manually obtained in each algorithm.

Results and Discussion
The motivation for choosing SOD1 is the intimate relation of

its variants with the development of ALS and the increasing
number of studies that have been performed for greater
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Figure 1. Mutations designated as neutral and non-neutral by the algorithm. Blue bars show the total number of mutations
classified as responsible for the disease, while the red bars show the total number of mutations considered neutral.

doi: 10.1371/journal.pone.0081979.g001

understanding of this disease and of SNP predictive
algorithms.

In this work, 124 natural variants of SOD1 obtained through
three different databases were analyzed. Until now, no single
database contained the complete set of in silico analyses per
mutation, revealing the lack of a more updated and complete
database about SOD1. The SOD1 database, http://
bioinfogroup.com/database, was created to supplement these
demands and form a database of the results found during the
execution of this project and from others in the future, allowing
researchers and clinicians to explore SOD1 and its variants.
Our database, which contains all the currently described
mutations, allows the user to evaluate the effects of SOD1 on
ALS in a more embracing manner than that of the other
existing databases. In addition, the user can know and analyze
the algorithms that are most frequently used to predict SNPs,
starting from the access to the individual results of the
application for each of the 124 existing mutations. With its
interactive interface, the SOD1 database allows dynamic
utilization by enabling users to select only the results of the
mutations and algorithms that are most important to them.

Functional analysis of the mutant sequences

The information derived from the application of algorithms
that predict the pathogenicity of mutations is quantitatively
represented in Figure 1 and detailed in Table S2.

SIFT: This method takes a query sequence and uses
multiple alignment information to predict tolerated and
deleterious substitutions for every position of the query
sequence. This is a multistep procedure that, given a protein
sequence, (1) searches for similar sequences, (2) chooses
closely related sequences that may share similar function, (3)
obtains the multiple alignment of these chosen sequences, and
(4) calculates normalized probabilities for all possible
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substitutions at each position from the alignment [19]. Seventy-
nine percent of the analyzed mutations, totalizing 98 mutations,
were classified as responsible for affecting the proteic function;
the others were tolerable.

nsSNPAnalyzer: A web-based software, nsSNPAnalyzer
extracts the structural and evolutionary information from a
query nsSNP and uses a machine learning method known as
random forest to predict the phenotypic effect of the nsSNP
[22]. Nearly fifty-three percent of the analyzed mutations, 66
mutations, were classified as disease originators. The
mutations C111Y and E133V obtained unknown results, and
the others were classified as neutral.

SNPs&GO: A SVM-based method that, starting from the
protein sequence, uses different pieces of information,
including that derived from the GO annotation of the protein, to
predict whether a given mutation can be classified disease
related [13]. One hundred percent of the analyzed mutations
were classified as disease originators.

PolyPhen-2: This method uses eight sequence-based and
three structure-based predictive features that were selected
automatically by an iterative greedy algorithm. The majority of
these features involve a comparison between a property of the
wild-type allele and the corresponding property of the mutant
allele. The functional importance of an allele replacement is
predicted from its individual features by a naive Bayes classifier
[15]. Approximately eighty-seven percent of the analyzed
mutations, 108 mutations, were classified as possible
originators of injury, and the remaining were benign.

PMUT: This method allows the prediction of the pathological
character of single-point amino acid mutation based on the use
of neural networks. This method also allows the fast scanning
of mutational hot spots, which are obtained using three
procedures: (1) alanine scanning, (2) massive mutation and (3)
genetically accessible mutations. A graphical interface for
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Protein Data Bank (PDB) structures, when available, and a
database containing hot spot profiles for all non-redundant
PDB structures are also accessible from the PMUT server [34].
Nearly sixty percent of the analyzed mutations, 75 mutations,
were classified as pathological, and the remaining were
neutral.

PhD-SNP: This method is based on support vector machines
(SVMs) that starts from the protein sequence information and
can predict whether a new phenotype derived from a nsSNP
can be related to a genetic disease in humans, using a dataset
of 21185 single point mutations [17]. Nearly ninety-one percent
of the analyzed mutations (113 mutations) were classified as
disease originators, and the remaining were neutral.

SNAP: This method utilizes various biophysical
characteristics of the substitution, as well as evolutionary
information, some predicted (or observed, when available)
structural features, and possibly annotations, to predict whether
a mutation is likely to alter protein function (in either direction:
gain or loss) [20]. Nearly ninety-four percent of the analyzed
mutations (117 mutations) were classified as non-neutral, and
the remaining were neutral.

SNPeffect: This method uses sequence- and structure-based
bioinformatics tools to predict the effect of protein-coding SNVs
on the structural phenotype of proteins. SNPeffect integrates
aggregation prediction (TANGO) [35], amyloid prediction
(WALTZ) [36], chaperone-binding prediction (LIMBO) [37] and
protein stability analysis (FoldX) [38] for structural phenotyping
[16]:

TANGO: Six mutations were classified as causing an
increased tendency for protein aggregation, and 5 were
classified as a decrease of that tendency. The other 115
mutations were classified as not changing the protein
aggregation from that of the wild-type SOD1.

WALTZ: Only two mutations were classified as responsible
for increasing the amyloid propensity and two for its decrease.
The remaining approximately ninety-seven percent was
classified as having no changes concerning this parameter.

LIMBO: None of the mutations were classified as causing
changes in chaperone binding compared with the wild-type
SOD1.

FoldX: Approximately eighty-six percent of the mutations
were classified as responsible for the decrease of protein
stability, 4 mutations as causing an increase thereof, and only
13 mutations were found to be unaffected compared with the
non-mutated SOD1.

Three histidine residues (HIS46, HIS48, HIS80) and one
glycine residue (G85R) that formed the ligation site between
metal and SOD1 were affected by ALS mutations. All of these
mutations were considered pathological according to the seven
algorithms for predicting pathogenicity. Furthermore, these
mutant proteins did not exhibit the tendency to either aggregate
or form amyloids and did not alter chaperone binding.
However, their protein stability was considerably reduced in
comparison to that of the wild-type SOD1. These results are
not consistent with those of other experimental studies, which
have shown that H46R and G85R are among the most stable
ALS-related mutations [39].
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Starting from the SNP analysis from using the seven
algorithms individually, only 43 natural variants (34.7%) were
classified as pathological by all of the algorithms. Of the
remaining variants, 25.8% were classified as neutral, 23.4%
had two classifications, and the other 16.1% had between three
and six (Figure 2). No mutations were classified as neutral by
all algorithms, and SNPs&GO was the only algorithm that
classified all the variants as malignant, and therefore the one
which presented higher accuracy in the classifications of the
mutations that cause amyotrophic lateral sclerosis. In contrast,
the nsSNPAnalyzer classified almost half of the mutations
(46.7%) as benign, showing less accuracy in the identification
of the SNPs that cause ALS. The mutations were also
analyzed at the same time by all algorithms. Considering the
number of benign and malign results for each mutation, the
total hit tax on the prediction of the 124 mutations was
approximately 91%. The classification differences observed by
the mutations occur because each algorithm has different
parameters of prediction, which illustrates the requirement of
using more than one algorithm to obtain greater reliability in the
prediction of non-described SNPs.

Interestingly, all the mutations that occurred on the binding
site to metal of the SOD1 were considered pathological by the
7 algorithms that were used. Therefore, we can hypothesize
that these mutations have the functional localization on the
protein as a common parameter, which is very reasonable
considering that cellular functions are performed by 3D well-
folded protein structures and protein-protein and protein-ligand
interactions [40] and that alterations of these parameters may
cause a loss or alteration of proteic function. Moreover, in a
manner consistent with experimental results, the A4V variant,
which was described as responsible by the most severe form of
fALS [41], was considered pathological by all the algorithms
except for the nsSNPAnalyzer.

Regarding the analysis performed by SNPeffect, the vast
majority of the mutations were classified as having no
significant changes in relation to the protein aggregation
tendency, amyloid propensity tendency or changes in the
binding of chaperones. Conversely, according to the protein
stability analysis parameter, most of the mutations (86.3%)
were classified as being less stable than the wild-type SOD1.
These results are extremely important in understanding the
probable pathological change whereby mutations lead to the
development of ALS. In particular, this analysis indicated that
the mutation A4V exhibited not only a reduced protein stability
but also an increased tendency to aggregate, corroborating
experimental data that highlighted the greater severity of this
mutation over those of other mutations, consistent with
experimental results indicating that the mutant A4V more easily
aggregates in the presence of cupric ions under copper-
mediated oxidative conditions than does wild-type SOD1 [42].
In contrast, the mutant G93A, which presents an initial rate of
oligomerization greater than twice that of wild-type SOD1
during experimental analysis [43], was classified by SNPeffect
as being unaffected by protein aggregation.
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Figure 2. Percentage of mutations with neutral results obtained by the algorithms used for analysis of SOD1. Blue bar
represents the percentage of mutations that, among the seven used algorithms, presented no neutral result and were therefore
considered malign by all algorithms. Red bar, the percentage of mutations with neutral results; Green bar, 2 neutral results; Purple
bar, 3 neutral results; Yellow bar, 5 neutral results; Orange bar, 6 neutral results; Brown bar, 7 neutral results.

doi: 10.1371/journal.pone.0081979.g002

Structural conformation and conservation analysis of
SOD1

The results generated by the ConSurf tool consist of a
structural representation of the protein (Figure 3) and a multiple
alignment of the sequences (Figure 4). Both contain a
colorimetric conservation score, in which conserved amino
acids are colored bordeaux, residues of average conservation
are white, and variable amino acids are turquoise. It was
verified that 61.4% of the amino acids from SOD1 were totally
conserved, including all amino acids that formed the bonding
site to metal (HIS46, HIS48, HIS63, HIS71, HIS80, ASP83 and
HI1S120).

Evolutionary information is of fundamental importance for
detecting mutations that affect human health [44]. ConSurf
identifies functional regions in proteins, taking into account the
evolutionary relationships among their sequence homologues
[32]. The ConSurf conservation analysis was performed by
evolutionarily related conservation scores of the residues for
functional region identification from proteins of known three-
dimensional structures [40]. For the identification of functional
regions for mapping the phylogenetic information between the
homologues of SOD1, we formulated a BLAST [45] with the
criterion of selecting only sequences with homology between
80 and 100% for the alignment. This criterion allowed us to
select only sequences that were evolutionally close to the
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human SOD1 protein. Consequently, the alignment was
performed only in mammalian enzymes. The results verified
that most of the amino acids, 61.4%, were highly conserved
between the analyzed species. The ConSurf analysis also
revealed, as expected, that the functional regions of the protein
are highly conserved; it classified all the amino acids of the
binding site to metal on SOD1, including the three histidines
that have mutations related to the development of ALS, with
the highest possible score of conservation (score = 9). In
addition, (Figure 4) two columns became aligned by gaps at
the positions of amino acids 26 and 28. The first gap is a result
of the sequences of the human SOD1, Equus caballus and
Morrodelphis domestica; while the second is because of the
Mus musculus and Morrodelphis domestica species.

When comparing the results obtained from the SNP and
ConSurf analysis algorithms, all mutations that were classified
as benign (Figure 2) by at least 5 algorithms (D96N, 99V,
L117V e N19S, D96V, E100K) occurred in amino acids
considered non-conserved by ConSurf.

Comparative modelling

The natural variants were substituted into the wild-type
sequence for comparative modelling. These sequences were
submitted to the MHOLline workflow [23]. An alignment
between the native and mutant structures was performed using
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Figure 3. Structural conformation and conservational analysis of the human SOD1. (A) Structural representation of the three-
dimensional model of the SOD1 [PDB: 2VOA] in a form of a diagram in cartoon. Different elements of the secondary structure are in
various colors: in magenta, the alpha helix; in yellow arrows, beta sheets; and in white lines, coils. (B) Three-dimensional structure
of human SOD1, represented in backbone form of, with mutations described on the literature marked in red. (C) Conservation profile
of human SOD1 using ConSurf conservation analysis. The protein was visualized using Jmol with color-coded conservations. The
conserved and variable residues are presented as space-filled models and colored according to the conservation scores. Each

structure is turned 90 degrees to show the different sides of the protein.

doi: 10.1371/journal.pone.0081979.g003

TM-Align [26]. Parameters such as the TM-score and root
mean square deviation (RMSD) were used to analyse the
topology and structural similarity of the models. TM-score was
used to assess the topological similarity of two protein
structures, while RMSD was the measure of the average
distance between the backbones of the superimposed proteins
[40]. The RMSD values for the modelled mutants were
significant for pathogenicity for all missense mutations (http://
bioinfogroup.com/database). RMSD values greater than 0.15
were considered significant structural perturbations that could
have functional implications for the protein [46].
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SOD1 database

All results obtained through this work are available for search
on our free SOD1 database at http://bioinfogroup.com/
database. The database interface (Figure 5) allows users to
search for a mutation by its non-synonymous SNP. The SOD1
database allows a user to quickly retrieve and rapidly analyse
the predicted effects of protein variants. In addition to
predicting the effects of variants, an alignment of the wild-type
and mutant structures can be visualised using the database.

Conclusions

In general, the accuracies of the prediction tools (SNAP,
SNPs&GO, SIFT, PolyPhen-2, nsSNPAnalyzer, PMUT, PhD-
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Figure 4. Multiple Sequence Alignment Color-Coded by Conservation. The ConSurf algorithm was used to provide
conservation score for the amino acids of superoxide dismutase 1, starting from the multiple alignment of sequences of SOD1 from
8 different mammalian species that had between 80 and 100% homology with the human SOD1. The color-coding bar shows the
coloring scheme: conserved amino acids are colored bordeaux, residues of average conservation are white, and variable amino
acids are turquoise. Two columns are basically formed by gaps: at the position of amino acid 26, the gaps are because of
sequences of human SOD1, Equus caballus and Morrodelphis domestica; while at amino acid position 28, the gaps are because of
the species Mus musculus and Morrodelphis domestica. In addition, it is verified that 61.43% of the amino acids are highly
conserved between the analyzed species. The asterisks on the superior region of the alignment delimit the amino acids that have
mutations described in the literature.

doi: 10.1371/journal.pone.0081979.g004

SNP) are estimated to be between 50% and 80% [20,47]. In and thus corroborate the correlation between the mutations
this work, we obtained an extra total average hit tax between and fALS. We also observed that the results of the algorithms
the algorithms of 80.8%. This significant value that shows that diverged, although all were based on similar calculation
to obtain greater reliability, it is necessary to use more than one mechanisms. Moreover, the results found by the pathogenicity
tool to predict SNPs. In the case of SOD1, only 34.7% of the prediction tools are consistent with those found when analyzing

mutations presented pathogenicity with all of the tested the conservation of the amino acids. The analysis performed
algorithms. The algorithm with more accuracy was SNPs&GO, using the SNPeffect algorithm allows us to infer that the main
which uses information derived from the GO annotation of the protein parameter responsible for causing ALS might be the
protein to predict whether a given mutation can be classified instability of the mutated SOD1. This inference stems from the
disease-related [13]. When applying seven distinct algorithms fact that according to the protein stability analysis parameter,
to predict 124 SNPs, the results indicate that the majority of most of the mutations (86.3%) were classified as being less
natural mutants are classified as harmful to protein structure stable than the wild-type SOD1. Furthermore, we can also
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Figure 5. Screenshot of the SOD1 Database web interface for structural modelling and comparative analysis.

doi: 10.1371/journal.pone.0081979.g005

conclude that chaperone binding is not related to the
development of ALS because none of the mutations was
classified as causing changes in chaperone binding compared
with the wild-type SOD1.

The resulting database allows biologists and clinicians to
explore SOD1 nsSNPs and their functional inferences. It is a
vast resource for the molecular analysis of amyotrophic lateral
sclerosis, which allows a user to expand his knowledge of the
molecular basis of the disease.

Supporting Information

Table S1. Tools for In Silico Analysis of Missense
Substitutions.
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