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Abstract

This paper presents a procedure for the patient-specific prediction of epileptic seizures. To

this end, a combination of nonnegative matrix factorization (NMF) and smooth basis func-

tions with robust regression is applied to power spectra of intracranial electroencephalo-

graphic (iEEG) signals. The resulting time and frequency components capture the dominant

information from power spectra, while removing outliers and noise. This makes it possible to

detect structure in preictal states, which is used for classification. Linear support vector

machines (SVM) with L1 regularization are used to select and weigh the contributions from

different number of not equally informative channels among patients. Due to class imbal-

ance in data, synthetic minority over-sampling technique (SMOTE) is applied. The resulting

method yields a computationally and conceptually simple, interpretable model of EEG sig-

nals of preictal and interictal states, which shows a good performance for the task of seizure

prediction on two datasets (the EPILEPSIAE and on the public Epilepsyecosystem dataset).

Introduction

The ability to predict epileptic seizures provides an opportunity to intervene in order to atten-

uate their effects, or if possible prevent them. In this study we focus on EEG manifestations of

seizures, which are characterized by sudden hypersynchronization of neurons and last from

seconds to minutes. [1] Recently published studies on seizure prediction use a wide variety of

approaches, from time series analysis (e.g. phase synchronization [2] or bivariate phase syn-

chrony [3]) and spectral features of EEG signals [4, 5] to physiological models of neural activity

(e.g. neural mass models [6]) or circadian models [7]. We focus on spectral measures of EEG

signals since they have been successfully used as features for seizure prediction, and are easily

interpretable. [4, 8, 9]

In the field of seizure prediction there are certain conceptional, computational and data-

related challenges. First, using a large number of features for prediction makes it difficult to

interpret their individual contribution. [9] Secondly, the algorithms for seizure prediction in a

clinical setting need to be computationally efficient. Due to hardware constraints, this applies

to closed-loop EEG devices for seizure prediction and intervention in particular, which have
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been a recent focus in the field. [8–11] Finally, data encountered in the field of seizure predic-

tion can be high dimensional and heterogeneous (e.g. recorded using many different channels

and types of measurements in addition to EEG, like ECG, EOG etc), yet suffer from class

imbalance (patients spend more time in interictal than in preictal states) and limited in the

number of labeled samples. This is particularly challenging for the design of a patient-specific

model.

In this study we address these issues by developing an easy-to-use, computationally efficient

method for patient-specific seizure prediction. In order to achieve that, we extract a small set

of interpretable features from power spectra that distinguish a baseline (interictal) EEG activity

from a state leading up to a seizure (preictal state). Interictal states are regular brain activity

between seizures, which can sometimes be interrupted with interictal spiking. [1, 12] Since sei-

zures are characterized by strong synchronization, they are very prominent in power spectra

of EEG signals. Although preictal states are not clearly visible in raw EEG signals, multiple

studies confirmed the presence of distinct preictal states using spectral [4, 13, 14], as well as

information measures. [15–17] For a detailed discussion, see [8] and [9].

Although power spectra capture relevant changes in frequency over time, they can be very

noisy and contain outliers. We thus use nonnegative matrix factorization (NMF) [18, 19] to

decompose power spectra into dominant time and frequency components, which are later

used for seizure prediction.

To mitigate class imbalance, we employ synthetic minority over-sampling technique

(SMOTE) [20], together with linear SVM with L1 regularization, to assign weights for contri-

butions from each individual channel and eliminate uninformative channels. A software

implementation of the presented method is available online at: https://github.com/

ostojanovic/seizure_prediction. The method is applied to a part of the Freiburg EPILEPSIAE

dataset [21], and compared to the Epilepsyecosystem dataset [22]. The developed method is

computationally inexpensive and produces good results while providing insights into the

structure of preictal states.

Materials and methods

Data preparation

Freiburg EPILEPSIAE dataset. The data consist of heterogeneous EEG recordings of five

pre-surgical patients (one female; median age: 29.2) [Table 1] and form a part of the bigger

Freiburg EPILEPSIAE database. [21] Recordings are made at the University Medical Center

Freiburg, over the course of several days (three to nine), between 2003 and 2009. The sampling

frequency varies between 256Hz and 1024Hz. The electrodes that are used in the recordings

include intracranial (depth, strip and grid) and surface electrodes, together with special elec-

trodes (e.g. ECG, EMG and EOG), whose number varies between 31 and 122, depending on

the diagnosis. In order to investigate preictal states thoroughly, only intracranial EEG record-

ings are used.

Table 1. Detailed information about patients the from EPILEPSIAE database. [21] The number of preictal intervals is the same as the number of seizures.

Patient’s number age sex number of channels sampling frequency (Hz) number of preictal intervals number of interictal intervals

1 34 male 48 256 16 88

2 37 female 26 512 6 44

3 18 male 94 1024 8 80

4 42 male 38 1024 6 110

5 15 male 91 256 14 9

https://doi.org/10.1371/journal.pone.0228025.t001
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Since the ability to predict a seizure five minutes before its onset can be useful for patients

with uncontrolled epilepsy [23], we focus on five minute intervals of preictal and interictal

states. In the case of a preictal state, an interval of five minutes leading up to a seizure, with a

30 seconds seizure horizon is extracted. Seizure onsets are hand-labeled at the University Med-

ical Center Freiburg. Since preictal states directly precede seizures, seizure prediction can be

realized by classification between preictal and interictal states.

In the case of an interictal state five minutes intervals are extracted, which are at least 11

minutes before or after any other seizure. We refer to these intervals of extracted signals as

individual measurement periods. The data are filtered with the Parks-McClellan optimal

equiripple finite impulse response filter to remove 50Hz line noise.

The dataset is separated into training (70%) and validation set (30%) during a 100-fold

cross-validation procedure.

Epilepsyecosystem dataset. The dataset consists of intracranial EEG recordings of three

patients (all females; median age: 50). [Table 2] Recordings are made at the St Vincent’s Hospi-

tal in Melbourne, Australia as a part of the world-first clinical trial of the implantable Neuro-

Vista Seizure Advisory System. [24] In total, 16 electrodes are used for each patient and

sampling frequency is 400Hz. The dataset consists of the public and the private (benchmark)

set. Since labels of preictal and interictal states are known only for the public set, it is used for

developing a model, while the benchmark set is used in the final stage for comparison with

other algorithms for seizure prediction. [22]

Preictal intervals are ten minute segments which are cut out of recordings covering one

hour prior to seizure with a five minute seizure horizon. (i.e. from 1:05 to 0:05 before seizure

onset). Interictal intervals are also ten minute segments cut out from one hour of recording,

which is at least four hours away from any seizure. Some of the files contain data dropouts

which happen when the intracranial brain implant temporarily fails to record data. This mani-

fests in zero values of iEEG across all channels at a given time sample. All files that contain

more than 50% of data dropouts are excluded from the further analysis. For files that contain

less than 50% of data dropouts, the corrupt data are deleted and the rest of the signal is

concatenated. The data are filtered with the Butterworth infinite impulse response filter to

remove 50Hz line noise.

The public dataset is separated into training (70%) and validation set (30%) during a

100-fold cross-validation procedure.

Deriving time and frequency components

To identify stereotypical behavior between and ahead of seizures, spectrograms of each chan-

nel [Fig 1] (for the Freiburg EPILEPSIAE dataset) are obtained using the multitaper method

[25] with time windows of 10 seconds (which is calculated by using 50% overlap of a 20 sec-

onds window). For the Epilepsyecosystem dataset, spectrograms of each channel are calculated

using the Fast Fourier Transform. To correct for baseline activity across frequencies, relative

power is calculated by dividing spectrograms of each channel by the average interictal

spectrogram.

Table 2. Detailed information about the Epilesyecosystem dataset (after excluding corrupted files). [22] The number of preictal intervals is the same as the number of

seizures in the public dataset, while for files in the benchmark dataset labels are not publicly known.

Patient’s number age sex number of preictal intervals number of interictal intervals number of files (benchmark set) percentage of excluded files

1 22 female 225 500 162 14.9%

2 51 female 216 1688 941 7%

3 50 female 251 1896 679 1%

https://doi.org/10.1371/journal.pone.0228025.t002
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Due to the clinical setting and patients’ diagnoses, the sampling frequency varies among dif-

ferent patients from the two datasets. As a result, the highest frequency in the spectrograms

varies between 128Hz and 513Hz. However, this difference is unproblematic due to the fact

that we develop patient-specific models. After obtaining spectrograms of every individual mea-

surement period for every channel, they are visually inspected, and in the case of anomalies

(e.g. electrode detachments, sudden amplitude jumps), excluded from the data.

Time-frequency decomposition. To examine changes in power spectra, spectrograms of

each channel and each individual measurement period are decomposed into a time and a fre-

quency component using nonnegative matrix factorization. Originally proposed under the

name “positive matrix factorization”, it is a variant of factor analysis [18], which is first used

on environmental data [26] and later popularized in the application to face recognition under

the current name. [19] For both tasks, NMF is successful in learning interpretable parts-based

representation (e.g. concentrations of elements, as in [26] or parts of faces, as in [19]) and

shown to perform better than independent component analysis, principal component analysis

or vector quantization. [27–29] In the field of seizure prediction, NMF has been used to

develop a method for automatic localization of epileptic spikes in children with infantile

spasms [30] and for automatic detection and localization of interictal discharges. [31]

Nonnegative matrix factorization decomposes a nonnegative matrix V into two nonnega-

tive low-rank matrices W and H [19]:

V � ~Vn�m ¼Wn�r � Hr�m

~Vij ¼
Xr

a¼1

WiaHaj

Fig 1. Example spectrograms of preictal and interictal states. Baseline corrected spectrograms of a preictal (A) and an interictal (B) individual

measurement period of channel HR1 from patient 1. This channel and individual measurement period will be used throughout the paper for

illustrative purposes, if not stated otherwise.

https://doi.org/10.1371/journal.pone.0228025.g001
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The outer product ~V ¼WH can be interpreted as a low rank parts-based approximation of

the data in V. [19] We decide on a factorization of rank r = 1 to get the most constrained

model with two vectors, one of which represents temporal evolution (time component H) and

one of which represents distribution of frequencies (frequency component W). [Fig 2]

To lessen the influence of outliers and to remove noise in the NMF components, they are

modeled with smooth basis functions using robust regression. The time component is mod-

eled by a polynomial of second order, while the frequency component is modeled by nonli-

nearly logarithmically spaced B-splines of sixth order to consider the frequency resolution

which decreases in higher frequencies. [Fig 2] By modeling each component with smooth

basis functions, the most relevant information is preserved in both domains, while noise is

removed.

By calculating the outer product of modeled NMF components as shown in Fig 3, time-fre-

quency models can be reconstructed. They capture the most important information while leav-

ing out the noise and thus provide simplified intermediate representation of the data, which

can be visually compared to the corresponding spectrograms (see S1 Fig in the appendix). The

coefficients of the modeled time and frequency components therefore convey relevant infor-

mation about structure of both states.

Prediction and performance measures

To classify between preictal and interictal states, linear support vector machines [32] are used.

We combine the coefficients of both of the modeled NMF components across all channels into

a feature vector. For example, recordings of patient 1 in the EPILEPSIAE dataset contain 48

channels with 12 NMF parameters (9 parameters for the frequency component and 3 parame-

ters for the time component) each, leading to a dimensionality of 48 � 12 = 576. To account for

Fig 2. Time and frequency components and its models. An example of decomposed time (solid blue lines) and frequency components (solid

red lines) and their respective models (dashed lines) of a preictal state (A, C), as well as an interictal state (B, D). In a preictal state, the time

component (A) increases as a seizure is approaching, while the frequency component (C) has an increase in low frequencies. Both interictal

components (B, D) are steady and are an order of magnitude lower than their respective preictal components (A, C).

https://doi.org/10.1371/journal.pone.0228025.g002

Seizure prediction using nonnegative matrix factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0228025 February 5, 2020 5 / 13

https://doi.org/10.1371/journal.pone.0228025.g002
https://doi.org/10.1371/journal.pone.0228025


the risk of overfitting due to the high number of features, L1 regularization is used. L1 regulari-

zation shrinks coefficients of less important features to zero by adding the absolute value of

magnitude of coefficients as a penalty term to the loss function. [32]

In both datasets, interictal states are more frequent than the preictal ones, which leads to an

imbalance of classes (c.f. Tables 1 and 2). To account for this, the SMOTE oversampling tech-

nique is used. [20] It creates synthetic samples of the minority class, based on k neighboring

points of minority samples (in our case k = 5). This means that the new synthetic preictal sam-

ple is created based on the five closest preictal samples.

To ensure good generalization of the algorithm, 100-fold cross-validation is used on a train-

ing set (70%) and a validation set (30%). Average measures (accuracy, sensitivity, specificity,

positive and negative predictive values) are reported. Since the classifier should neither miss

nor falsely predict a seizure, we report sensitivity sensitivity and specificity, as well as positive

and negative predictive values. [33] In the benchmark dataset the area under the curve (AUC)

is used for comparison among other algorithms.

Sensitivity is the probability of a positive test result among those having the target condition

(i.e. the proportion of correctly classified preictal states), while specificity is the probability of a

negative test result among those without the target condition (i.e. the proportion of correctly

classified interictal states). [33] The positive predictive value (PPV) is the probability of the tar-

get condition, given a positive test result (i.e. the measure of how likely it is that, if the classifier

predicts a preictal state, a patient is experiencing it), while the negative predictive value (NPV)

is the probability of not having the target condition, given a negative test result (i.e. the mea-

sure of how likely it is that, if our classifier does not predict a preictal state, a patient is not

Fig 3. Obtaining a time-frequency model from the respective components. The NMF components are shown with solid red and blue lines for

frequency and time, respectively, while their models are shown with dashed lines. The time-frequency model (center) is an outer product of

modeled time and frequency components.

https://doi.org/10.1371/journal.pone.0228025.g003
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experiencing it). [33] Full expressions are given below:

Accuracy ¼
TP þ TN
all samples

Sensitivity ¼
TP

TP þ FN

Specificity ¼
TN

TN þ FP

PPV ¼
TP

TP þ FP

NPV ¼
TN

TN þ FN

where:

TP is a number of samples classified as true positive

TN is a number of samples classified as true negative

FP is a number of samples classified as false positive

FN is a number of samples classified as false negative.

Results and discussion

Interpretability of the model

Fig 2 shows representative preictal and interictal components (of the EPILEPSIAE dataset),

where the modeled NMF components show differences between the states. Model of the fre-

quency component of a preictal state exhibits a peak of high activity in lower frequencies, rela-

tive to baseline activity. This is in line with previous findings of a structure below 30Hz

(gamma range), which is informative for seizure prediction. [13, 14] These structural differ-

ences are also visible in recovered time-frequency models (see S2 and S3 Figs in the appendix).

Average preictal and interictal components of all measurements and electrodes differ in

both datasets, as shown in S4 and S5 Figs in the appendix. On average, time components of

preictal states in the EPILEPSIAE dataset have higher intensity, and frequency components

show increase in lower frequencies (S4 Fig). Equivalent average components in the public Epi-

lepsyecosystem show slightly different behavior. Time components of interictal states have

somewhat higher intensity, and frequency components have an increase in lower as well as in

higher frequencies. Since labels for the private Epilepsyecosystem dataset are not available, it is

not possible to analyze the benchmark dataset in the same way.

Fig 4 shows normalized histograms of maximum values of frequency components of preic-

tal and interictal states for both datasets. In the EPILEPSIAE dataset most preictal components

have maximum in lower frequencies, and interictal states have maximum in both lower and

higher frequencies (above 100Hz). On the other hand, most maxima of preictal and interictal

components in the public Epilepsyecosystem dataset are below 50Hz as well as between 150Hz

and 200Hz.

This difference in components between datasets can exist due to various reasons. The part

of the EPILEPSIAE dataset used here might have too few measurements from an each patient.

The Epilepsyecosystem dataset has more measurements, but it still contains data for only three

patients. For a better assessment more data from different patients should be analyzed. In addi-

tion, it should be noted that the part of the EPILEPSIAE dataset used here contains data of

pre-surgical patients and seizures recorded in this setting might not always be representative

of typical epileptic seizures. As it is shown in [34], features of intracranial EEG signals show
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PLOS ONE | https://doi.org/10.1371/journal.pone.0228025 February 5, 2020 7 / 13

https://doi.org/10.1371/journal.pone.0228025


high variability after implantation of electrodes and spatial variability of lower frequency

power bands across channels decreases over time. On the other hand, the Epilepsyecosystem

dataset contains recordings from the world-first clinical trial of the human-implanted Neuro-

Vista seizure advisory system [24], which might also be more distinguished than other clinical

trials. Lastly, in the EPILEPSIAE dataset the 11-minutes buffer for interictal periods is used,

which might be too short. The study in [35] reveals existence of “pre-cursors” to seizures

(energy bursts in iEEG signals), which suggests that epileptic seizures might start hours in

advance (also shown in [24]). Considering all of this, the best assessment of differences in pre-

ictal and interictal states would be in a closed-loop seizure prediction setting in real-time, for

which the proposed method would, with appropriate adjustments (e.g. calculating spectro-

grams of consecutive time windows instead of short segments) be suitable.

Predictive performance

On the EPILEPSIAE dataset, similar accuracy is achieved for all patients (above 90%). The low-

est performance is for the patient 5 (90.4%) and the highest for the patient 4 (100%), as shown

in Fig 5 and Table 3. Sensitivity is between 0.8 and 1, while specificity ranges from 0.98 to 1, as

can be seen in Fig 5. A combination of high values of sensitivity and specificity is achieved for

all patients. Similarly, positive predictive values are between 0.98 and 1, while negative predic-

tive values are between 0.85 and 1 (c.f. Fig 5 and Table 3).

Fig 4. Distribution of maximum of frequency components. Results of the EPILEPSIAE dataset are shown in the upper row for preictal (A)

and interictal states (B). The lower row shows results for the Epilepsyecosystem dataset (C for preictal and D for interictal states).

https://doi.org/10.1371/journal.pone.0228025.g004
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Predictions on the public Epilepsyecosystem dataset are lower than on the EPILEPSIAE data-

set (around 70% for all patients; c.f. Fig 5 and Table 3). The lowest performance is for the patient

1 (74.1%) and the highest for the patient 3 (78.5%). Sensitivity, specificity, positive and negative

predictive values for all patients are still higher than attainable results by a random classifier, but

Fig 5. Evaluation of prediction performance. Results on the EPILEPSIAE dataset are shown in the upper row(A-C). Results on the public

Epilepsyecosystem are shown in the middle row (D-F) and the results on the private Epilepsyecosystem dataset (benchmark) are shown in the

lower row (G-I). Performance of each patient is represented by a circle, for accuracy (A, D, G), specificity-sensitivity plot (B, E, H) and negative

and positive predictive value (C, F, I). Identical colors are used to represent each patient across all nine subplots. The hatched area represents

results attainable by a random classifier.

https://doi.org/10.1371/journal.pone.0228025.g005

Table 3. Performance measures for all patients from the EPILEPSIAE dataset (upper section), from the Epilepsyecosystem public dataset (middle section) and Epi-

lepsyecosystem benchmark dataset (lower section).

Patient’s number accuracy (%) sensitivity specificity positive predictive value negative predictive value

1 99.7 0.99 1 1 0.99

2 97.5 0.97 0.98 0.98 0.97

3 99.5 1 0.99 0.99 1

4 100 1 1 1 1

5 90.4 0.8 1 1 0.85

1 74.1 0.75 0.73 0.73 0.75

2 73 0.57 0.81 0.63 0.77

3 78.5 0.75 0.82 0.81 0.77

1 71 0.44 0.76 0.25 0.88

2 61 0.37 0.63 0.06 0.94

3 69.2 0.37 0.72 0.11 0.92

https://doi.org/10.1371/journal.pone.0228025.t003
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still considerably lower than on the EPILEPSIAE dataset, which can be seen in Fig 5. Sensitivity

is between 0.57 and 0.75, while specificity ranges from 0.73 to 0.82. Positive predictive values are

between 0.63 and 0.81, and negative predictive values are between 0.75 and 0.77.

On the benchmark dataset, the highest achieved accuracy is for the patient 1 (71%), and the

lowest for the patient 2 (61%). However, other performance measures drop significantly (sen-

sitivity and positive predictive value are below 0.5). This drop in performance happens with

most of other algorithms that are evaluated on the Epilepsyecosystem dataset [22], but the dif-

ference is not always as big. There might be various reasons for this. In general, it is the harder

task to train a model on one dataset, and then evaluated it on the unseen set. Furthermore, the

class imbalance between the sets might differ, which would explain the big difference between

sensitivity and positive predictive value. It is also possible that SMOTE algorithm learns noise

when oversampling the minority class in the public dataset. Finally, patients who have a higher

seizure frequency (i.e. seizures per day) seem to have worse seizure prediction performance

based on the original clinical trial. [24]

As mentioned in the Prediction and performance measures, the AUC is used for comparison

with other algorithms on the benchmark set. The average reported AUC is 0.57 (0.62 for the

patient 1, 0.52 for the patient 2 and 0.58 for the patient 3), which places the proposed algorithm

on the 65th place (out of current 102 evaluated algorithms). For comparison, the algorithm

with the best performance on the benchmark dataset (which is the combination of extreme

gradient boosting, k-nearest neighbours, generalized linear model and linear SVM) has AUC

of 0.8. [22]

The reasons for the overall lower performance on both Epilepsyecosystem datasets can lie

in the fact that there are more seizures and more data per patient, making prediction possibly

more challenging by potentially adding more variability to the data. It should also be noted

that the data of three patients from the Epilepsyecosystem dataset correspond the ones whose

seizures are the most difficult to predict [24].

Conclusion

Since patients with uncontrolled epilepsy prefer to be advised a few minutes before a seizure

onset [23], we decided to use intervals of five minutes, extracted from longer recordings of the

EPILEPSIAE dataset. However, this method is easily extensible to longer periods of time, since

the length of intervals has no effect on dimensionality of modeled time components, which is

shown by comparing the proposed method on the Epilepsyecosystem dataset.

Data from additional patients as well as more data from the same patient could, if available,

lead to a better generalization of the model. This however is a challenge for patient-specific

models in general, where data from a single patient should suffice, and a large number of

labeled training examples is not available.

Overall, this study demonstrates the use of nonnegative matrix factorization of power spec-

tra for a seizure prediction task. The proposed model is conceptually simple, interpretable and

has shown good accuracy on two representative datasets and lower performance on the bench-

mark set where improvements in the direction of coping with class imbalance should be made.

A similar approach could be used for similar tasks such as detection of sleep stages in EEG or

the detection of irregularities in ECG.

Supporting information

S1 Fig. Time-frequency models and corresponding spectrograms of preictal and

interictal states. An outer product of modeled time and frequency components (A, C) and

corresponding spectrograms (B, D). A preictal state is shown in the upper row (A-B) and an
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interictal state is shown in the bottom row (C-D).

(PDF)

S2 Fig. Models of preictal states. Models shown here are for different channels (A-I) from the

same individual measurement period for patient 1.

(PDF)

S3 Fig. Models of interictal states. Models shown here are for different channels (A-I) from

the same individual measurement period for patient 1.

(PDF)

S4 Fig. Average models of time and frequency components of all channels and all measure-

ments for preictal and interictal states of the EPILEPSIAE dataset. Models of time compo-

nents are shown in the upper row (A-E), and models of frequency components are shown in

the bottom row (G-K). Preictal states are indicated with a dashed line and interictal states are

indicated with a line marked with + in blue for models of time and red for models of frequency

components, respectively.

(PDF)

S5 Fig. Average models of time and frequency components of all channels and all measure-

ments for preictal and interictal states of Epilepsyecosystem dataset. Models of time com-

ponents are shown in the upper row (A-C), and models of frequency components are shown

in the bottom row (D-F). Preictal states are indicated with a dashed line and interictal states

are indicated with a line marked with + in blue for models of time and red for models of fre-

quency components, respectively.

(PDF)
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