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Afp-LSe: Antifreeze proteins 
prediction Using Latent Space 
encoding of composition of 
k-Spaced Amino Acid pairs
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Species living in extremely cold environments resist the freezing conditions through antifreeze proteins 
(Afps). Apart from being essential proteins for various organisms living in sub-zero temperatures, Afps 
have numerous applications in different industries. They possess very small resemblance to each other 
and cannot be easily identified using simple search algorithms such as BLAST and PSI-BLAST. Diverse 
AFPs found in fishes (Type I, II, III, IV and antifreeze glycoproteins (AFGPs)), are sub-types and show 
low sequence and structural similarity, making their accurate prediction challenging. Although several 
machine-learning methods have been proposed for the classification of AFPs, prediction methods that 
have greater reliability are required. In this paper, we propose a novel machine-learning-based approach 
for the prediction of AFP sequences using latent space learning through a deep auto-encoder method. 
For latent space pruning, we use the output of the auto-encoder with a deep neural network classifier 
to learn the non-linear mapping of the protein sequence descriptor and class label. The proposed 
method outperformed the existing methods, yielding excellent results in comparison. A comprehensive 
ablation study is performed, and the proposed method is evaluated in terms of widely used 
performance measures. In particular, the proposed method demonstrated a high Matthews correlation 
coefficient of 0.52, F-score of 0.49, and Youden’s index of 0.81 on an independent test dataset, thereby 
outperforming the existing methods for Afp prediction.

In Antarctic fish, a survival mechanism that prevented them from freezing in seawater at sub-zero temperatures 
was observed, which led to the discovery of antifreeze proteins (AFP)1. AFPs have been identified as a crucial 
substance for resisting a freezing environment in various species including plants, bacteria, fungi, insects, and 
animals2. Ice exists in different geometric shapes due to the varying arrangements of oxygen atoms; therefore, the 
structural and sequential arrangements of AFPs largely vary to accommodate this heterogeneity of ice molecules3. 
Ice also exhibits the property of recrystallization, by which small ice crystals bind to the water molecules, thus 
becoming a large ice lattice, causing severe damage to the cell membrane, which, in some cases, may be lethal4. 
AFPs are commonly categorized into glycoproteins (AFGPs) and non-glycoproteins (AFPs)5. They protect the 
organisms using two mechanisms: (i) thermal hysteresis (TH), by which the freezing point of water is depressed 
to a few degrees by the adsorption-inhibition effect without altering the melting point6; (ii) ice crystal inhibition, 
by which the AFP sites bind to the surfaces of ice and inhibit their growth to become a larger ice lattice, develop-
ing either small harmless ice crystals or forming a needle-shaped lattice, thus diminishing the recrystallization 
property of ice2.

AFPs are indispensable in organisms such as fish7, fungi8, bacteria9, plants10, and insects11. Furthermore, they 
are essential in various medical applications (for example, cryopreservation and cryosurgery)12 and food indus-
try13. The ice-binding mechanism of proteins is not fully understood14. Reliable prediction of AFPs may play 
a fundamental role in identifying the underlying ice-binding mechanism. Accurate prediction would lead to 
the understanding of protein-ice interaction, which in turn would enable the design of macro-molecular anti-
freeze proteins with enhanced efficiency15. Studies indicate that AFPs show minute or, in most cases, no similarity 
in structures, sequences, and ice-binding sites within closely related species3,5,16,17. For instance the sub-types 
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of AFPs found in fishes namely Type I, II, III, IV and AFGP15, have no significant similarities in structures and 
sequences; rather, they demonstrate some homology to different protein families from which they are assumed to 
have evolved18,19. This inconsistency makes their in-silico identification using conventional search tools such as 
BLAST20 and PSI-BLAST21 unfavorable and increases the complexity of the development of a reliable prediction 
model due to the lack of common features.

Researchers have proposed several computational strategies such as machine learning to achieve superior 
results for this diversified classification problem. Kandaswamy et al. proposed a framework named AFP-Pred, 
which is considered to be a pioneering work in this direction, to utilize machine learning22. In this method, a 
feature vector containing 119 attributes was obtained by encoding each sequence, from which dominant fea-
tures were selected using the ReliefF approach to train the random forest (RF) classifier. Yu et al. proposed a 
web-based predictor named iAFP23, which utilized n-peptide composition to obtain the feature set. Superior fea-
tures were selected using the genetic algorithm, and the resultant features were employed to train a support vector 
machine (SVM). Xiaowei et al. used position-specific scoring matrix (PSSM) profiles with an SVM classifier to 
develop a web-based AFP predictor called AFP_PSSM24. Mondal et al. used the sequence order information from 
Chou’s pseudo amino acid composition (PseAAC) with an SVM to develop an algorithm for AFP prediction 
(AFP-PseAAC)25. Yang et al. developed an ensemble-based learning method named AFP-Ensemble26, in which 
the RF classifier was trained for predicting AFPs. As they performed the evaluation on a non-standard dataset, 
their results are not discussed in this study. Xiao et al. developed a predictor named iAFP-Ense27 by incorpo-
rating evolutionary information into PseAAC using RF classifiers; however, the classifier was not evaluated on 
an independent test dataset. Khan et al. performed segmentation of protein sequences to divide them into two 
groups for amino acid composition (AAC) and di-peptide composition analyses28. The dominating features were 
selected using information gain and ranker methods, and classification was performed using the RF classifier. A 
web-based predictor for AFPs called CryoProtect29 is proposed using the RF classifier. The predictor used AAC 
and di-peptide composition as features for the classifier. The classification of AFP from other protein families 
is an example of a class imbalance problem. A widely adopted technique to deal with the unbalanced dataset is 
resampling30. Simple resampling techniques involve over-sampling, in which records from the minority class are 
randomly duplicated, and under-sampling, which executes a random removal of some records from the majority 
class. However, over-sampling has been reported to pose the problem of overfitting31 and under-sampling leads 
to the loss of information32. To overcome these limitations Nath et al. adopted K-means clustering with ensemble 
prediction algorithms to predict AFPs19.

The aforementioned methods have shown a reasonable improvement in prediction performance. However, 
there is a need for an improved method to obtain the desired results. In particular, to the best of our knowledge, 
none of the methods discussed above have achieved a balanced accuracy value of 90% or above on the standard 
dataset.

In this work, we utilize the composition of k-spaced amino acid pairs (CKSAAP) for the numerical representa-
tion of the amino acid sequence, which has been successfully adopted by several researchers to address various 
prediction problems33–35. A part of this work was presented in36, where we explored the discrimination power of 
k = 0 to 13-spaced amino acid pairs. More specifically, we observed that a gap of k = 8 provides the best classifi-
cation performance.

In recent times, deep learning has been used in various bio-informatics applications37,38. It has also been 
very successfully employed for classification problems39. The novelty of our work is that, for the first time, a 
deep-learning-based technique has been proposed for the classification of AFP sequences. As the dataset is sig-
nificantly small in size and, with k = 8, the number of descriptors of the CKSAAP scheme is 3600, the training of 
the model becomes an ill-posed problem.

In this paper, we propose a novel machine-learning-based approach using the concept of latent space learning 
through a task-specific deep auto-encoder. An auto-encoder, generally used for feature compression40, is now 
utilized to perform composite functions, i.e., to extract significant features from the encoding scheme and to 
perform the prediction task. The auto-encoder is modified to learn minimally redundant and maximally relevant 
latent space features, and hence, the feature length is drastically reduced. Exploiting only these important attrib-
utes, the classifier achieves superior performance.

A thorough ablation study is performed on the model to obtain the optimal values of the hyperparameters and 
latent space size. The best model produces superior results on the evaluation parameters including the Matthews 
correlation coefficient (MCC), Youden’s index, balanced accuracy and F1 score. The workflow of the proposed 
method and the ablation studies performed are shown in Fig. 1, and its details are discussed in later sections.

Methods
evaluation parameters. AFP prediction is considered a classification problem. Accordingly, we use 
standard threshold-dependent parameters including sensitivity, specificity, accuracy, MCC, balanced accuracy, 
Youden’s index and F1 score to evaluate the performance of the proposed classifier. These parameters can be eval-
uated using the following equations:

=
+

Sensitivity TP
TP FN (1)

=
+

Specificity TN
TN FP (2)
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Here TP, FP, TN, and FN represent true positive (correctly classified AFP), false positive (incorrect classification 
of non-AFP as AFP), true negative (correctly classified non-AFP), and false negative (incorrect classification of 
AFP as non-AFP), respectively. Thus, sensitivity indicates the fraction of AFPs correctly classified as AFPs and 
specificity indicates the fraction of non-AFPs correctly classified as non-AFP. Accuracy indicates the ratio of the 
total number of correctly classified samples to the total number of samples. As the test dataset is highly imbal-
anced, the parameters that assess the predictor’s quality considering the imbalanced distribution of the test data 
must be emphasized. For example, MCC considers the TP, TN, FP, and FN values and is regarded as a balanced 
measure, even if the test dataset is imbalanced. The range of MCC lies between −1 → 1, with −1 indicating the 
worst binary classification and 1 indicating the best binary classification. Furthermore, balanced accuracy, which 
is defined as an average of the recall obtained on each class, is usually used when the test dataset is imbalanced. 

Figure 1. (a) Workflow of the proposed algorithm. The features are extracted using CKSAAP encoding scheme 
by keeping the gap value k = 8. (b) Workflow of the ablation studies. To perform the ablation studies, the dataset 
is divided into training and test sets, where training dataset is composed of 1:1, 1:2 and 1:3 AFP:Non-AFP 
ratios i.e., 300:300, 300:600 and 300:900 AFPs:Non-AFPs respectively and remaining samples were used for 
test dataset. For each case 9 different models of latent variable size (LV = 1, 2, 3, 4, 5, 10, 15, 20 and 25) were 
designed.
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Youden’s index is a class-specific measure, and the F-score represents the harmonic mean of precision and recall/
sensitivity.

Dataset. The benchmark dataset22 is obtained to assess the performance of our approach. The dataset was 
constructed by initially obtaining 221 AFPs from the Pfam database as seed. A stringent threshold, (E = 0.001), 
was chosen during the PSI-BLAST to remove any redundancy from the data. A manual check was performed to 
remove any non-AFPs, and finally, the CD-HIT program was used to reduce the sequence identity to 40%. The 
total number of proteins in the positive dataset is 481. The negative dataset has 9493 non-AFPs, which do not have 
overlap with the AFPs. These positive and negative datasets were divided into two subsets for training and testing.

For a fair comparison, the subsets are maintained to be quantitatively equal to the subsets used in the previous 
approaches i.e., 300 AFPs and 300 non-AFPs in the training subset, and 181 AFPs and 9193 non-AFPs in the test 
subset. The selection of proteins from the dataset was randomized to ensure generalization. Some methods have 
utilized an imbalanced training dataset to investigate the influence of the number of non-AFPs on the prediction 
performance41. Therefore, to determine the effect of data distribution, we performed an ablation study with 600, 
900, and 1200 negative training samples during training while maintaining a constant number of positive samples 
i.e., 300.

features extraction. Composition of k-spaced amino acid pairs. Several machine-learning approaches 
have been utilized to perform the prediction task for AFPs28,42. The fundamental task in developing a 
computation-based classification model is the translation of protein sequences to interpretative encoded numer-
ical features. Therefore, the conversion of sequence into the numerical vector is indispensable. Various encoding 
schemes that employ numerous protein features have been developed to extract diverse information from the 
protein sequences. As it was believed that an individual feature extraction strategy may only represent a partial 
target’s knowledge26, in numerous studies, multiple feature extraction methods are combined to enhance the 
classification performance23,24,26,27. However, it has been observed in recent studies that a viable feature extraction 
method e.g., CKSAAP can equally contribute toward satisfactory prediction performances43–45. Thus, we utilized 
CKSAAP encoding scheme in the AFP-CKSAAP method36.

This encoding method has emphasized the significance of amino acid pairs and has been utilized in various 
classification methods34,35,46. The feature vector is obtained by calculating the frequency of amino acid pairs sep-
arated by k (j = 0, 1, 2, … k) number of residues. The representation is based on the frequency of k-spaced amino 
acid pairs in a local sequence window. If k = 2, k-spaced pairs for j = 0, 1, and 2 are considered. For each value 
of j, the corresponding feature vectors Fj i.e., F0, F1 and F2 as shown in Eqs. (9), (10), and (11), respectively, are 
evaluated, each having a length of 400. The final feature vector F is computed by concatenating the individual 
feature vectors as shown in Eq. (12). The value of each descriptor is calculated by dividing the number of occur-
rences of that amino acid pair by the total number of j-spaced residue pairs (N0, N1 … Nj) in the protein. For j, 
Nj = L − (j + 1), where L is the length of the protein sequence. In Fig. 2, only a few windows have been highlighted 
for the purpose of illustration. However, in practice, all the amino acid pairs are covered in overlapping windows 
with the respective gap values.
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It is evident from Eq. (12) and Fig. 2, that the CKSAAP encoding scheme utilizes the the trivial information 
from the preceding features including AAC, DPC, and TPC, which have been proven to play a vital role in AFP 
prediction in earlier studies22,28,29.

Incremental feature selection. Selection of key representative parameters is important for improving the predic-
tion performance of a classifier. AFP-CKSAAP has been thoroughly evaluated to determine the optimal value 
of k by manually performing the sequential forward selection method to determine the best-suited feature. The 
best performance of the classifier was obtained by maintaining the gap value k = 836. It is also evident from the 
references that an attribute vector obtained from a very large value of k will include redundant features and may 
not contribute toward prediction33,47. Owing to the significance of maintaining this value of k, in this study, we 
perform all the performance analyses by maintaining the constant gap value of k = 8.

From Eq. (12), it can be inferred that the gap value k = 8 in CKSAAP retrieves a feature vector of length 
3600. In AFP-CKSAAP, we utilized all the features for classification using a deep neural network that produced 
satisfactory results, outperforming the previously proposed methods by a fair margin. However, by training 
the algorithm with fewer training samples having large feature dimensions, there exists a possibility that the 
AFP-CKSAAP algorithm may lose its generalization for new samples. Therefore, in this study, we intend to 
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achieve satisfactory prediction using a reduced number of features. This could be done by dimension reduction 
using existing methods such as principle component analysis48, Gini index49, and mutual information50. However, 
recently, an auto-encoder has also been effectively used for dimension reduction51,52. An auto-encoder, which is 
an unsupervised algorithm, has emerged as a successful neural network framework that learns to represent the 
input data in much fewer dimensions and regenerates an output approximately similar to the input that has been 
fed to it. The principal function of this algorithm is its ability to reconstruct the input using substantially fewer 
features by constraining the latent space. The properties of the latent space in the auto-encoder make it a favorable 
candidate for feature compression in this study. The details of the architecture of the auto-encoder and its utiliza-
tion in this study are discussed later sections.

Latent space learning for AFP classification. In this study, we design a novel auto-encoder-based clas-
sification model for the prediction of AFP proteins. The proposed model is a combination of auto-encoder and 
classifier. By simultaneously training the auto-encoder and classifier, we successfully learned a noise-free latent 
space representation, which is composed of variables that have learned the least redundant and most relevant 
attributes of the input data. The architecture of the proposed model is shown in Fig. 3.
Network specifications. Auto-encoder. An auto-encoder is an unsupervised learning algorithm that aims to 
learn to reproduce the input using fewer dimensions. We propose to use a multilayer auto-encoder architecture 
that has been regularized to be sparse to generate compressed latent space. By imposing a sparsity penalty during 
training, the model learns the most informative and discriminative features for AFP classification  from the input 
data as a byproduct40. The architecture is composed of three sections: (i) an encoder with some hidden layers, (ii) 
a latent space, which represents the encoded input in reduced dimensions by ignoring the noise in the input53, 
and (iii) a decoder that regenerates the input from the latent space variables. The number of hidden layers and 
the number of neurons in each layer of the encoder and decoder are varied to obtain reasonable performance. 
In this study, the encoder and decoder are composed of five layers, including four hidden layers. The number of 
neurons in the input layer of the encoder is equal to the length of the attribute vector, the number of neurons in 
the first hidden layer is 50, the numbers of neurons in the second and third hidden layers of the encoder are 25 
each, and the fourth hidden layer has 10 neurons. The number of neurons in the latent space is systematically 
altered to obtain the best performance. The best performance was achieved when four neurons in the space were 
selected. The decoder is a complement of the encoder, this symmetry ensures the smooth encoding and decoding 
procedure54. Therefore, the number of neurons in the first hidden layer of the decoder is equal to that in the last 
layer of the encoder and so on i.e., the numbers of neurons in the first, second, third and fourth hidden layers of 

Figure 2. Illustration of CKSAAP descriptor calculation for k = 2.
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the decoder are 10, 25, 25, and 50 respectively. Finally, the number of neurons in the output layer of the decoder 
is equal to the length of attribute vector.

The latent space, represents the learned representative features, and is the middle layer of the auto-encoder. 
It is shared between the encoder and decoder, serving as the final layer for the encoder and the input layer for 
the decoder. In the proposed model, the latent space has been regularized to be sensitive to the unique statistical 
features of the input by adding a regularization term in the loss function.

Therefore, the model retrieves the information by using the most discriminative features only, essentially 
serving the classification task. Thus, the classifier is trained on the dominant features, and the decoder is trained 
to regenerate the input from the latent variables.

Classifier. The classifier is designed to process the latent space variables generated by the auto-encoder module. 
For the classification, a similar approach as in AFP-CKSAAP36 i.e., multilayer perceptron (MLP), is implemented. 
The architecture of the classifier, as shown in Fig. 3, is composed of three hidden layers and an output layer. The 
final layer of the encoder, which is the latent space, serves as an input layer for the classifier. Therefore, the input 
layer of the classifier has 4 neurons, each hidden layer has 10 neurons, and the number of neurons in the output 
layer is equivalent to the number of classes.

Training method. The model consisting of two modules, the auto-encoder module and the classifier module 
as shown in Fig. 3, is trained using Python on Keras (Tensorflow) for 1000 epochs with a variant of the gradient 

Figure 3. Architecture of the proposed model for AFP classification. The encoder is composed of an input layer 
and four hidden layers and embeds the observation to the latent space. The output layer of the encoder is the 
latent space, connected to the last hidden layer of the the encoder, and serves as the input for the decoder and 
classifier.The decoder is the complement of the encoder and decodes the representation to the original space. 
The classifier is a fully connected four-layered multilayer perceptron and is tuned to perform prediction task.
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descent algorithm called Rmsprop55. Each layer of the auto-encoder module uses a rectified linear unit (ReLU) 
as an activation function to avoid a vanishing gradient. Furthermore, a dropout layer with 30% is used after each 
layer for better generalization and to avoid overfitting. For the classification module, ReLU has been used as an 
activation function for all the layers, except the output layer where the softmax function is used to generate class 
prediction probabilities.

The proposed model generates two types of outputs: (i) a decoded feature vector, and (ii) a class label of input 
protein. For the auto-encoder and classifier modules, we used different loss functions to minimize their respective 
error values. To train the auto-encoder, we use a mean squared error (MSE) loss function, whereas the classifier 
module is optimized by minimizing the binary cross entropy between the true class and predicted class labels. The 
MSE is calculated between the input and decoded feature vectors of the auto-encoder. The results of MSE values 
for all the auto-encoder models are presented in Table 1.

Results
Herein, we present the results of the experiments performed for the evaluation of the model. The training dataset 
is randomly divided into two subsets, i.e., training and validation, with the ratio of 90:10, i.e., out of 600 samples, 
540 samples were used for training and 60 samples for validation. We used early stopping with the patience of 
50 epochs to avoid overfitting, and we stopped the training if the model stopped improving. The metric in the 
early stopping was validation loss, and the training was stopped at approximately 700 epochs. The best model was 
obtained by performing the ablation study, the details of which are discussed later in the text.

Ablation study. In this work, we perform an ablation study to obtain a simple overall architecture. This is 
motivated by the fact that the latent space is sparsely populated. This sparse space eliminates redundancies to 
achieve the degree of compression factor that can be reached. To this end, a benchmark architecture is evaluated 
with various modifications in the design, and the performance of each model is observed. One must choose an 
optimal number of neurons in the latent space so that the feature vector is significantly reduced, and the decoder 
must be able to regenerate the input using these features. Furthermore, the latent space serves as the input layer 
of the classifier network, which makes it crucial. Considering the significance of the latent variables, in this study, 
we evaluated the models with varying number of latent space variables. Additionally, we intended to observe the 
behavior of the model with respect to the data distribution in the train dataset. The existing studies, with some 

No. of latent 
variables: LV1 LV2 LV3 LV4 LV5 LV10 LV15 LV20 LV25

Training samples 
ratios: 1:1 AFP:NON-AFP

Sensitivity (%) 84.83 ± 3.95 79.72 ± 7.22 82.59 ± 6.39 82.18 ± 5.21 85.58 ± 5.40 82.59 ± 4.68 82.03 ± 5.50 81.13 ± 8.94 80.49 ± 6.94

Specificity (%) 91.52 ± 3.04 90.82 ± 4.39 89.95 ± 2.66 92.86 ± 4.01 88.95 ± 3.75 90.73 ± 3.25 93.06 ± 2.26 91.97 ± 3.99 91.51 ± 2.94

Balanced Accuracy 
(%) 88.17 ± 1.19 85.27 ± 2.63 86.27 ± 2.30 87.52 ± 1.40 87.26 ± 1.79 86.66 ± 2.01 87.54 ± 1.90 86.55 ± 2.78 86.00 ± 2.40

Youden’s Index 0.76 ± 0.02 0.70 ± 0.05 0.72 ± 0.04 0.75 ± 0.02 0.74 ± 0.03 0.73 ± 0.04 0.75 ± 0.03 0.73 ± 0.05 0.72 ± 0.04

MCC 0.46 ± 0.05 0.33 ± 0.04 0.32 ± 0.03 0.48 ± 0.07 0.32 ± 0.04 0.34 ± 0.06 0.48 ± 0.04 0.46 ± 0.06 0.34 ± 0.04

F1-Score 0.42 ± 0.07 0.26 ± 0.05 0.25 ± 0.04 0.46 ± 0.09 0.24 ± 0.05 0.27 ± 0.07 0.45 ± 0.05 0.43 ± 0.08 0.28 ± 0.06

MSE (dB) −14.69 ± 3.34 −15.90 ± 4.08 −16.57 ± 5.30 −18.45 ± 6.40 −17.08 ± 7.45 −18.31 ± 7.72 −16.27 ± 2.26 −17.86 ± 4.92 −15.96 ± 4.42

Training samples 
ratios: 1:2 AFP:NON-AFP

Sensitivity (%) 79.77 ± 7.69 75.74 ± 4.81 76.79 ± 7.06 83.42 ± 5.50 77.23 ± 7.50 77.73 ± 5.77 79.22 ± 8.14 82.04 ± 8.10 76.96 ± 8.10

Specificity (%) 93.16 ± 2.80 94.84 ± 1.33 94.08 ± 2.59 90.02 ± 4.38 93.23 ± 4.88 94.56 ± 2.40 93.29 ± 2.89 92.88 ± 2.50 94.21 ± 2.24

Balanced Accuracy 
(%) 86.47 ± 2.69 85.29 ± 2.11 85.43 ± 2.58 86.72 ± 1.25 85.23 ± 1.80 86.15 ± 1.72 86.26 ± 2.94 87.46 ± 1.42 85.58 ± 3.08

Youden’s Index 0.72 ± 0.05 0.70 ± 0.04 0.70 ± 0.05 0.73 ± 0.02 0.70 ± 0.03 0.72 ± 0.03 0.72 ± 0.05 0.74 ± 0.02 0.71 ± 0.06

MCC 0.38 ± 0.05 0.40 ± 0.03 0.40 ± 0.05 0.33 ± 0.05 0.39 ± 0.07 0.42 ± 0.06 0.38 ± 0.05 0.38 ± 0.05 0.40 ± 0.05

F1-Score 0.32 ± 0.08 0.36 ± 0.04 0.35 ± 0.07 0.26 ± 0.07 0.35 ± 0.10 0.37 ± 0.09 0.33 ± 0.07 0.32 ± 0.06 0.35 ± 0.07

MSE (dB) −16.71 ± 6.38 −17.28 ± 4.30 −14.28 ± 2.38 −18.63 ± 4.54 −16.00 ± 3.05 −18.43 ± 4.99 −14.48 ± 2.46 −18.24 ± 2.79 −16.76 ± 4.72

Training samples 
ratios: 1:3 AFP:NON-AFP

Sensitivity (%) 71.27 ± 2.60 80.11 ± 6.09 76.46 ± 6.15 75.74 ± 10.78 76.40 ± 5.13 76.68 ± 4.60 82.70 ± 4.97 76.62 ± 5.26 77.01 ± 7.26

Specificity (%) 94.77 ± 3.01 94.38 ± 2.84 96.21 ± 1.80 95.41 ± 2.23 95.19 ± 1.53 95.57 ± 1.67 93.28 ± 2.87 95.47 ± 1.90 95.84 ± 2.00

Balanced Accuracy 
(%) 83.02 ± 11.92 87.24 ± 1.94 86.33 ± 2.23 85.57 ± 4.63 86.30 ± 1.89 86.13 ± 1.75 87.99 ± 1.21 86.05 ± 1.79 86.42 ± 2.87

Youden’s Index 0.66 ± 0.23 0.74 ± 0.03 0.72 ± 0.04 0.71 ± 0.09 0.72 ± 0.03 0.72 ± 0.03 0.75 ± 0.02 0.72 ± 0.03 0.72 ± 0.05

MCC 0.37 ± 0.13 0.43 ± 0.07 0.48 ± 0.06 0.44 ± 0.05 0.47 ± 0.05 0.44 ± 0.06 0.40 ± 0.04 0.44 ± 0.06 0.46 ± 0.05

F1-Score 0.33 ± 0.13 0.38 ± 0.09 0.44 ± 0.08 0.40 ± 0.07 0.44 ± 0.07 0.41 ± 0.08 0.34 ± 0.06 0.40 ± 0.08 0.43 ± 0.07

MSE (dB) −18.82 ± 7.91 −17.16 ± 3.86 −15.86 ± 2.51 −16.18 ± 3.82 −16.68 ± 1.85 −15.44 ± 2.21 −17.89 ± 4.84 −16.27 ± 3.60 −17.32 ± 2.87

Table 1. Performance of the proposed method evaluated on widely used metrics for different data distributions 
and variations in the latent space size.
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exceptions, have been conducted on the balanced training dataset of the benchmark data. For a fair comparison, 
we used a similar configuration of the train and test datasets. However, to evaluate the robustness of the proposed 
method, we also train it using an unbalanced dataset.

Effect of latent variables. In the first ablation study, we observe the effect of varying the number of vari-
ables in the latent space by maintaining a constant balanced data distribution for training. Since the latent space 
is sparsely populated, it satisfies the limitation on the compression factor. Therefore, we start the evaluation by 
maintaining the latent space variable of length 25. The latent space variables (LV) are then systematically reduced 
and evaluated by reducing 5 neurons. Subsequently, after evaluating the performance of the model for LV 5 neu-
rons, the latent space variables were further reduced one by one. For each configuration, 20 simulation runs are 
performed, and the values of the statistical parameters such as MCC, Youden’s index, balanced accuracy, F1 score, 
and MSE are observed. The mean values of Youden’s index and the MSE for the reconstruction error have been 
depicted in Figs. 4 and 5, respectively.

Effect of data distribution. Another ablation study was performed to observe the sensitivity of the model 
for training the data distribution. To this end, AFPs and non-AFPs were fused in three distinct subsets having 
AFP and non-AFP ratios of 1:1, 1:2, and 1:3. Additionally, the effect of the latent space variables on the data 
distribution was considered; therefore, the training was performed on incremental latent space variables. Yang 
et al. studied the effect of an imbalanced training dataset and it has been reported that their classifier does not 
comprehend the imbalanced data and classifies most of the samples to the majority class26, the results therefore 
are not appreciable. However, the proposed classifier (AFP-LSE) has the tendency to learn further motif infor-
mation when the number of training samples is increased. Appreciable values of performance metrics in Table 1, 
suggests that the performance of the classifier can be improved by utilizing the supplementary information from 
the negative class. As there is a limitation in the availability of AFP datasets, previous studies have been conducted 
on a small balanced dataset. Therefore, for a comparison, we report the results of the performance of the classifier 
trained by using similar configurations.

Figure 4. Effect on the Youden’s index values by varying number of variables in the latent space.

Figure 5. MSE values depicting reconstruction error for various auto-encoder models.
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Performance evaluation and comparison with contemporary methods. After an analysis of the results obtained 
from the ablation study performed to determine the optimal parameters and the size of the latent space, the best 
model is selected as the classifier for AFP and is named as AFP-LSE. The model is trained with CKSAAP encoded 
samples with k = 8, with the number of latent space variables LV = 4 and with 1:1 ratio of training and test data-
sets. The model is evaluated on an independent test dataset, and its results on the statistical parameters are better 
than those obtained by the previously reported methods. This study evaluates the performance of the classifier on 
the parameters reflecting the true efficacy of the classifier by considering the imbalanced condition of the training 
and testing datasets. Therefore, we emphasize the parameters MCC, balanced accuracy, and Youden’s index due to 
their insensitivity toward imbalance in classes. The best model showed the MCC value of 0.52, balanced accuracy 
of more than 90%, and Youden’s index value of 0.81. The performance of AFP-LSE is compared with those of the 
existing methods as shown in Table 2. Based on the prediction results, AFP-LSE achieved superior performance 
on all the statistical measures. Particularly, improvements of approximately 2% and 5% in the balanced accuracy 
and Youden’s index, respectively, were observed when compared with the corresponding values for the best clas-
sifier in the literature i.e., CryoProtect29. Similarly, the best values of the MCC and F-score were demonstrated by 
AFP_PSSM24, whereas the proposed classifier shows improvements of approximately 52% and 68%, respectively, 
for the aforementioned parameters.

Prediction of novel AFP candidates. Considering the extreme rarity of AFPs within entire organism proteomes, 
herein, we perform the screening of novel AFP candidate proteins. An independent dataset containing 10 candi-
date AFPs was obtained from the INTERPRO56 database. The sequences in this independent test dataset were not 
present in the positive or negative datasets of AFP-LSE. The prediction results of AFP-LSE were compared with 
those of PSI-BLAST search from UNIPROT57 and SWISSPROT58 databases on E = 0.1. The AFP-LSE predicted 
9 proteins as AFPs and only 1 protein is predicted as non-AFP. Interestingly, the same protein is also classified 
as non-AFP by PSI-BLAST. Compared with AFP-LSE, PSI-BLAST retrieved only 4 out 10 candidate sequences 
as AFPs as shown in Table 3. The NCBI database annotated 4 out of 10 sequences as hypothetical or unnamed 
proteins; further three of them were characterized as Type I antifreeze, or AFP-like domain-containing proteins, 
whereas the annotations of the remaining three are shown in Table 3. The performance of AFP-LSE suggests that 
it can be effectively utilized for the annotation of hypothetical proteins.

Methods Classifier Sensitivity Specificity Acc Youden’s Ind Bal Acc MCC F-Score

iAFP23 SVM 13.2% 97.0% 95.3% 0.10 55.1% 0.08 0.10

AFP-Pred22 RF 84.6% 82.3% 83.3% 0.63 83.4% 0.23 0.15

AFP_PSSM24 SVM 75.8% 93.2% 93.0% 0.69 84.5% 0.34 0.29

AFP-PseAAC25 SVM 86.1% 84.7% 84.7% 0.70 85.4% 0.26 0.17

RAFP-Pred28 RF 84.0% 91.0% 90.9% 0.75 87.5% 0.33 0.26

CryoProtect29 RF 87.2% 88.3% 88.2% 0.76 87.7% 0.30 0.22

AFP-CKSAAP36 DNN 94.0% 87.0% 88.0% 0.81 90.5% 0.32 0.22

Proposed AE + DNN 86.7% 93.9% 93.7% 0.81 90.3% 0.52 0.49

Table 2. Comparison of best performing AFP-LSE model with contemporary approaches on an external 
validation set containing 181 AFPs and 9193 Non-AFPs and trained with a balanced dataset comprising 300 
AFPs and 300 Non-AFPs.

GI Number
UniProtKB 
ACC AFP-LSE PSI-BLAST NCBI Definition

26325086 Q14DU1 Non-AFP Non-AFP Kelch-like 11 (Drosophila)

74221639 Q3V0I3 AFP AFP Uncharacterized protein

12843602 Q9D7P2 AFP Non-AFP Uncharacterized protein

30249105 Q82VH2 AFP AFP Type I antifreeze protein

45435722 Q66D88 AFP Non-AFP Hypothetical protein

281341260 D2H0G8 AFP AFP AFP-like domain-containing 
protein

2315605 O16596 AFP Non-AFP Cell division coordinator CpoB

260817607 C3YJ26 AFP AFP AFP-like domain-containing 
protein

26388908 Q8BMV6 AFP Non-AFP RIKEN cDNA E130116L18 gene

26348120 Q8C1R8 AFP Non-AFP Uncharacterized protein

Table 3. Prediction results for 10 candidate antifreeze proteins obtained from INTERPRO56 database.
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Discussion
Due to the lack of availability of AFP samples, the nature of the available dataset is skewed, therefore, the classifi-
cation of AFPs from non-AFPs poses a class imbalance problem which is challenging for machine-learning algo-
rithms59. In addition to this class imbalance, there is an issue of rare cases of sub-types in AFP, as in “AFP” class, 
where only fewer sub-types are in abundance, which leads to intra-class imbalance and introduces outlier artifacts 
in designing a reliable classifier. In contrast, in typical classification problems e.g., in the case of lysine acetylation 
sites prediction in proteins, or the identification of protein-protein binding sites, there is an availability of a sub-
stantially large number of positive and negative samples in datasets, hence, they do not suffer from the problem of 
class imbalance or intra-class variation33,60,61. Another challenge faced in the classification of AFPs is the variation 
in the sequences of AFPs, which subsequently produces features with low inter-class and high intra-class variance. 
These inevitable phenomena are the consequences of the similarity exhibited by AFPs with different protein fam-
ilies from which they are assumed to be evolved18,19 and because different AFPs present low sequence similarity 
among each other. Principal component analysis (PCA) projection of CKSAAP features, which is discussed later 
in the text, establishes explicit evidence in Fig. 6(a,b), that both AFPs and non-AFPs appear in an overlapping 
fashion, suggesting that the development of the AFP classifier using linear methods is an arduous task.

For an insightful understanding of CKSAAP representation-based classification of AFPs using the given data-
set, we present a comparison of the PCA and AFP-LSE methods. For visual assessments, the data were projected 
on two dimensions utilizing the top two eigenvectors in the case of PCA and two latent spaces in the case of 
AFP-LSE. As shown in Fig. 6(c), the proposed non-linear auto-encoder-based latent space encoding (AE-LSE) 
presents superior learning capabilities and maps the AFPs and non-AFPs in separate regions in contrast to the 
linear unsupervised sub-space learning method of PCA depicted in Fig. 6(a), which fails to do so, revealing that 
both classes are inseparable in a linear sense.

The same eigenvectors and the latent space from PCA and AE-LSE respectively, obtained from training are 
then utilized to project the test data. Differences in the mapping capabilities of AFPs can be observed for both the 
PCA and AE-LSE methods in Fig. 6(b,d) respectively. It can be observed in the bottom right of the Fig. 6(d) that 
the AE-LSE method forms clusters of AFP samples. Nevertheless, there is some overlapping of non-AFPs, the 
overall separability of the data projected through the AE-LSE method is better than that of the data linearly pro-
jected by the PCA, indicating that the discovery of unknown groups using PCA is strenuous. This helps in under-
standing the working principle of the proposed method and the motivation for the development of non-linear 
auto-encoder-based learning of latent space.

The proposed method can contribute toward the design of a superior mapping function resulting in a reduc-
tion of dimensions while retaining the information that separates the AFP from the non-AFP samples. Recently, 
many researchers have shown interest in auto-encoder-based models62. However, to the best of our knowledge, no 
auto-encoder-based classifier has been proposed for the classification of protein sequences. The proposed model 

Figure 6. Comparison of proposed auto-encoder-based latent space encoding (AE-LSE) with principal 
component analysis (PCA) method for 2D projection.
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can be used for the prediction of other types of proteins as well, for instance, bioluminance proteins (BLPs)63 
and extra cellular matrix proteins (ECM)64 etc. In particular, it can be utilized for the dimensionality reduc-
tion in highly non-linear classification problems where number attributes are higher than the training samples. 
To avoid overfitting, we used regularization techniques such as dropout and batch-normalization in this study. 
For future studies we would recommend utilizing transfer learning approach where the AFP-LSE model is first 
trained with a closely related classification task and later fine-tuned for AFP dataset. However, transfer learning 
and other training strategies are beyond the scope of this study. The Python implementation of the proposed 
algorithm has been made public, and interested user can utilize the algorithm for their problem of interest. The 
algorithm is available at (https://github.com/Shujaat123/AFP-LSE). In the near future, we would like to explore 
auto-encoder-based classifiers further for other bio-informatics problems.

conclusion
The prediction of AFPs due to the unavailability of a substantial dataset and the inherent diversity in the sequence 
and structures is a challenging classification problem that has been addressed by various researchers. In the pro-
posed prediction method, each protein sequence was encoded using CKSAAP with k = 8. The results of our 
previous study showed that these features can significantly contribute to the classification performance. For clas-
sification, we proposed a novel machine-learning-based method for the AFP prediction. The method uses an 
auto-encoder for feature compression, and these reduced features are used to train the neural-network-based 
classifier. A comparison of the proposed non-linear mapping method with the linear projection approach of PCA 
demonstrated superior classification capabilities of the proposed method. A comprehensive ablation study was 
performed for a better understanding of the effect of latent space variables as well as the impact of training data 
distribution, and widely used biostatistics nomenclatures were evaluated. The method yields excellent classifica-
tion results on the benchmark dataset, outperforming the existing methods, particularly yielding an MCC value 
of 0.52 with a Youden’s index of 0.81.
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