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Dispersive solid phase 
microextraction based 
on magnesium oxide nanoparticles 
for preconcentration of auramine 
O and methylene blue from water 
samples
Weidong Li1*, Jianping Qiu2*, Leila Baharinikoo3*, T. CH. Anil Kumar4, Basim Al‑qargholi5, 
Shafik S. Shafik6, Reathab Abbass7 & Shelesh krishna Saraswat8

In this study, we investigated the process of preconcentrate and determine trace amounts of 
Auramine O (AO) and methylene blue (MB) dyes in environmental water samples. For this purpose, 
the ultrasound-assisted dispersive-magnetic nanocomposites-solid-phase microextraction 
(UA-DMNSPME) method was performed to extract AO and MB from aqueous samples by applying 
magnesium oxide nanoparticles (MgO-NPs). The proposed technique is low-cost, facile, fast, and 
compatible with many existing instrumental methods. Parameters affecting the extraction of AO 
and MB were optimized using response surface methodology (RSM). Short extraction time, low 
experimental tests, low consumption of organic solvent, low limits of detection (LOD), and high 
preconcentration factor (PF) was the advantages of method. The PF was 44.5, and LOD for AO and 
MB was 0.33 ng mL−1 and 1.66 ng mL−1, respectively. The linear range of this method for AO and MB 
were 1–1000 ng mL−1 and 5–2000 ng mL−1, respectively. In addition, the relative standard deviation 
(RSD; n = 5) of the mentioned analytes was between 2.9% and 3.1%. The adsorption–desorption 
studies showed that the efficiency of adsorbent extraction had not declined significantly up to 6 
recycling runs, and the adsorbent could be used several times. The interference studies revealed that 
the presence of different ions did not interfere substantially with the extraction and determination 
of AO and MB. Therefore, UA-DMNSPME-UV/Vis method can be proposed as an efficient method for 
preconcentration and extraction of AO and MB from water and wastewater samples.

Wastewater from various industries such as dyeing, wood, leather, and fish farming contain dyes and is consid-
ered the source of environmental pollution. Even low concentrations of these dyes can change the color of the 
water. Dyes are non-degradable and stable pollutants released into the environment in the same way along with 
untreated effluents of various industries1,2.

Auramine O (AO) and methylene blue (MB) are two dyes studied in the present research. AO contains solid 
yellow crystals, and MB has blue crystals. Also, AO and MB dyes are among the most widely used and important 
dyes for dyeing cotton, paper, wool, and silk. However, prolonged exposure to these dyes can cause localized 
burns, nausea, increased sweating, mental disorders, and even cancer in humans and animals3–5.
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The sample preparation is the main step in an analysis process that guarantees to obtain the desired results. 
Sample preparation involves converting the real sample matrix into a state that is suitable for analysis by separa-
tion techniques or other methods. The extraction process is the most common sample preparation method6. This 
technique isolates and pre-concentrates trace amounts of analytes from the sample matrix.

Solid-phase microextraction (SPME) is a widely used technique for separating and preconcentrating organic 
and inorganic analytes from aqueous samples7,8. In this method, the desired species are adsorbed and concen-
trated using a solid phase or a solid coating. Next, the adsorbed species are washed with a proper solvent, followed 
by analysis and measurement by analytical instruments. Very low consumption of organic solvent, high recovery, 
low cost, and short extraction time are the major advantages of the SPME method9,10.

Several techniques exist for determining dyes present in different samples, e.g., high-performance liquid 
chromatography-ultraviolet (HPLC–UV), electrochemistry, and spectrophotometry11–16. Good selectivity, easy 
operation, low operating costs, and the ability to determine a wide range of materials in various fields are the 
main advantages of the spectrophotometry method over the other methods17,18.

Different adsorbents have been used in the SPME method, with nanoparticles being the most widely used 
ones. The advantages of extraction with nanoparticles are cost-effectiveness, eco-friendliness, low consumption 
of adsorbent, and high extraction percentage19,20.

In the present study, we used magnesium oxide nanoparticles (MgO-NPs) to extract dyes. Microcrystalline 
size, high adsorption capacity, ease and low cost of production, high surface area, and the presence of active sites 
are the beneficial properties of MgO-NPs. Regarding these chemical properties, MgO-NPs are widely used in 
water and wastewater treatment21,22.

Tian et al. (2020) used SPME for extracting phthalate esters (PAEs) from an aqueous solution using magne-
sium/aluminum-layered double hydroxide (Mg/Al-LDH). Under the optimized conditions, the linear ranges 
(LDs), limits of detection (LODs), and limits of quantification (LOQs) of the developed method were 1–500 μg 
L−1, 0.42–1.29 μg L−1, and 1.40–4.13 μg L−1, respectively. SPME method was successfully applied to analyze PAEs 
from real samples, and acceptable results were obtained23.

In another study, Tan et al. (2017) applied MgO microspheres functionalized with phenyl trichlorosilane 
(PTS-MgO) as an adsorbent to extract seven dioxin-like polycyclic aromatic hydrocarbons (DL-PAHs) via 
solid-phase dispersion (MSPD) extraction. Under the optimized conditions, the MSPD method combined with 
HPLC-FLD exhibited RSD < 9.6% and LODs of 0.02–0.12 ng g−1. Also, LOQs and LD were obtained in the range 
of 0.07–0.40 ng g−1 and 0.5–160 ng g−1, respectively24.

Wang et al. (2017) used the SPME method to preconcentrate and determine arsenic. First, magnesium oxide 
(MgO) was synthesized and used as a highly potential adsorbent for arsenic extraction with the ability to use 
sequentially. In their study, 1.5 mg MgO, pH 5.0, and 15 min ultrasonic time were selected as optimum reac-
tion conditions. Under the optimal conditions, RSD (n = 7), LOD, and enrichment factor (EF) were about 4.5%, 
0.087 μg L−1, and 13, respectively25.

Several factors with different levels can be considered in analytical and experimental studies. Therefore, if 
several factors have multiple levels in investigating a reaction, optimization with this vast number of experi-
ments is not economically viable (i.e., the full factorial of the variables). As a result, instead of using full factorial 
experiments, the idea of utilizing partial factorial and experimental design has been proposed26,27. Nowadays, 
response surface methodology (RSM) is one of the simplest, fastest, and most feasible design methods used in 
many industries. Experimental design steps include selecting a suitable design according to the number of fac-
tors and their levels, conducting the experiments according to the design of experiments, and finally analyzing 
the results28–30.

Modern techniques such as ultrasound-assisted (UA) technology are proven methods to increase extraction 
performance compared to enzymatic and soxhlet extraction methods31,32. The main mechanism of ultrasonic-
assisted extraction is attributed to the phenomenon called cavitation. Irradiating in ultrasound leads to the for-
mation of micro-bubbles. Then, these micro-bubbles grow and reach their maximum point so that they cannot 
maintain their shape. Therefore, they collapse and cause high temperature and pressure (a phenomenon referred 
to as cavitation). In this phenomenon, molecules are temporarily detached from their sites and transfer as a sound 
wave that can collide with the surrounding molecules. When these bubbles collapse onto the solid surface, the 
high pressure and temperature released produce microjets and shock waves directed to the solid surface. These 
microjets impact the surface, leading to its wear, breakage, and degradation33,34.

This study investigates the extraction of AO and MB dyes via ultrasound-assisted dispersive-magnetic nano-
composites-solid phase microextraction (UA-DMNSPME), followed by determining the dyes by UV/Vis spec-
trophotometry (UA-DMNSPME-UV/Vis). Eventually, RSM is used to optimize the factors.

Experimental
Materials and instrumentation.  All materials used in this study, including magnesium chloride hexa-
hydrate (MgCl2.6H2O), sodium hydroxide (NaOH), hydrogen chloride (HCl), auramine O (C17H22ClN3), and 
methylene blue (C16H18ClN3S), were of analytical purity. These materials were purchased from Merck and Sigma-
Aldrich companies. Solutions of AO (100 µg mL−1) and MB (100 µg mL−1) were prepared separately by dissolv-
ing their solid powder in an aqueous solution. NaOH and HCl (0.1 M) solutions were used to adjust the pH, and 
a pH meter (model: Metrohm 780) was applied to measure the pH. A UV/Vis spectrophotometer (model: Jasco 
V-670) was used to determine the dye concentrations, and an ultrasonic bath (model: Fisherbrand™ 11,203) was 
used to accelerate the separation phase of the extraction phase. Scanning electron microscopy (SEM) (model: 
KYKY-EM3200), energy-dispersive X-ray spectroscopy (EDX) (model: Link ISIS-300), X-ray diffractometer 
(XRD) (model: Philips PW 1800), and Brunauer–Emmett–Teller (BET) (model: Quantachrome NOVA 2200e) 
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specific surface area analysis were employed to characterize the adsorbent structure. Finally, analyses were per-
formed using the Design-Expert software version 10. The characteristics of dyes are listed in Table 1.

Synthesis of the magnesium oxide nanoparticles (MgO‑NPs).  MgO nanoparticles were synthe-
sized by the sol–gel method by dissolving 100 g MgCl2.6H2O in 500 mL distilled water in a beaker (1 L). Then, 
50 mL NaOH solution (1 N) was added to the beaker. The mixture was stirred for 4 h (at 400 rpm) and tem-
perature of 70 °C to form Mg(OH)2. Mg(OH)2 was also centrifuged at 4500 rpm for 5 min. The final precipitate 
was washed several times with distilled water and dried at 100℃ for 12 h. Finally, the dried powder was calcined 
at 400℃ for 3 h in an electrical furnace. The synthesized sample’s morphology, characterization, and size were 
evaluated using XRD, SEM, EDX, and BET analyses.

Response surface methodology (RSM).  RSM is very efficient and cost-effective for experiments in 
which a response or a set of responses is affected by various parameters. This method optimizes the response 
influenced by several factors to obtain a mathematical relationship between variables and the response. RSM 
allows estimating the linear, second-order, and interaction effects and predicting a suitable model. Central com-
posite design (CCD) is one of the most widely used methods in RSM. This design mostly requires five levels. 
When each experiment is assigned to a point, the design consists of three points: (1) the axial points, (2) the 
factorial points, and (3) the center points35. The number of experiments to perform in CCD is determined by 
Eq. (1).

where N is the number of parameters, 2 k is the number of factorial experiments, 2 K is the number of axial 
experiments, and C0 is the number of central experiments. Factorial experiments are used to estimate the linearity 
of the model and the interaction between the model parameters. Moreover, axial experiments are performed to 
determine the upper and lower limits to obtain the degree of model curvature. Central experiments are done to 
estimate net error. The system behavior is described by a second-order polynomial equation (Eq. 2).

where Y is the extraction percentage or yield, k is the number of parameters, β0 is a constant, βi is the coefficients 
of linear parameters, βii is the squared effect, βij and βii are the coefficients of the interacting parameters, Xi and 
Xj represent the variable, and e is the random error of experiments representing the difference or uncertainty 
between the predicted and measured values36.

Recommended procedure.  AO and MB extraction experiments were conducted by UA-DMNSPME-UV/
Vis method. To this end, 10 mL of a solution containing AO (500 ng mL−1) and MB (500 ng mL−1) was trans-
ferred to a glass tube (15 mL). Then, 0.025 g of MgO-NPs as an adsorbent was added to this solution. The pH 
of the solution was adjusted to 7. The analyte adsorption on the adsorbent and its mass transfer was facilitated 
by placing the glass tube in an ultrasonic bath for 5  min. Afterward, the sample was centrifuged for 5  min 
(3500 rpm) to separate the phases well. The adsorbent was removed immediately by applying an external mag-
net, and the solution was decanted. The adsorbent was washed with 225 μL acetone, and 100 μL of the solvent 
containing the sample was drawn to a Hamilton syringe and placed in a microcell. At the end of adsorption, the 
analyte was determined with UV/Vis spectrophotometer at the maximum dye wavelength. All experiments were 
performed at 25℃. The extraction recovery was calculated by Eq. (3). According to this equation, the extraction 
recovery is defined as the percentage of the number of moles of analyte extracted into the acceptor phase (nf) 
divided by the number of moles of analyte initially presented in the sample solution (na).

(1)N = 2
k
+ 2K + C0

(2)Y = β0 +

k∑

i=1

βiXi +

k∑

i=1

βiiX
2
i +

k∑

i≤j

k∑

j

βijXiXj + e

Table 1.   Characteristics of the dyes.

Characteristic Auramine O (AO) Methylene blue (MB)

Molecular formula C17H22ClN3 C16H18ClN3S

Molecular weight 303.83 (g mol −1) 319.85 (g mol −1)

Maximum Wavelength 430 nm 665 nm

Chemical structure

 
 



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12806  | https://doi.org/10.1038/s41598-022-16948-z

www.nature.com/scientificreports/

In this equation, Va and Vf are the volumes of sample solution and acceptor phase, respectively. Equation (4) 
was applied to calculate the PF.

Based on this equation, PF is defined as the ratio of the concentration of analytes extracted into the extraction 
phase (Cf) to the concentration of the analyte in the original aqueous sample (Ca).

Reusability studies.  Since the used adsorbent is synthetic and made from laboratory materials, its regen-
eration and reusability are among the most important features in evaluating its performance. The experiments 
were conducted based on the procedure described in Section Recommended procedure to measure the adsor-
bent capacity. for this purpose, the adsorbent, which was used once to extract AO and MB dyes under optimum 
conditions, was separated from the solution by external magnet and was washed several times with acetone and 
distilled water. The adsorbent was again centrifuged and dried in an oven at 80℃ for 10 h to be reused in extrac-
tion experiments. This procedure was done for eight consecutive cycles.

Results and discussion
Characterization of sorbent (magnesium oxide nanoparticles (MgO‑NPs)).  SEM was used to 
evaluate the surface morphology of the synthesized particles. As shown in Fig. 1a, the synthesized MgO-NPs 
are spheral and uniform with a good size distribution. The average particle size is 51.94 nm. The XRD pattern 
of MgO-NPs is shown in Fig. 1b. In this diffraction pattern, no impurity peaks are observed. The crystal struc-
ture of magnesium oxide nanoparticles is face-centered cubic due to the correspondence of its peaks with the 
standard card JCPDS no. 87–0653. The average particle size of the sample is 40.53 nm, according to the Debye 
Scherrer formula.

Figure 1c represents the energy-dispersive X-ray (EDX) of the MgO adsorbent. According to this figure, 
the presence of Mg and O peaks in the elemental analysis of the MgO adsorbent shows that the expected MgO 
is successfully formed, and no other elements are observed, representing the purity of the adsorbent surfaces.

(3)ER =
nf

na
× 100 = PF ×

Vf

Va
× 100

(4)PF =
Cf

Ca

Figure 1.   (a) SEM image, (b) X-ray diffraction pattern, and (c) EDX spectrum of MgO.
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Nitrogen adsorption–desorption measurements provide the available surface of MgO-NPs. Accordingly, BET 
surface area, pore volume, and pore size were 39.42 m2g−1, 40.37 cm3g−1, and 38.56 nm, respectively.

Effects of type of extraction solvent.  In this study, we also investigated the effect of solvent type on AO 
and MB extraction. For this purpose, toluene, ethanol, formaldehyde, acetone, and carbon tetrachloride were 
used. The extraction rate for AO and MB was measured with different solvents. The results (Fig. 2) show that 
solvent type significantly affects the extraction rate of AO and MB. The highest extraction rate of both analytes 
was obtained by acetone, followed by ethanol.

Significant variable optimization by RSM.  In this research, initial studies and experiments reveal four 
variables affecting the extraction process (adsorbent mass, sonication time, pH of solution, and eluent volume). 
After determining the effective range of these parameters, the CCD-based RSM method with four factors at 
five levels and six central points was used to design and optimize the multivariate preconcentration experi-
ments. These variables were entered in the Design-Expert software. The software results indicate 30 experiments, 
including 30 runs, 16 factorial points, 6 central points, and 8 axial points. Axial points are points that add a con-
stant value to the upper limit of the parameter and subtract the same value from the lower limit of the parameter. 
This constant value is called α derived from the formula α = (F)1/4, where F is the number of factorial points. The 
range of parameters and the results of the experiments are given in Table 2. Experimental results and predicted 
results were obtained from laboratory studies and model, respectively.

The ANOVA is performed to investigate the effect of each variable on the response and also the fitness of 
the obtained equation with the experimental results. Thus, the p-value at the 95% confidence level is 0.05. If the 
calculated p-value for each factor is less than 0.05, the factor is significant. On the other hand, if it is more than 
0.05, changing that factor has no significant effect on the response37,38. Moreover, a lack-of-fit with a p-value > 0.05 
indicates that the model error is not significant, and the residual is due to a random error. The p-values and 
parameter coefficients for the AO and MB dyes are given in Table 3. As shown in Table 3, the p-values of the 
proposed models are less than 0.05, and the p-values of the lack-of-fit are greater than 0.05. Therefore, there is a 
good agreement between the model and experimental results. In addition, the correlation coefficients can also 
be used to evaluate the model’s validity. The values of coefficient of determination (R2) and adjusted coefficient 
of determination (Adj-R2) are shown in Table 3. The closer R2 is to 1, the more variability the model explains 
and the better it can predict the response. Also, the higher values of Adj-R2 and its closeness to R2 determine the 
validity of the proposed model. The R2 values of AO and MB are 0.9995 and 0.9994, respectively, suggesting a 
reasonable agreement between the experimental results. These values indicate that the model can describe more 
than 99% of the response changes in terms of variables. In addition, Adj-R2 is high enough (Adj-R2 = 0.9988 for 
AO and Adj-R2 = 0.9933 for MB) that the model can be considered reliable. The proposed quadratic model for 
the effective extraction of AO and MB dyes is expressed as Eqs. (5) and (6).

(5)
%ERAO =+ 97.00− 2.46A− 0.80B+ 2.86C+ 5.81D− 0.54AB− 0.24AC

+ 2.69AD+ 0.80BC− 0.59BD+ 2.96CD

− 2.08A
2
− 1.78B

2
− 2.06C

2
− 5.78D

2

(6)
%ERMB =+ 93.71− 2.11A− 1.95B+ 2.58C+ 5.02D+ 0.64AB− 0.92AC

+ 2.37AD− 0.14BC+ 0.71BD+ 1.15CD

− 1.18A
2
− 1.02B

2
− 2.13C

2
− 3.94D

2
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Figure 2.   The effect of organic phase composition on the extraction efficiency (Extraction conditions: 
pH = natural, dye concentration 500 ng mL−1, adsorbent mass 0.03 g, and ultrasound time 5 min).
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The obtained response equations include principal, interaction, and curvature effects. Positive coefficients 
indicate that increasing the value of these variables in the defined range increases the extraction efficiency. In 
contrast, negative coefficients indicate that the extraction efficiency is desirable in smaller quantities of these 
variables.

Comparing the predicted responses of the model and the actual values is another factor in evaluating the 
model’s validity. This comparison is presented in Fig. 3 in the form of a graph containing the predicted responses 
of the model and the actual values. The closeness of the obtained points to the 45° line suggests a good agreement 
between the proposed model and the experimental data, thereby confirming the model’s validity.

Figure 4 shows the normal probability of the responses. This plot illustrates the distribution pattern of the 
errors. The errors are defined as differences between the experimental values and the predicted values of the 
model responses. Proper and normal distribution of points around the straight line indicates a proper distribu-
tion of errors. According to these plots, as the errors are normally distributed, the models are significant, and 
the predicted responses are consistent with the experimental data.

Response surface plots.  The ultimate objective of designing the experiment and presenting the model is 
to achieve a condition of the experimental variables under which the system response (peak area of the target 
analytes) is within the maximum achievable value. Factors affecting the extraction process have interaction 

Table 2.   CCD of independent variables with their corresponding experimental and predicted recoveries 
percent.

Variables Unit Symbols

Level of variables

− α − 1 0  + 1  + α

Adsorbent mass g A 0.01 0.02 0.03 0.04 0.05

Sonication time min B 1 3 5 7 9

pH of solution – C 2 4 6 8 10

Eluent volume µL D 100 150 200 250 300

Run

Variables %Recoveries AO %Recoveries MB

A B C D Observed Predicted Observed Predicted

1 0 2 0 0 88.99 88.24 85.73 85.71

2 0 0 0 0 97.25 97.00 93.81 93.71

3 0 0 0 2 85.95 85.50 88.12 87.97

4 1 1 1 − 1 73.38 74.01 74.23 74.25

5 − 1 1 1 − 1 85.59 85.92 83.73 83.78

6 0 0 0 0 96.93 97.00 94.10 93.71

7 0 0 2 0 95.41 94.46 90.53 90.34

8 1 1 − 1 1 82.95 83.00 87.38 87.45

9 1 − 1 − 1 − 1 75.59 76.22 77.02 77.27

10 − 1 − 1 − 1 − 1 84.92 84.95 85.73 85.67

11 0 0 0 0 96.28 97.00 93.34 93.71

12 2 0 0 0 84.76 83.75 85.04 84.75

13 − 1 − 1 − 1 1 86.21 86.45 87.17 87.26

14 − 1 1 − 1 1 82.71 83.13 83.81 83.78

15 − 2 0 0 0 93.97 93.60 93.24 93.20

16 − 1 − 1 1 1 97.07 97.00 96.61 96.88

17 0 − 2 0 0 92.11 91.47 93.83 93.52

18 0 0 0 − 2 63.18 62.25 68.03 67.86

19 1 − 1 1 1 97.32 98.06 94.31 94.25

20 1 − 1 1 − 1 73.82 73.92 78.33 78.58

21 0 0 − 2 0 83.45 83.01 80.11 79.98

22 1 1 1 1 95.27 95.76 92.51 92.78

23 0 0 0 0 96.69 97.00 93.54 93.71

24 0 0 0 0 97.69 97.00 93.87 93.71

25 − 1 1 − 1 − 1 83.89 84.02 79.16 79.33

26 1 1 − 1 − 1 72.52 73.11 73.58 73.52

27 1 − 1 − 1 1 88.33 88.51 88.17 88.33

28 − 1 1 1 1 96.63 96.87 92.96 92.82

29 0 0 0 0 97.17 97.00 93.60 93.71

30 − 1 − 1 1 − 1 82.83 83.65 90.65 90.70
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Table 3.   Analysis of variance (ANOVA) of remove AO and MB.

Source DF

AO MB

Sum of 
squares Mean square F-value P-value

Sum of 
squares Mean square F-value P-value

Model 14 2455.19 175.37 308.47  < 0.0001 1609.82 114.99 1674.64  < 0.0001

A- Adsorbent 
mass 1 145.48 145.48 255.90  < 0.0001 107.06 107.06 1559.21  < 0.0001

B- Sonication 
time 1 15.67 15.67 27.56  < 0.0001 91.38 91.38 1330.79  < 0.0001

C- pH of solu-
tion 1 196.71 196.71 346.01  < 0.0001 160.94 160.94 2343.92  < 0.0001

D- Eluent 
volume 1 810.73 810.73 1426.05  < 0.0001 606.72 606.72 8836.07  < 0.0001

AB 1 4.76 4.76 8.38 0.0111 6.72 6.72 97.88  < 0.0001

AC 1 1.00 1.00 1.75 0.2057 13.78 13.78 200.73  < 0.0001

AD 1 116.48 116.48 204.88  < 0.0001 89.92 89.92 1309.54  < 0.0001

BC 1 10.26 10.26 18.04 0.0007 0.33 0.33 4.86 0.0436

BD 1 5.75 5.75 10.11 0.0062 8.17 8.17 118.92  < 0.0001

CD 1 140.36 140.36 246.90  < 0.0001 21.18 21.18 308.50  < 0.0001

A2 1 118.92 118.92 209.17-  < 0.0001 38.40 38.40 559.26  < 0.0001

B2 1 87.49 87.49 153.89  < 0.0001 28.72 28.72 418.24  < 0.0001

C2 1 117.07 117.07 205.92  < 0.0001 125.40 125.40 1826.35  < 0.0001

D2 1 917.04 917.04 1613.05  < 0.0001 427.84 427.84 6230.95  < 0.0001

Residual 15 8.53 0.57 1.03 0.069

Lack of Fit 10 7.34 0.73 3.09 0.1123 0.66 0.066 0.91 0.5823

Pure Error 5 1.19 0.24 0.37 0.073

Cor Total 29 2463.71 1610.85

Model summary statistics
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AO MB

R2 R2-Adj R2-Pred R2 R2-Adj R2-Pred

0.9995 0.9933 0.9821 0.9994 0.9988 0.9973

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

60

70

80

90

100

60 70 80 90 100

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

60

70

80

90

100

60 70 80 90 100

a) b) 

Figure 3.   Predicted versus experimental data for extraction of (a) AO and (b) MB (Image is created by using 
Design-Expert software version 10).
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effects on the responses and their independent effect. The independent and interaction effects of the studied 
parameters on the extraction efficiency were studied using three-dimensional plots, including the peak area of 
the target analytes against two independent parameters. The three-dimensional plot of the response as a function 
of two variables by keeping other variables constant at fixed levels (central level) leads to a better understanding 
of these two variables’ effects and interactions and shows the optimum reaction conditions. Figure 5a–d demon-
strate interactions between the independent variables and the desired response. Optimum conditions can also 
be attained from these plots.

As shown in Fig. 5a, the AO dye extraction efficiency increased with increasing extraction time and the 
adsorbent amount. According to the figure, the extraction rate increased with increasing the adsorbent amount. 
As the mass of adsorbent increases, more sites will be available; thus, the dye adsorption on the adsorbent surface 
would increase. The optimum value for the adsorbent amount was 0.025 g, as exceeding the adsorbent amount 
higher than 0.025 g did not change the dye extraction percentage so much. Therefore, to minimize the amount 
of adsorbent consumption, 0.025 g was selected as the optimum amount. Sharifi et al. (2021) have observed 
similar results in assessing the effect of adsorbent amount on the extraction of crystal violet (CV) and auramine 
O (AO) dyes. In this study, nano-mesoporous MCM-41 @ SiO2-NH-pydc was used as the adsorbent. Accord-
ing to the results, increasing the adsorbent amount increased the extraction of CV and AO dyes39. In another 
research, Pataer et al. (2019) used molecularly imprinted polymer to extract auramine O (AO) dye. The results 
showed that increasing the adsorbent amount increased the extraction efficiency, which is consistent with the 
present study results40.

Figure 5b illustrates the simultaneous effect of pH and the adsorbent amount on the AO dye extraction 
efficiency. As can be seen, pH has a more significant effect on extraction efficiency than the adsorbent amount, 
indicating that increasing the pH leads to a further increase in the peak areas. The pH of the solution is one of 
the most important parameters affecting the extraction process. The effect of pH was examined in the range of 
2–10. As shown in Fig. 5b, the extraction efficiency increases with increasing pH. The pHpzc of MgO is 4.441. In pH 
< pHpzc, there is a positive charge on the adsorbent surface that creates a repulsion between the positive surface 
of the adsorbent and the positively charged cationic dyes. However, at pH > pHpzc, the electrostatic repulsion 
between the dye and the adsorbent surface decreases, increasing the dye extraction. The highest amount of dye 
extraction was obtained at pH = 7. The results of the present study are consistent with those of Hakami et al. 
(2021), and Sha et al. (2021)42,43.

The eluent volume is another parameter affecting the extraction process. In this study, different volumes of 
the optimal solvent were investigated for dye extraction, and the optimal volume of eluent solvent (acetone) for 
both analytes was selected to be 225 μL. The results in Fig. 5c show that in more than 225 μL, all the dye enters 
the eluent, and the equilibrium moves quantitatively toward the eluent and becomes completely desorbed. Zhang 
et al. (2021) obtained similar results in the extraction of methylene blue (MB) dye using alumina-neutral (ALN) 
cartridges44. Dil et al. (2016) extract safranin O dye using activated carbon modified with Fe2O3 nanoparticles 
(Fe2O3-NPs-AC) as an adsorbent. The effects of various factors like adsorbent amount, eluent volume, ultrasound 
time, and solution pH were assessed in dye extraction. Consistent with the present study results, the results 
showed that increasing eluent volume increased the dye extraction rate45.

Extraction time was examined in the range of 1–9 min. As shown in Fig. 5d, with increasing ultrasound time, 
there is more time to expose dye and adsorbent molecules. Certainly, the greater amount of dye is absorbed by 
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Figure 4.   The plots of normal probability of the residuals for extraction of (a) AO and (b) MB (Image is created 
by using Design-Expert software version 10).
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the adsorbent in the initial moments, and the increase in time is to complete the adsorption process. The opti-
mum time for this process was 5 min. These results are consistent with the study of Asfaram et al. (2016), who 
investigated simultaneous extraction of auramine O (AO) and malachite green (MG) dyes by ultrasound from 
aqueous solutions. Asfaram et al. utilized Mn-doped ZnS nanoparticles loaded on activated carbon as adsor-
bents. The variables and the designed experiments were examined using the RSM. Adsorbent amount (1.2 mg), 
ultrasound time (3.7 min), 150 μL eluent, and pH = 8 were considered optimal conditions. This study showed 
that increasing ultrasound time increased the AO and MG dye extraction46.

Analytical figures of merit.  The potential of the UA-DMNSPME-UV/Vis method in AO and MB dyes 
extraction was evaluated by investigating the figures of merit of the method under optimum conditions. 
Based on the obtained results (Table 4), the linear dynamic range (LDR) of AO and MB was in the range of 
1–1000 ng mL−1 and 5–2000 ng mL−1, respectively. Also, the R2 for the obtained linear ranges was greater than 
0.9985, and the LODs for the AO and the MB dyes were 0.33 ng mL−1 and 1.66 ng mL−1, respectively. The extrac-
tion recovery percentage (ER%) and PF of the method were determined using Eqs. (3) and (4), respectively. 
Based on the obtained results, the method efficiency for AO and MB dyes was 92.85%-99.57%, and the PF was 
44.5. The method’s reproducibility was shown by the relative standard deviation (RSD). In this study, 5 repeated 
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Figure 5.   Three-dimensional plots of the interaction effects between variables and extraction efficiency of (a), 
(b) AO and (c), (d) MB (Image is created by using Design-Expert software version 10).

Table 4.   Analysis performance of AO and MB extracted with the MgO-NPs. a Linear dynamic range (ng 
mL−1), bLimit of detections (ng mL−1), cRelative standard deviation (n = 5), dPreconcentration factor.

Analytes LDRa Regression equation Correlation coefficient LODb RSDc PFd Recoveries (%)

AO 1–1000 y = 0.0013x- 0.0059 0.9986 0.33 3.1 44.5 94.73–99.57

MB 5–2000 y = 0.0007x- 0.0092 0.9985 1.66 2.9 44.5 92.85–99.36
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extractions were performed to determine RSD in each analyte measurement. Also, measurements of solutions 
with a concentration of 500 ng mL−1 were performed, and the peak areas were analyzed. The results show that 
the RSD of these measurements is less than 3.1.

Optimization of process.  The desirability function is the most important and common method used in 
the simultaneous optimization of analytical processes47,48. In this function, 0 denotes a completely undesirable 
response, and 1 is for a perfectly desirable response. The desirability function is an effective and cost-effective 
method in multi-response optimization in analytical chemistry. Design-Expert software was used to determine 
the RSM method’s optimum levels. Based on the results and as the highest percentage of extraction was desir-
able, the optimum conditions determined by the software include the pH solution of 7, the adsorbent amount of 
0.025 g, sonication time of 5 min, and eluent volume of 225 μL. The extraction percentage of AO and MB dye in 
the proposed optimum points was 98.89 ± 2.3% and 96.92 ± 2.8% (n = 5), respectively.

Interference studies.  We investigated the effect of the matrix on the selectivity of the AO and MB extrac-
tion process using MgO-NPs, as an adsorbent in competition with other ions present in the solution. In this 
study, the acceptable concentration causing a change in extraction was considered ± 5%. The effect of these coun-
terions is given in Table 5. As can be seen in the extraction results, most of the studied species do not show 
interference and negative effect even at high concentrations, suggesting the selectivity of the AO and MB dye 
extraction process using this adsorbent.

Reusability of the MgO‑NPs.  In order to show the stability of the adsorbent, magnetic MgO-NPs were 
used several times under optimal conditions. After each extraction test, the adsorbent was removed by applying 
an external magnet and washed with acetone. After six runs, the extraction rate was about 80% (Fig. 6). This 
reduction in extraction rate is probably due to (1) the partial degradation of the adsorbent structure in the pro-
cess of chemical regeneration, (2) the presence of dye impurities, and (3) the occupation of some of the active 
adsorbent sites49. The results of reusability studies show that the adsorbent has good recovery ability and is a 
suitable candidate for industrial applications as an adsorbent.

Real samples analysis.  Ambient water samples were used to evaluate the efficiency of the proposed method 
in determining AO and MB dyes. The real samples used to determine AO and MB dyes by UA-DMNSPME-
UV/Vis using MgO-NPs were: tap water, wastewater, fish farm, and lake water. The suspended particles were 
removed by passing these water samples through a filter paper. Due to the absence of dye in real samples, differ-
ent dye concentrations were added to the samples. Then, the added value of each was determined by standard 

Table 5.   Effects of influence substances on the determination of AO and MB.

Foreign species

Spiked concentration %ER

(μg mL−1) AO MB

Li+, Na+,  K+ Mg2+, Ca2+, F−, C−, Br− 100 97.41 98.53

Co2+, NO3−, Fe2+, Fe3+, Pb2+ 70 99.56 98.85

Al3+, Cd2+, Ni2+ 50 98.37 97.20

Ag+, Cu2+, Sn2+ 10 99.12 98.94
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Figure 6.   Regeneration studies of magnetic MgO-NPs (Sample volume: 10 mL, eluent volume: 225 µL, 
adsorbent mass: 0.025 g, sonication time: 5 min, and pH: 7).
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method and after DMNSPME by UV/Vis spectrophotometer. The results are presented in Table 6. These results 
indicate that the change in the matrix of the samples has no significant effect on the extraction of target analytes 
of the samples. Relative yields calculated using Eq. (4) are in the range of 91.22–99.12%.

Comparison with other methods.  Table 7 presents the comparison results of the UA-DMNSPME-UV/
Vis method with other methods for the determination AO and MB dyes. The table also lists the significant 
parameters of these methods. A point that can be deduced from this table and its comparison with previous 
results is that a significant amount of dyes are extracted in a very short time (5 min) in the ultrasonic-assisted 
extraction method. Also, RSD less than 3.1 indicates the high precision of this method compared to other meth-
ods in the literature. Short reaction time, high performance, a low number of experiments, the ability to use 
different types of solvents, low solvent consumption, recoverability of the adsorbent, simplicity, and relatively 
low cost of preconcentration and determination of AO and MB dyes are the main advantages of this method. As 
can be seen from Table 7, the UA-DMNSPME-UV/Vis method is easier, faster, and more convenient than other 
methods. Also, it has high sensitivity and precision than the other techniques. Furthermore, it has a high LOD 
and PF and reduces environmental issues because of its low solvent consumption.

Conclusion
This study used the UA-DMNSPME-UV/Vis method to preconcentrate and determine trace amounts of AO and 
MB dyes from ambient water samples. This research offers a selective, low-cost, and simple method to determine 
the amount of AO and MB dyes as a dye and aromatic indexes in contaminated wastewaters. In recent years, 
the development of solid-phase extraction methods has introduced adsorption with appropriate efficiency as 
a fundamental necessity. Therefore, in this work, MgO-NPs were used as a suitable adsorbent to increase the 
extraction efficiency. RSM design method was also used to achieve the best optimum results. Indeed, RSM was 
used to obtain the optimum conditions of process parameters such as solution pH, adsorbent dosage, eluent 
volume, and ultrasonic time. In this method, pH = 7, eluent volume of 225 μL, the adsorbent dosage of 0.025 g, 
and time of 5 min were considered the optimum conditions to obtain the maximum extraction of AO and MB 
dyes. The recovery percentage of AO and MB extraction under optimum conditions for real samples was in 
the range of 91.22–99.12%. This method has good reproducibility and a wide linear range of 1–1000 ng mL−1 
for AO and 5–2000 ng mL−1 for MB. The LODs for AO and MB were 0.33 ng mL−1 and 11.66 ng mL−1, respec-
tively. In addition, the adsorbents’ reusability results showed that they could be reused up to 6 times without 
a significant loss in the percentage of dye extraction. Furthermore, the results of interference studies revealed 
that the presence of different ions did not significantly interfere with the extraction of AO and MB. Hence, the 

Table 6.   Determination of AO and MB in the environmental water samples.

Samples Analyte Add (ng mL−1) Found (ng mL−1) %ER ± %RSD (n = 3)

Tap water

AO

50 49.24 98.48 ± 2.8

100 98.45 98.45 ± 3.3

500 495.60 99.12 ± 2.1

MB

50 48.72 97.44 ± 2.8

100 97.39 97.39 ± 3.4

500 489.84 97.96 ± 3.7

Wastewater

AO

50 47.08 94.16 ± 2.5

100 95.93 95.93 ± 2.2

500 469.57 93.91 ± 3.6

MB

50 48.93 97.86 ± 2.7

100 98.69 98.69 ± 2.6

500 476.14 95.22 ± 1.8

Fish farm

AO

50 46.98 93.96 ± 2.1

100 96.23 96.23 ± 3.3

500 472.69 94.53 ± 2.4

MB

50 48.97 97.94 ± 1.7

100 98.06 98.06 ± 2.3

500 482.52 96.50 ± 2.9

Lake water

AO

50 47.55 95.10 ± 3.2

100 96.37 96.37 ± 2.4

500 488.40 97.68 ± 2.8

MB

50 45.61 91.22 ± 3.1

100 98.85 98.85 ± 2.9

500 470.76 94.15 ± 2.6
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UA-DMNSPME-UV/Vis method can be proposed as an efficient method for extracting desired dyes from water 
and wastewater samples.
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All data generated or analysed during this study are included in this published article.
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